|
1
|
Golstein P and Kroemer G: Cell death by
necrosis: towards a molecular definition. Trends Biochem Sci.
32:37–43. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bustamante-Marin X, Quiroga C, Lavandero
S, Reyes JG and Moreno RD: Apoptosis, necrosis and autophagy are
influenced by metabolic energy sources in cultured rat
spermatocytes. Apoptosis. 17:539–550. 2012.PubMed/NCBI
|
|
3
|
Edinger AL and Thompson CB: Death by
design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol.
16:663–669. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mah LY and Ryan KM: Autophagy and cancer.
Cold Spring Harb Perspect Biol. 4:a0088212012.PubMed/NCBI
|
|
5
|
Lockshin RA and Zakeri Z: Cell death in
health and disease. J Cell Mol Med. 11:1214–1224. 2007. View Article : Google Scholar
|
|
6
|
Glick D, Barth S and Macleod KF:
Autophagy: cellular and molecular mechanisms. J Pathol. 221:3–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kaminskyy V and Zhivotovsky B: Proteases
in autophagy. Biochim Biophys Acta. 1824:44–50. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chen Y and Yu L: Autophagic lysosome
reformation. Exp Cell Res. 19:142–146. 2013. View Article : Google Scholar
|
|
9
|
Mizushima N: The role of the Atg1/ULK1
complex in autophagy regulation. Curr Opin Cell Biol. 22:132–139.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Reggiori F: 1. Membrane origin for
autophagy. Curr Top Dev Biol. 74:1–30. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tanida I, Ueno T and Kominami E: LC3
conjugation system in mammalian autophagy. Int J Biochem Cell Biol.
36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yang WL, Perillo W, Liou D, Marambaud P
and Wang P: AMPK inhibitor compound C suppresses cell proliferation
by induction of apoptosis and autophagy in human colorectal cancer
cells. J Surg Oncol. 106:680–688. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ge W, Guo R and Ren J: AMP-dependent
kinase and autophagic flux are involved in aldehyde
dehydrogenase-2-induced protection against cardiac toxicity of
ethanol. Free Radic Biol Med. 51:1736–1748. 2011. View Article : Google Scholar
|
|
14
|
Wu Y, Li X, Zhu JX, et al:
Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of
Parkinson’s disease. Neurosignals. 19:163–174. 2011.PubMed/NCBI
|
|
15
|
Li ZY, Yang Y, Ming M and Liu B:
Mitochondrial ROS generation for regulation of autophagic pathways
in cancer. Biochem Biophys Res Commun. 414:5–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dagda RK, Zhu J, Kulich SM and Chu CT:
Mitochondrially localized ERK2 regulates mitophagy and autophagic
cell stress: implications for Parkinson’s disease. Autophagy.
4:770–782. 2008.PubMed/NCBI
|
|
17
|
Nishiyama Y, Shimada Y, Yokoi T, et al:
Akt inactivation induces endoplasmic reticulum stress-independent
autophagy in fibroblasts from patients with Pompe disease. Mol
Genet Metab. 107:490–495. 2012. View Article : Google Scholar
|
|
18
|
Tsai SC, Yang JS, Peng SF, et al: Bufalin
increases sensitivity to AKT/mTOR-induced autophagic cell death in
SK-HEP-1 human hepatocellular carcinoma cells. Int J Oncol.
41:1431–1442. 2012.
|
|
19
|
Chen J, Crawford R and Xiao Y: Vertical
inhibition of the PI3K/Akt/mTOR pathway for the treatment of
osteoarthritis. J Cell Biochem. Aug 28–2012.(Epub ahead of print).
View Article : Google Scholar
|
|
20
|
Zeng T, Zhang CL, Song FY, et al: PI3K/Akt
pathway activation was involved in acute ethanol-induced fatty
liver in mice. Toxicology. 296:56–66. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Martelli AM, Evangelisti C, Follo MY, et
al: Targeting the phosphatidylinositol 3-kinase/Akt/mammalian
target of rapamycin signaling network in cancer stem cells. Curr
Med Chem. 18:2715–2726. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hugel HM, Jackson N, May BH and Xue CC:
Chinese herbs for dementia diseases. Mini Rev Med Chem. 12:371–379.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen S, Wu T, Kong X and Yuan H: Chinese
medicinal herbs for measles. Cochrane Database Syst Rev. Nov
9–2011.CD005531 View Article : Google Scholar
|
|
24
|
Yuan Y, Shuai L, Chen S, Huang L, Qin S
and Yang Z: Flavonoids and antioxidative enzymes in
temperature-challenged roots of Scutellaria baicalensis Georgi. Z
Naturforsch C. 67:77–85. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ma AT, Zhong XH, Liu ZM, et al: Protective
effects of baicalin against bromocriptine induced abortion in mice.
Am J Chin Med. 37:85–95. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Waisundara VY, Siu SY, Hsu A, Huang D and
Tan BK: Baicalin upregulates the genetic expression of antioxidant
enzymes in Type-2 diabetic Goto-Kakizaki rats. Life Sci.
88:1016–1025. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bing-Rong Z, Song-Liang J, Xiao EC, et al:
Protective effect of the Baicalin against DNA damage induced by
ultraviolet B irradiation to mouse epidermis. Photodermatol
Photoimmunol Photomed. 24:175–182. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li HY, Hu J, Zhao S, et al: Comparative
study of the effect of baicalin and its natural analogs on neurons
with oxygen and glucose deprivation involving innate immune
reaction of TLR2/TNFalpha. J Biomed Biotechnol. Mar 21–2012.(Epub).
267890 View Article : Google Scholar
|
|
29
|
Cao Y, Mao X, Sun C, et al: Baicalin
attenuates global cerebral ischemia/reperfusion injury in gerbils
via anti-oxidative and anti-apoptotic pathways. Brain Res Bull.
85:396–402. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
de Carvalho RS, Duarte FS and de Lima TC:
Involvement of GABAergic non-benzodiazepine sites in the
anxiolytic-like and sedative effects of the flavonoid baicalein in
mice. Behav Brain Res. 221:75–82. 2011.PubMed/NCBI
|
|
31
|
Zhu J, Wang J, Sheng Y, et al: Baicalin
improves survival in a murine model of polymicrobial sepsis via
suppressing inflammatory response and lymphocyte apoptosis. PLoS
One. 7:e355232012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fu S, Sun C, Tao X and Ren Y:
Anti-inflammatory effects of active constituents extracted from
Chinese medicinal herbs against Propionibacterium acnes. Nat Prod
Res. 26:1746–1749. 2012. View Article : Google Scholar
|
|
33
|
Chu ZY, Chu M and Teng Y: Effect of
baicalin on in vivo anti-virus. Zhongguo Zhong Yao Za Zhi.
32:2413–2415. 2007.(In Chinese).
|
|
34
|
Kitamura K, Honda M, Yoshizaki H, et al:
Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res.
37:131–140. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Qiao H, Han H, Hong D, Ren Z, Chen Y and
Zhou C: Protective effects of baicalin on carbon tetrachloride
induced liver injury by activating PPARgamma and inhibiting
TGFbeta1. Pharm Biol. 49:38–45. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hwang JM, Wang CJ, Chou FP, et al:
Protective effect of baicalin on tert-butyl hydroperoxide-induced
rat hepatotoxicity. Arch Toxicol. 79:102–109. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chiu YW, Lin TH, Huang WS, et al:
Baicalein inhibits the migration and invasive properties of human
hepatoma cells. Toxicol Appl Pharmacol. 255:316–326. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shieh DE, Cheng HY, Yen MH, Chiang LC and
Lin CC: Baicalin-induced apoptosis is mediated by Bcl-2-dependent,
but not p53-dependent, pathway in human leukemia cell lines. Am J
Chin Med. 34:245–261. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Motoo Y and Sawabu N: Antitumor effects of
saikosaponins, baicalin and baicalein on human hepatoma cell lines.
Cancer Lett. 86:91–95. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Huang Y, Hu J, Zheng J, et al:
Down-regulation of the PI3K/Akt signaling pathway and induction of
apoptosis in CA46 Burkitt lymphoma cells by baicalin. J Exp Clin
Cancer Res. 31:482012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen WC, Kuo TH, Tzeng YS and Tsai YC:
Baicalin induces apoptosis in SW620 human colorectal carcinoma
cells in vitro and suppresses tumor growth in vivo. Molecules.
17:3844–3857. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lee DH, Kim C, Zhang L and Lee YJ: Role of
p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer
cells. Biochem Pharmacol. 75:2020–2033. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zheng J, Hu JD, Chen YY, et al: Baicalin
induces apoptosis in leukemia HL-60/ADR cells via possible
down-regulation of the PI3K/Akt signaling pathway. Asian Pac J
Cancer Prev. 13:1119–1124. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lu HF, Hsueh SC, Ho YT, et al: ROS
mediates baicalin-induced apoptosis in human promyelocytic leukemia
HL-60 cells through the expression of the Gadd153 and
mitochondrial-dependent pathway. Anticancer Res. 27:117–125.
2007.
|
|
45
|
Zhang X, Tang X, Liu H, Li L, Hou Q and
Gao J: Autophagy induced by baicalin involves downregulation of
CD147 in SMMC-7721 cells in vitro. Oncol Rep. 27:1128–1134.
2012.PubMed/NCBI
|
|
46
|
Huang WW, Yang JS, Pai SJ, et al: Bufalin
induces G(0)/G(1) phase arrest through inhibiting the levels of
cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via
mitochondrial signaling pathway in T24 human bladder cancer cells.
Mutat Res. 732:26–33. 2012. View Article : Google Scholar
|
|
47
|
Kim JY, Cho TJ, Woo BH, et al:
Curcumin-induced autophagy contributes to the decreased survival of
oral cancer cells. Arch Oral Biol. 57:1018–1025. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Munafo DB and Colombo MI: A novel assay to
study autophagy: regulation of autophagosome vacuole size by amino
acid deprivation. J Cell Sci. 114:3619–3629. 2001.PubMed/NCBI
|
|
49
|
McCoy F, Hurwitz J, McTavish N, et al:
Obatoclax induces Atg7-dependent autophagy independent of beclin-1
and BAX/BAK. Cell Death Dis. 1:e1082010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Barth S, Glick D and Macleod KF:
Autophagy: assays and artifacts. J Pathol. 221:117–124. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mizushima N and Yoshimori T: How to
interpret LC3 immuno-blotting. Autophagy. 3:542–545. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yu K, Gong Y, Lin Z and Cheng Y:
Quantitative analysis and chromatographic fingerprinting for the
quality evaluation of Scutellaria baicalensis Georgi using
capillary electrophoresis. J Pharm Biomed Anal. 43:540–548. 2007.
View Article : Google Scholar
|
|
53
|
Zhou XQ, Liang H, Lu XH, Cai SQ, Wang B
and Zhao YY: Flavonoids from Scutellaria baicalensis and their
bioactivities. Beijing Da Xue Xue Bao. 41:578–584. 2009.(In
Chinese).
|
|
54
|
Liu B, Shi RB and Zhu LJ: HPLC fingerprint
of flavonoids of Kushen Tang and its correlation to Scutellaria
baicalensis and Sophora flavescens. Zhongguo Zhong Yao Za Zhi.
32:1631–1634. 2007.(In Chinese).
|
|
55
|
Kim YH, Jeong DW, Kim YC, Sohn DH, Park ES
and Lee HS: Pharmacokinetics of baicalein, baicalin and wogonin
after oral administration of a standardized extract of Scutellaria
baicalensis, PF-2405 in rats. Arch Pharm Res. 30:260–265. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hirunuma M, Shoyama Y, Sasaki K, et al:
Flavone-catalyzed apoptosis in Scutellaria baicalensis.
Phytochemistry. 72:752–760. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Choi J, Conrad CC, Malakowsky CA, Talent
JM, Yuan CS and Gracy RW: Flavones from Scutellaria baicalensis
Georgi attenuate apoptosis and protein oxidation in neuronal cell
lines. Biochim Biophys Acta. 1571:201–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pan TL, Wang PW, Leu YL, Wu TH and Wu TS:
Inhibitory effects of Scutellaria baicalensis extract on hepatic
stellate cells through inducing G2/M cell cycle arrest and
activating ERK-dependent apoptosis via Bax and caspase pathway. J
Ethnopharmacol. 139:829–837. 2012. View Article : Google Scholar
|
|
59
|
Li HB, Jiang Y and Chen F: Separation
methods used for Scutellaria baicalensis active components. J
Chromatogr B Analyt Technol Biomed Life Sci. 812:277–290. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang S, Zheng Z, Weng Y, et al:
Angiogenesis and anti-angiogenesis activity of Chinese medicinal
herbal extracts. Life Sci. 74:2467–2478. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhu H, Wang Z, Xing Y, et al: Baicalin
reduces the permeability of the blood-brain barrier during hypoxia
in vitro by increasing the expression of tight junction proteins in
brain microvascular endothelial cells. J Ethnopharmacol.
141:714–720. 2012. View Article : Google Scholar
|
|
62
|
Hu Q, Noor M, Wong YF, et al: In vitro
anti-fibrotic activities of herbal compounds and herbs. Nephrol
Dial Transplant. 24:3033–3041. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang BL, Chen HJ, Chen YG, et al:
Inhibitory effects of baicalin on orthotopic xenografts of
colorectal cancer cells that are deficient in a mismatch repair
gene in nude mice. Int J Colorectal Dis. Aug 23–2012.(Epub ahead of
print).
|
|
64
|
Ren X, Li CL, Wang HX, et al: Molecular
mechanism of HL-60 cell apoptosis induced by baicalin. Zhongguo Shi
Yan Xue Ye Xue Za Zhi. 20:847–851. 2012.(In Chinese).
|
|
65
|
Carew JS, Kelly KR and Nawrocki ST:
Autophagy as a target for cancer therapy: new developments. Cancer
Manag Res. 4:357–365. 2012.
|
|
66
|
Goussetis DJ, Altman JK, Glaser H, McNeer
JL, Tallman MS and Platanias LC: Autophagy is a critical mechanism
for the induction of the antileukemic effects of arsenic trioxide.
J Biol Chem. 285:29989–29997. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang N, Feng Y, Zhu M, et al: Berberine
induces autophagic cell death and mitochondrial apoptosis in liver
cancer cells: the cellular mechanism. J Cell Biochem.
111:1426–1436. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Filomeni G, Desideri E, Cardaci S, et al:
Carcinoma cells activate AMP-activated protein kinase-dependent
autophagy as survival response to kaempferol-mediated energetic
impairment. Autophagy. 6:202–216. 2010. View Article : Google Scholar
|
|
69
|
Shahjee HM, Koch KR, Guo L, Zhang CO and
Keay SK: Antiproliferative factor decreases Akt phosphorylation and
alters gene expression via CKAP4 in T24 bladder carcinoma cells. J
Exp Clin Cancer Res. 29:1602010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen M, Cassidy A, Gu J, et al: Genetic
variations in PI3K-AKT-mTOR pathway and bladder cancer risk.
Carcinogenesis. 30:2047–2052. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Champelovier P, El Atifi M, Mantel F, et
al: In vitro tumoral progression of human bladder carcinoma: role
for TGFbeta. Eur Urol. 48:846–851. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Stueckle TA, Lu Y, Davis ME, et al:
Chronic occupational exposure to arsenic induces carcinogenic gene
signaling networks and neoplastic transformation in human lung
epithelial cells. Toxicol Appl Pharmacol. 261:204–216. 2012.
View Article : Google Scholar
|
|
73
|
Askham JM, Platt F, Chambers PA, Snowden
H, Taylor CF and Knowles MA: AKT1 mutations in bladder cancer:
identification of a novel oncogenic mutation that can co-operate
with E17K. Oncogene. 29:150–155. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dickstein RJ, Nitti G, Dinney CP, Davies
BR, Kamat AM and McConkey DJ: Autophagy limits the cytotoxic
effects of the AKT inhibitor AZ7328 in human bladder cancer cells.
Cancer Biol Ther. 13:1325–1338. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wu D, Tao J, Xu B, et al:
Phosphatidylinositol 3-kinase inhibitor LY294002 suppresses
proliferation and sensitizes doxorubicin chemotherapy in bladder
cancer cells. Urol Int. 86:346–354. 2011. View Article : Google Scholar
|
|
76
|
Zheng J, Hu JD, Huang Y and Chen BY:
Effects of baicalin on proliferation and apoptosis of
adriamycin-resistant human leukemia HL-60/ADR cells. Zhongguo Shi
Yan Xue Ye Xue Za Zhi. 17:1198–1202. 2009.(In Chinese).
|