|
1.
|
Van Cutsem E, Dicato M, Arber N, et al:
Molecular markers and biological targeted therapies in metastatic
colorectal cancer: expert opinion and recommendations derived from
the 11th ESMO/World Congress on Gastrointestinal Cancer, Barcelona,
2009. Ann Oncol. 21(Suppl 6): vi1–vi10. 2010.
|
|
2.
|
Chu E: Colorectal cancer (CRC) continues
to be a major public health problem in the United States and
throughout the world. Cancer J. 16:1952010.PubMed/NCBI
|
|
3.
|
Hoogwater FJ, Nijkamp MW, Smakman N, et
al: Oncogenic K-Ras turns death receptors into metastasis-promoting
receptors in human and mouse colorectal cancer cells.
Gastroenterology. 138:2357–2367. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Vallbohmer D, Kuramochi H, Shimizu D, et
al: Molecular factors of 5-fluorouracil metabolism in colorectal
cancer: analysis of primary tumor and lymph node metastasis. Int J
Oncol. 28:527–533. 2006.PubMed/NCBI
|
|
5.
|
Jin K, Gao W, Lu Y, Lan H, Teng L and Cao
F: Mechanisms regulating colorectal cancer cell metastasis into
liver (Review). Oncol Lett. 3:11–15. 2012.PubMed/NCBI
|
|
6.
|
Ouellette JR, Harboe-Schmidt JE,
Luthringer D, Brackert S and Silberman AW: Colorectal cancer
metastasis presenting as a testicular mass: case report and review
of the literature. Am Surg. 73:79–81. 2007.PubMed/NCBI
|
|
7.
|
Oshima T, Kunisaki C, Yoshihara K, et al:
Clinicopathological significance of the gene expression of matrix
metalloproteinases and reversion-inducing cysteine-rich protein
with Kazal motifs in patients with colorectal cancer: MMP-2 gene
expression is a useful predictor of liver metastasis from
colorectal cancer. Oncol Rep. 19:1285–1291. 2008.
|
|
8.
|
Jensen SA, Vainer B, Bartels A, Brunner N
and Sorensen JB: Expression of matrix metalloproteinase 9 (MMP-9)
and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal
cancer cells and adjacent stroma cells - associations with
histopathology and patients outcome. Eur J Cancer. 46:3233–3242.
2010. View Article : Google Scholar
|
|
9.
|
Gershtein ES, Korotkova EA, Shcherbakov
AM, Prorokov VV, Golovkov DA and Kushlinskii NE: Matrix
metalloproteinases 7 and 9 and their types 1 and 4 tissue
inhibitors in tumors and plasma of patients with colorectal cancer.
Bull Exp Biol Med. 143:459–462. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Mysliwiec AG and Ornstein DL: Matrix
metalloproteinases in colorectal cancer. Clin Colorectal Cancer.
1:208–219. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Mroczko B, Groblewska M, Okulczyk B, Kedra
B and Szmitkowski M: The diagnostic value of matrix
metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix
metalloproteinases 1 (TIMP-1) determination in the sera of
colorectal adenoma and cancer patients. Int J Colorectal Dis.
25:1177–1184. 2010. View Article : Google Scholar
|
|
12.
|
Groblewska M, Mroczko B and Szmitkowski M:
The role of selected matrix metalloproteinases and their inhibitors
in colorectal cancer development. Postepy Hig Med Dosw (Online).
64:22–30. 2010.(In Polish).
|
|
13.
|
Roeb E and Matern S: Matrix
metalloproteinases: promoters of tumor invasion and metastasis - a
review with focus on gastrointestinal tumors. Z Gastroenterol.
39:807–813. 2001.(In German).
|
|
14.
|
Gullu IH, Kurdoglu M and Akalin I: The
relation of gelatinase (MMP-2 and -9) expression with distant site
metastasis and tumour aggressiveness in colorectal cancer. Br J
Cancer. 82:2492000.PubMed/NCBI
|
|
15.
|
Takeha S, Fujiyama Y, Bamba T, Sorsa T,
Nagura H and Ohtani H: Stromal expression of MMP-9 and urokinase
receptor is inversely associated with liver metastasis and with
infiltrating growth in human colorectal cancer: a novel approach
from immune/inflammatory aspect. Jpn J Cancer Res. 88:72–81. 1997.
View Article : Google Scholar
|
|
16.
|
Dziki L, Przybylowska K, Majsterek I,
Trzcinski R, Mik M and Sygut A: A/G polymorphism of the MMP-7 gene
promoter region in colorectal cancer. Pol Przegl Chir. 83:622–626.
2011.PubMed/NCBI
|
|
17.
|
Ichikawa Y, Ishikawa T, Momiyama N, et al:
Function of MMP-7 in colorectal cancer. Nihon Rinsho. 61(Suppl 7):
209–214. 2003.(In Japanese).
|
|
18.
|
Thorp E, Vaisar T, Subramanian M, Mautner
L, Blobel C and Tabas I: Shedding of the Mer tyrosine kinase
receptor is mediated by ADAM17 protein through a pathway involving
reactive oxygen species, protein kinase Cdelta and p38
mitogen-activated protein kinase (MAPK). J Biol Chem.
286:33335–33344. 2011. View Article : Google Scholar
|
|
19.
|
Lou X, Zhou Q, Yin Y, Zhou C and Shen Y:
Inhibition of the met receptor tyrosine kinase signaling enhances
the chemosensitivity of glioma cell lines to CDDP through
activation of p38 MAPK pathway. Mol Cancer Ther. 8:1126–1136. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Narkar V, Hussain T and Lokhandwala M:
Role of tyrosine kinase and p44/42 MAPK in D(2)-like
receptor-mediated stimulation of Na(+), K(+)-ATPase in kidney. Am J
Physiol Renal Physiol. 282:F697–F702. 2002.PubMed/NCBI
|
|
21.
|
Hinohara K, Kobayashi S, Kanauchi H, et
al: ErbB receptor tyrosine kinase/NF-kappaB signaling controls
mammosphere formation in human breast cancer. Proc Natl Acad Sci
USA. 109:6584–6589. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Lee YJ, Han JY, Byun J, et al: Inhibiting
Mer receptor tyrosine kinase suppresses STAT1, SOCS1/3 and
NF-kappaB activation and enhances inflammatory responses in
lipopolysaccharide-induced acute lung injury. J Leukoc Biol.
91:921–932. 2012. View Article : Google Scholar
|
|
23.
|
Petro JB, Castro I, Lowe J and Khan WN:
Bruton’s tyrosine kinase targets NF-kappaB to the bcl-x promoter
via a mechanism involving phospholipase C-gamma2 following B cell
antigen receptor engagement. FEBS Lett. 532:57–60. 2002.
|
|
24.
|
Kawabata K, Murakami A and Ohigashi H:
Citrus auraptene targets translation of MMP-7 (matrilysin) via
ERK1/2-dependent and mTOR-independent mechanism. FEBS Lett.
580:5288–5294. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Brenneisen P, Wenk J, Wlaschek M, Krieg T
and Scharffetter-Kochanek K: Activation of p70 ribosomal protein S6
kinase is an essential step in the DNA damage-dependent signaling
pathway responsible for the ultraviolet B-mediated increase in
interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein
levels in human dermal fibroblasts. J Biol Chem. 275:4336–4344.
2000.
|
|
26.
|
Mosaad MS, Mohsen KM, Emad KM, Abotaleb N,
Salwa NM and Marwa AF: Novel 6,8-dibromo-4(3H)-quinazolinone
derivatives of promising anti-inflammatory and analgesic
properties. Acta Pol Pharm. 67:159–171. 2010.PubMed/NCBI
|
|
27.
|
Bekhit AA, Habib NS and Park JY: Synthesis
of some thiazolyl and thiadiazolyl derivatives of
4(3H)-quinazolinone as anti-inflammatory-antimicrobial agents. Boll
Chim Farm. 143:34–39. 2004.PubMed/NCBI
|
|
28.
|
Hour MJ, Tsai SC, Wu HC, et al: Antitumor
effects of the novel quinazolinone MJ-33: Inhibition of metastasis
through the MAPK, AKT, NF-κB and AP-1 signaling pathways in DU145
human prostate cancer cells. Int J Oncol. 41:1513–1519.
2012.PubMed/NCBI
|
|
29.
|
Chen KT, Hour MJ, Tsai SC, et al: The
novel synthesized
6-fluoro-(3-fluorophenyl)-4-(3-methoxyanilino)quinazoline (LJJ-10)
compound exhibits anti-metastatic effects in human osteosarcoma U-2
OS cells through targeting insulin-like growth factor-I receptor.
Int J Oncol. 39:611–619. 2011.
|
|
30.
|
Hour MJ, Yang JS, Chen TL, et al: The
synthesized novel fluorinated compound (LJJ-10) induces death
receptor- and mitochondria-dependent apoptotic cell death in the
human osteogenic sarcoma U-2 OS cells. Eur J Med Chem.
46:2709–2721. 2011. View Article : Google Scholar
|
|
31.
|
Wang MH, Padhye SS, Guin S, Ma Q and Zhou
YQ: Potential therapeutics specific to c-MET/RON receptor tyrosine
kinases for molecular targeting in cancer therapy. Acta Pharmacol
Sin. 31:1181–1188. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Uckun FM, Vassilev A and Tibbles H:
Non-receptor tyrosine kinases as molecular targets for patient
tailored cancer therapy. Anticancer Agents Med Chem. 7:5932007.
View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Gschwind A, Fischer OM and Ullrich A: The
discovery of receptor tyrosine kinases: targets for cancer therapy.
Nat Rev Cancer. 4:361–370. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Brunelleschi S, Penengo L, Santoro MM and
Gaudino G: Receptor tyrosine kinases as target for anti-cancer
therapy. Curr Pharm Des. 8:1959–1972. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Rodig SJ and Shapiro GI: Crizotinib, a
small-molecule dual inhibitor of the c-Met and ALK receptor
tyrosine kinases. Curr Opin Investig Drugs. 11:1477–1490.
2010.PubMed/NCBI
|
|
36.
|
You WK, Sennino B, Williamson CW, et al:
VEGF and c-Met blockade amplify angiogenesis inhibition in
pancreatic islet cancer. Cancer Res. 71:4758–4768. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Garouniatis A, Zizi-Sermpetzoglou A, Rizos
S, Kostakis A, Nikiteas N and Papavassiliou AG: FAK, CD44v6, c-Met
and EGFR in colorectal cancer parameters: tumour progression,
metastasis, patient survival and receptor crosstalk. Int J
Colorectal Dis. 28:9–18. 2013. View Article : Google Scholar
|
|
38.
|
Zhao J, Zhang X and Xin Y: Up-regulated
expression of Ezrin and c-Met proteins are related to the
metastasis and prognosis of gastric carcinomas. Histol Histopathol.
26:1111–1120. 2011.PubMed/NCBI
|
|
39.
|
Liska D, Chen CT, Bachleitner-Hofmann T,
Christensen JG and Weiser MR: HGF rescues colorectal cancer cells
from EGFR inhibition via MET activation. Clin Cancer Res.
17:472–482. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Cunningham MP, Thomas H, Marks C, Green M,
Fan Z and Modjtahedi H: Co-targeting the EGFR and IGF-IR with
anti-EGFR monoclonal antibody ICR62 and the IGF-IR tyrosine kinase
inhibitor NVP-AEW541 in colorectal cancer cells. Int J Oncol.
33:1107–1113. 2008.PubMed/NCBI
|
|
41.
|
Yang JS, Wu CC, Kuo CL, et al: Solanum
lyratum extracts induce extrinsic and intrinsic pathways of
apoptosis in WEHI-3 murine leukemia cells and inhibit allograft
tumor. Evid Based Complement Alternat Med.
2012:2549602012.PubMed/NCBI
|
|
42.
|
Jia W, Hegde VL, Singh NP, et al:
Delta9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T
cells is regulated by translocation of Bad to mitochondria. Mol
Cancer Res. 4:549–562. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
He Z, Cho YY, Ma WY, Choi HS, Bode AM and
Dong Z: Regulation of ultraviolet B-induced phosphorylation of
histone H3 at serine 10 by Fyn kinase. J Biol Chem. 280:2446–2454.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Jost M, Huggett TM, Kari C, Boise LH and
Rodeck U: Epidermal growth factor receptor-dependent control of
keratinocyte survival and Bcl-xL expression through a MEK-dependent
pathway. J Biol Chem. 276:6320–6326. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Abdel-Ghany M, el-Gendy K, Zhang S and
Racker E: Control of src kinase activity by activators, inhibitors
and substrate chaperones. Proc Natl Acad Sci USA. 87:7061–7065.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Spano JP, Milano G and Baselga J:
EGFR/VEGF signalling pathway in colorectal cancer: the way we are!
Bull Cancer. 92:S3–S4. 2005.PubMed/NCBI
|
|
47.
|
Ishikawa T, Uetake H and Sugihara K:
Anti-EGFR antibody therapy for colorectal cancer. Nihon Rinsho.
70:2152–2158. 2012.(In Japanese).
|
|
48.
|
Mimori K, Yamashita K, Ohta M, et al:
Coexpression of matrix metalloproteinase-7 (MMP-7) and epidermal
growth factor (EGF) receptor in colorectal cancer: an EGF receptor
tyrosine kinase inhibitor is effective against MMP-7-expressing
cancer cells. Clin Cancer Res. 10:8243–8249. 2004. View Article : Google Scholar
|
|
49.
|
Yang JS, Hour MJ, Huang WW, Lin KL, Kuo SC
and Chung JG: MJ-29 inhibits tubulin polymerization, induces
mitotic arrest and triggers apoptosis via cyclin-dependent kinase
1-mediated Bcl-2 phosphorylation in human leukemia U937 cells. J
Pharmacol Exp Ther. 334:477–488. 2010. View Article : Google Scholar
|
|
50.
|
Lu CC, Yang JS, Chiang JH, et al:
Inhibition of invasion and migration by newly synthesized
quinazolinone MJ-29 in human oral cancer CAL 27 cells through
suppression of MMP-2/9 expression and combined down-regulation of
MAPK and AKT signaling. Anticancer Res. 32:2895–2903.
2012.PubMed/NCBI
|
|
51.
|
Pospisil P, Korideck H, Wang K, Yang Y,
Iyer LK and Kassis AI: Computational and biological evaluation of
quinazolinone prodrug for targeting pancreatic cancer. Chem Biol
Drug Des. 79:926–934. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Wu YC, Hour MJ, Leung WC, et al:
2-(Naphthalene-1-yl)-6-pyrrolidinyl-4-quinazolinone inhibits skin
cancer M21 cell proliferation through aberrant expression of
microtubules and the cell cycle. J Pharmacol Exp Ther. 338:942–951.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Lu CC, Yang JS, Chiang JH, et al: Novel
quinazolinone MJ-29 triggers endoplasmic reticulum stress and
intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits
leukemic mice. PLoS One. 7:e368312012. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Chiu YJ, Hour MJ, Lu CC, et al: Novel
quinazoline HMJ-30 induces U-2 OS human osteogenic sarcoma cell
apoptosis through induction of oxidative stress and up-regulation
of ATM/p53 signaling pathway. J Orthop Res. 29:1448–1456. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Yang JS, Hour MJ, Kuo SC, Huang LJ and Lee
MR: Selective induction of G2/M arrest and apoptosis in HL-60 by a
potent anticancer agent, HMJ-38. Anticancer Res. 24:1769–1778.
2004.PubMed/NCBI
|
|
56.
|
Garcia ED: Targeted therapy for cancer:
anti-tyrosine kinase receptor agents. An R Acad Nac Med (Madr).
124:171–184. 2007.(In Spanish).
|
|
57.
|
Myers MV, Manning HC, Coffey RJ and
Liebler DC: Protein expression signatures for inhibition of
epidermal growth factor receptor-mediated signaling. Mol Cell
Proteomics. 11:M111 015222,. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Goldwasser F: Treatment of metastatic
colorectal cancer: an illustration of the changes in the cancer
paradigms. Presse Med. 41:46–50. 2012.(In French).
|
|
59.
|
Shaw PH and Adams RA: Where now for
anti-EGF receptor therapies in colorectal cancer? Expert Rev
Anticancer Ther. 11:1543–1553. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Takhar AS, Eremin O and Watson SA: The
role of gastrin in colorectal carcinogenesis. Surgeon. 2:251–257.
2004. View Article : Google Scholar
|
|
61.
|
Cohen RB: Epidermal growth factor receptor
as a therapeutic target in colorectal cancer. Clin Colorectal
Cancer. 2:246–251. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Yokozaki H and Tahara E:
Metastasis-related genes. Gan To Kagaku Ryoho. 21:2541–2548.
1994.(In Japanese).
|
|
63.
|
Wilson KJ, Gilmore JL, Foley J, Lemmon MA
and Riese DJ II: Functional selectivity of EGF family peptide
growth factors: implications for cancer. Pharmacol Ther. 122:1–8.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Broadbridge VT, Karapetis CS and Price TJ:
Cetuximab in metastatic colorectal cancer. Expert Rev Anticancer
Ther. 12:555–565. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Harding J and Burtness B: Cetuximab: an
epidermal growth factor receptor chemeric human-murine monoclonal
antibody. Drugs Today (Barc). 41:107–127. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Takayama T, Goji T, Taniguchi T and Inoue
A: Chemoprevention of colorectal cancer-experimental and clinical
aspects. J Med Invest. 56:1–5. 2009. View Article : Google Scholar
|
|
67.
|
Ho BY, Wu YM, Chang KJ and Pan TM:
Dimerumic acid inhibits SW620 cell invasion by attenuating
H(2)O(2)-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos
activation in an AP-1-dependent manner. Int J Biol Sci. 7:869–880.
2011.PubMed/NCBI
|
|
68.
|
Zugowski C, Lieder F, Muller A, et al:
STAT3 controls matrix metalloproteinase-1 expression in colon
carcinoma cells by both direct and AP-1-mediated interaction with
the MMP-1 promoter. Biol Chem. 392:449–459. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Fang YJ, Lu ZH, Wang GQ, et al: Elevated
expressions of MMP7, TROP2 and survivin are associated with
survival, disease recurrence and liver metastasis of colon cancer.
Int J Colorectal Dis. 24:875–884. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Shin JE, Jung SA, Kim SE, et al:
Expression of MMP-2, HIF-1alpha and VEGF in colon adenoma and colon
cancer. Korean J Gastroenterol. 50:9–18. 2007.(In Korean).
|
|
71.
|
Zinzindohoue F, Lecomte T, Ferraz JM, et
al: Prognostic significance of MMP-1 and MMP-3 functional promoter
polymorphisms in colorectal cancer. Clin Cancer Res. 11:594–599.
2005.PubMed/NCBI
|
|
72.
|
Yamamoto H, Itoh F, Senota A, et al:
Expression of matrix metalloproteinase matrilysin (MMP-7) was
induced by activated Ki-ras via AP-1 activation in SW1417 colon
cancer cells. J Clin Lab Anal. 9:297–301. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Ueda T, Sasaki M, Elia AJ, et al: Combined
deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and
Mnk2) delays tumor development. Proc Natl Acad Sci USA.
107:13984–13990. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Joshi S, Kaur S, Redig AJ, et al: Type I
interferon (IFN)-dependent activation of Mnk1 and its role in the
generation of growth inhibitory responses. Proc Natl Acad Sci USA.
106:12097–12102. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Zhang Y, Li Y and Yang DQ: Phosphorylation
of eIF-4E positively regulates formation of the eIF-4F translation
initiation complex following DNA damage. Biochem Biophys Res
Commun. 367:54–59. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Duncan RF, Peterson H and Sevanian A:
Signal transduction pathways leading to increased eIF4E
phosphorylation caused by oxidative stress. Free Radic Biol Med.
38:631–643. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Populo H, Lopes JM and Soares P: The mTOR
signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Hong S, Mannan AM and Inoki K: Evaluation
of the nutrient-sensing mTOR pathway. Methods Mol Biol. 821:29–44.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Nyfeler B, Bergman P, Triantafellow E, et
al: Relieving autophagy and 4EBP1 from rapamycin resistance. Mol
Cell Biol. 31:2867–2876. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Ha SH, Kim DH, Kim IS, et al: PLD2 forms a
functional complex with mTOR/raptor to transduce mitogenic signals.
Cell Signal. 18:2283–2291. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
Arvisais EW, Romanelli A, Hou X and Davis
JS: AKT-independent phosphorylation of TSC2 and activation of mTOR
and ribosomal protein S6 kinase signaling by prostaglandin F2alpha.
J Biol Chem. 281:26904–26913. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Hannan KM, Brandenburger Y, Jenkins A, et
al: mTOR-dependent regulation of ribosomal gene transcription
requires S6K1 and is mediated by phosphorylation of the
carboxy-terminal activation domain of the nucleolar transcription
factor UBF. Mol Cell Biol. 23:8862–8877. 2003. View Article : Google Scholar
|