Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December 2013 Volume 43 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December 2013 Volume 43 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Network-based approaches for anticancer therapy (Review)

  • Authors:
    • Hyunjeong Seo
    • Wanyeon Kim
    • Jihyung Lee
    • Buhyun Youn
  • View Affiliations / Copyright

    Affiliations: Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
  • Pages: 1737-1744
    |
    Published online on: September 30, 2013
       https://doi.org/10.3892/ijo.2013.2114
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is a complex disease resulting from alterations of multiple signaling networks. Cancer networks have been identified as scale-free networks and may contain a functionally important key player called a hub that is linked to a large number of interactors. Since a hub can serve as a biological marker in a given network, targeting the hub could be an effective strategy for enhancing the efficacy of cancer treatment. Chemotherapies and radiotherapies are generally used to treat tumors not amenable to resection, and target single or multiple molecules associated with hubs. However, these therapies may unexpectedly induce the resistance of cancer cells to drugs and radiation. Cancer cells can overcome therapy-induced damage via the activation of back-up signaling pathways and flexible modulation of affected networks. These activities are considered to be the main reasons for chemoresistance and radioresistance, and subsequent failure of cancer therapies. Much effort is required to identify the key molecules that control the modulation of signaling networks in response to drugs and radiation. Network-based therapy that affects network flexibility, including rewired network structures and hub molecules in these networks, could minimize the occurrence of side-effects and be a promising strategy for enhancing the therapeutic efficacy of cancer treatments. This review is intended to offer an overview of current research efforts including ones focused on cancer-associated complex networks, their modulation in response to cancer therapy, and further strategies targeting networks that may improve cancer treatment efficacy.
View Figures

Figure 1

Figure 2

View References

1. 

Janes KA and Lauffenburger DA: A biological approach to computational models of proteomic networks. Curr Opin Chem Biol. 10:73–80. 2006. View Article : Google Scholar : PubMed/NCBI

2. 

Miller-Jensen K, Janes KA, Brugge JS and Lauffenburger DA: Common effector processing mediates cell-specific responses to stimuli. Nature. 448:604–608. 2007. View Article : Google Scholar : PubMed/NCBI

3. 

Jordan JD, Landau EM and Iyengar R: Signaling networks: the origins of cellular multitasking. Cell. 103:193–200. 2000. View Article : Google Scholar : PubMed/NCBI

4. 

Pawson T and Linding R: Network medicine. FEBS Lett. 582:1266–1270. 2008. View Article : Google Scholar

5. 

Vidal M, Cusick ME and Barabasi AL: Interactome networks and human disease. Cell. 144:986–998. 2011. View Article : Google Scholar : PubMed/NCBI

6. 

Vidal M: A unifying view of 21st century systems biology. FEBS Lett. 583:3891–3894. 2009. View Article : Google Scholar : PubMed/NCBI

7. 

Barabasi AL and Oltvai ZN: Network biology: understanding the cell’s functional organization. Nature Rev Genet. 5:101–113. 2004.

8. 

Ideker T and Sharan R: Protein networks in disease. Genome Res. 18:644–652. 2008. View Article : Google Scholar

9. 

Rual JF, Venkatesan K, Hao T, et al: Towards a proteome-scale map of the human protein-protein interaction network. Nature. 437:1173–1178. 2005. View Article : Google Scholar : PubMed/NCBI

10. 

Stelzl U, Worm U, Lalowski M, et al: A human protein-protein interaction network: a resource for annotating the proteome. Cell. 122:957–968. 2005.PubMed/NCBI

11. 

Jeong H, Tombor B, Albert R, Oltvai ZN and Barabasi AL: The large-scale organization of metabolic networks. Nature. 407:651–654. 2000. View Article : Google Scholar : PubMed/NCBI

12. 

Chang RL, Xie L, Bourne PE and Palsson BO: Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol. 6:e10009382010. View Article : Google Scholar : PubMed/NCBI

13. 

Schlitt T and Brazma A: Current approaches to gene regulatory network modelling. BMC Bioinformatics. 8(Suppl 6): S92007. View Article : Google Scholar : PubMed/NCBI

14. 

Zhao Y, He S, Liu C, et al: MicroRNA regulation of messenger-like noncoding RNAs: a network of mutual microRNA control. Trends Genet. 24:323–327. 2008. View Article : Google Scholar : PubMed/NCBI

15. 

He X, He L and Hannon GJ: The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 67:11099–11101. 2007.

16. 

Zhou Q, Chipperfield H, Melton DA and Wong WH: A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci USA. 104:16438–16443. 2007. View Article : Google Scholar : PubMed/NCBI

17. 

Barabasi AL and Albert R: Emergence of scaling in random networks. Science. 286:509–512. 1999. View Article : Google Scholar : PubMed/NCBI

18. 

Albert R, Jeong H and Barabasi AL: Error and attack tolerance of complex networks. Nature. 406:378–382. 2000. View Article : Google Scholar : PubMed/NCBI

19. 

Jeong H, Mason SP, Barabasi AL and Oltvai ZN: Lethality and centrality in protein networks. Nature. 411:41–42. 2001. View Article : Google Scholar : PubMed/NCBI

20. 

Park J and Newman ME: Statistical mechanics of networks. Phys Rev E Stat Nonlin Soft Matter Phys. 70:0661172004. View Article : Google Scholar : PubMed/NCBI

21. 

Albert R: Scale-free networks in cell biology. J Cell Sci. 118:4947–4957. 2005. View Article : Google Scholar : PubMed/NCBI

22. 

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C and Feldman MW: Evolutionary rate in the protein interaction network. Science. 296:750–752. 2002. View Article : Google Scholar : PubMed/NCBI

23. 

Kim PJ, Lee DY, Kim TY, et al: Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci USA. 104:13638–13642. 2007. View Article : Google Scholar : PubMed/NCBI

24. 

Zhang DY, Ye F, Gao L, et al: Proteomics, pathway array and signaling network-based medicine in cancer. Cell Div. 4:202009. View Article : Google Scholar : PubMed/NCBI

25. 

Ravasz E, Somera AL, Mongru DA, Oltvai ZN and Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science. 297:1551–1555. 2002. View Article : Google Scholar : PubMed/NCBI

26. 

Han JD, Bertin N, Hao T, et al: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature. 430:88–93. 2004. View Article : Google Scholar : PubMed/NCBI

27. 

Barabasi AL, Gulbahce N and Loscalzo J: Network medicine: a network-based approach to human disease. Nature Rev Genet. 12:56–68. 2011. View Article : Google Scholar : PubMed/NCBI

28. 

Creixell P, Schoof EM, Erler JT and Linding R: Navigating cancer network attractors for tumor-specific therapy. Nat Biotechnol. 30:842–848. 2012. View Article : Google Scholar : PubMed/NCBI

29. 

Hwang S, Son SW, Kim SC, Kim YJ, Jeong H and Lee D: A protein interaction network associated with asthma. J Theor Biol. 252:722–731. 2008. View Article : Google Scholar : PubMed/NCBI

30. 

Jonsson PF and Bates PA: Global topological features of cancer proteins in the human interactome. Bioinformatics. 22:2291–2297. 2006. View Article : Google Scholar : PubMed/NCBI

31. 

Chuang HY, Lee E, Liu YT, Lee D and Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol. 3:1402007. View Article : Google Scholar : PubMed/NCBI

32. 

Garcia M, Millat-Carus R, Bertucci F, Finetti P, Birnbaum D and Bidaut G: Interactome-transcriptome integration for predicting distant metastasis in breast cancer. Bioinformatics. 28:672–678. 2012. View Article : Google Scholar : PubMed/NCBI

33. 

Pache RA, Zanzoni A, Naval J, Mas JM and Aloy P: Towards a molecular characterisation of pathological pathways. FEBS Lett. 582:1259–1265. 2008. View Article : Google Scholar : PubMed/NCBI

34. 

Chand Y and Alam MA: Network biology approach for identifying key regulatory genes by expression based study of breast cancer. Bioinformation. 8:1132–1138. 2012. View Article : Google Scholar : PubMed/NCBI

35. 

Sonachalam M, Shen J, Huang H and Wu X: Systems biology approach to identify gene network signatures for colorectal cancer. Front Genet. 3:802012. View Article : Google Scholar : PubMed/NCBI

36. 

Breitkreutz D, Hlatky L, Rietman E and Tuszynski JA: Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci USA. 109:9209–9212. 2012. View Article : Google Scholar : PubMed/NCBI

37. 

Vogelstein B, Lane D and Levine AJ: Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI

38. 

Goh KI, Cusick ME, Valle D, Childs B, Vidal M and Barabasi AL: The human disease network. Proc Natl Acad Sci USA. 104:8685–8690. 2007. View Article : Google Scholar

39. 

Han W and Lo HW: Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett. 318:124–134. 2012. View Article : Google Scholar : PubMed/NCBI

40. 

Laubenbacher R, Hower V, Jarrah A, et al: A systems biology view of cancer. Biochim Biophys Acta. 1796:129–139. 2009.PubMed/NCBI

41. 

Sharma SV and Settleman J: ErbBs in lung cancer. Exp Cell Res. 315:557–571. 2009. View Article : Google Scholar : PubMed/NCBI

42. 

Chiang YJ, Difilippantonio MJ, Tessarollo L, Morse HC and Hodes RJ: Exon 1 disruption alters tissue-specific expression of mouse p53 and results in selective development of B cell lymphomas. PLoS One. 7:e493052012. View Article : Google Scholar : PubMed/NCBI

43. 

Erler JT and Linding R: Network medicine strikes a blow against breast cancer. Cell. 149:731–733. 2012. View Article : Google Scholar : PubMed/NCBI

44. 

Lee MJ, Ye AS, Gardino AK, et al: Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell. 149:780–794. 2012. View Article : Google Scholar : PubMed/NCBI

45. 

Pilpel Y, Sudarsanam P and Church GM: Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet. 29:153–159. 2001. View Article : Google Scholar : PubMed/NCBI

46. 

Bhan A, Galas DJ and Dewey TG: A duplication growth model of gene expression networks. Bioinformatics. 18:1486–1493. 2002. View Article : Google Scholar : PubMed/NCBI

47. 

Pastor-Satorras R, Smith E and Sole RV: Evolving protein interaction networks through gene duplication. J Theor Biol. 222:199–210. 2003. View Article : Google Scholar : PubMed/NCBI

48. 

Gilmartin AG, Bleam MR, Groy A, et al: GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 17:989–1000. 2011. View Article : Google Scholar : PubMed/NCBI

49. 

Duncan JS, Whittle MC, Nakamura K, et al: Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell. 149:307–321. 2012. View Article : Google Scholar : PubMed/NCBI

50. 

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI

51. 

Hudis CA: Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med. 357:39–51. 2007. View Article : Google Scholar : PubMed/NCBI

52. 

Crawford A and Nahta R: Targeting Bcl-2 in herceptin-resistant breast cancer cell lines. Curr Pharmacogenomics Person Med. 9:184–190. 2011. View Article : Google Scholar : PubMed/NCBI

53. 

Chan CH, Li CF, Yang WL, et al: The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 149:1098–1111. 2012. View Article : Google Scholar : PubMed/NCBI

54. 

Figlin RA, Kaufmann I and Brechbiel J: Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer. 133:788–796. 2013. View Article : Google Scholar : PubMed/NCBI

55. 

Li L, Story M and Legerski RJ: Cellular responses to ionizing radiation damage. Int J Radiat Oncol Biol Phys. 49:1157–1162. 2001. View Article : Google Scholar : PubMed/NCBI

56. 

Li YH, Wang X, Pan Y, Lee DH, Chowdhury D and Kimmelman AC: Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response. PLoS One. 7:e395882012. View Article : Google Scholar : PubMed/NCBI

57. 

Sonoda E, Hochegger H, Saberi A, Taniguchi Y and Takeda S: Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair. 5:1021–1029. 2006. View Article : Google Scholar : PubMed/NCBI

58. 

Lhakhang TW and Chaudhry MA: Interactome of radiation-induced microRNA-predicted target genes. Comp Funct Genomics. 2012:5697312012. View Article : Google Scholar : PubMed/NCBI

59. 

Ma L, Nie L, Liu J, et al: An RNA-seq-based gene expression profiling of radiation-induced tumorigenic mammary epithelial cells. Genomics Proteomics Bioinformatics. 10:326–335. 2012. View Article : Google Scholar : PubMed/NCBI

60. 

Lee YS, Oh JH, Yoon S, et al: Differential gene expression profiles of radioresistant non-small-cell lung cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 77:858–866. 2010. View Article : Google Scholar

61. 

Kalanxhi E and Dahle J: Genome-wide microarray analysis of human fibroblasts in response to gamma radiation and the radiation-induced bystander effect. Radiat Res. 177:35–43. 2012. View Article : Google Scholar : PubMed/NCBI

62. 

Kim KH, Yoo HY, Joo KM, et al: Time-course analysis of DNA damage response-related genes after in vitro radiation in H460 and H1229 lung cancer cell lines. Exp Mol Med. 43:419–426. 2011. View Article : Google Scholar : PubMed/NCBI

63. 

Xu QY, Gao Y, Liu Y, Yang WZ and Xu XY: Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro. Chin Med J. 121:1830–1837. 2008.PubMed/NCBI

64. 

Ding LH, Shingyoji M, Chen F, et al: Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res. 164:17–26. 2005. View Article : Google Scholar : PubMed/NCBI

65. 

Rashi-Elkeles S, Elkon R, Shavit S, et al: Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol. 5:336–348. 2011. View Article : Google Scholar : PubMed/NCBI

66. 

Tusher VG, Tibshirani R and Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 98:5116–5121. 2001. View Article : Google Scholar : PubMed/NCBI

67. 

Somosy Z: Radiation response of cell organelles. Micron. 31:165–181. 2000. View Article : Google Scholar

68. 

Cao N, Li S, Wang Z, et al: NF-kappaB-mediated HER2 over-expression in radiation-adaptive resistance. Radiat Res. 171:9–21. 2009. View Article : Google Scholar : PubMed/NCBI

69. 

Lee SY, Park HR, Cho NH, et al: Identifying genes related to radiation resistance in oral squamous cell carcinoma cell lines. Int J Oral Max Surg. 42:169–176. 2013. View Article : Google Scholar : PubMed/NCBI

70. 

Multhoff G and Radons J: Radiation, inflammation, and immune responses in cancer. Front Oncol. 2:582012. View Article : Google Scholar : PubMed/NCBI

71. 

Brown JM and Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004. View Article : Google Scholar

72. 

Moeller BJ, Cao Y, Li CY and Dewhirst MW: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer cell. 5:429–441. 2004. View Article : Google Scholar : PubMed/NCBI

73. 

Moeller BJ and Dewhirst MW: HIF-1 and tumour radiosensitivity. Br J Cancer. 95:1–5. 2006. View Article : Google Scholar

74. 

Kitano H: Biological robustness. Nature Rev Genet. 5:826–837. 2004. View Article : Google Scholar

75. 

Russell RB and Aloy P: Targeting and tinkering with interaction networks. Nat Chem Biol. 4:666–673. 2008. View Article : Google Scholar : PubMed/NCBI

76. 

Shao L, Wang L, Wei Z, et al: Dynamic network of transcription and pathway crosstalk to reveal molecular mechanism of MGd-treated human lung cancer cells. PLoS One. 7:e319842012. View Article : Google Scholar : PubMed/NCBI

77. 

Komurov K, Tseng JT, Muller M, et al: The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol Syst Biol. 8:5962012. View Article : Google Scholar : PubMed/NCBI

78. 

Johnston S, Pippen J Jr, Pivot X, et al: Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 27:5538–5546. 2009. View Article : Google Scholar

79. 

Eschrich S, Zhang H, Zhao H, et al: Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys. 75:497–505. 2009. View Article : Google Scholar : PubMed/NCBI

80. 

Chiba M: Radiation-responsive transcriptome analysis in human lymphoid cells. Radiat Prot Dosimetry. 152:164–167. 2012. View Article : Google Scholar : PubMed/NCBI

81. 

Stiubea-Cohen R, David R, Neumann Y, et al: Effect of irradiation on cell transcriptome and proteome of rat submandibular salivary glands. PLoS One. 7:e406362012. View Article : Google Scholar : PubMed/NCBI

82. 

Russell JS, Brady K, Burgan WE, et al: Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res. 63:7377–7383. 2003.PubMed/NCBI

83. 

Raderschall E, Stout K, Freier S, Suckow V, Schweiger S and Haaf T: Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res. 62:219–225. 2002.PubMed/NCBI

84. 

Slupianek A, Hoser G, Majsterek I, et al: Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol. 22:4189–4201. 2002. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Seo H, Kim W, Lee J and Youn B: Network-based approaches for anticancer therapy (Review) . Int J Oncol 43: 1737-1744, 2013.
APA
Seo, H., Kim, W., Lee, J., & Youn, B. (2013). Network-based approaches for anticancer therapy (Review) . International Journal of Oncology, 43, 1737-1744. https://doi.org/10.3892/ijo.2013.2114
MLA
Seo, H., Kim, W., Lee, J., Youn, B."Network-based approaches for anticancer therapy (Review) ". International Journal of Oncology 43.6 (2013): 1737-1744.
Chicago
Seo, H., Kim, W., Lee, J., Youn, B."Network-based approaches for anticancer therapy (Review) ". International Journal of Oncology 43, no. 6 (2013): 1737-1744. https://doi.org/10.3892/ijo.2013.2114
Copy and paste a formatted citation
x
Spandidos Publications style
Seo H, Kim W, Lee J and Youn B: Network-based approaches for anticancer therapy (Review) . Int J Oncol 43: 1737-1744, 2013.
APA
Seo, H., Kim, W., Lee, J., & Youn, B. (2013). Network-based approaches for anticancer therapy (Review) . International Journal of Oncology, 43, 1737-1744. https://doi.org/10.3892/ijo.2013.2114
MLA
Seo, H., Kim, W., Lee, J., Youn, B."Network-based approaches for anticancer therapy (Review) ". International Journal of Oncology 43.6 (2013): 1737-1744.
Chicago
Seo, H., Kim, W., Lee, J., Youn, B."Network-based approaches for anticancer therapy (Review) ". International Journal of Oncology 43, no. 6 (2013): 1737-1744. https://doi.org/10.3892/ijo.2013.2114
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team