Establishment of a 5-fluorouracil-resistant triple-negative breast cancer cell line

  • Authors:
    • Katsuyuki Takahashi
    • Masako Tanaka
    • Azusa Inagaki
    • Hideki Wanibuchi
    • Yasukatsu Izumi
    • Katsuyuki Miura
    • Katsuya Nagayama
    • Masayuki Shiota
    • Hiroshi Iwao
  • View Affiliations

  • Published online on: October 10, 2013     https://doi.org/10.3892/ijo.2013.2135
  • Pages: 1985-1991
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Triple-negative breast cancers (TNBCs) are defined as tumors that lack expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Clinically, TNBC patients are treated with cytotoxic drugs including 5-fluorouracil (5-FU). However, TNBCs develop resistance to such drugs after a series of treatments. To elucidate the mechanisms of drug resistance, establishment of drug-resistant cancer cell lines should be one of the most useful model systems. However, 5-FU-resistant TNBC cell lines have not been previously reported. In this study, we established a 5-FU-resistant cell line, MDA-MB-231/5-FU, from the human TNBC cell line MDA-MB-231, by repeated exposure to stepwise increases in the concentration of 5-FU. The IC50 value of 5-FU for MDA-MB-231/5-FU was 5.5-fold that for the parental cells. The MDA-MB-231/5-FU cell line acquired resistance to not only 5-FU, but also vinorelbine, paclitaxel and gemcitabine. Additionally, we performed iTRAQ-based quantitative proteomics in MDA-MB-231/5-FU cells and the parental cells in order to characterize MDA-MB-231/5-FU. The proteins upregulated in the newly established cells were mainly classified into the categories of ‘DNA recombination’, ‘cell cycle’, ‘complex assembly’, ‘cytoskeleton organization’, ‘transport’ and ‘negative regulation of cell death’. These proteins may be related to mechanisms of drug resistance in TNBCs. Our established MDA-MB-231/5-FU cell line should be a useful tool for identifying new mechanisms of drug resistance and new drug targets in TNBCs.

References

1. 

Foulkes WD, Smith IE and Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010. View Article : Google Scholar : PubMed/NCBI

2. 

Liedtke C, Mazouni C, Hess KR, et al: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 26:1275–1281. 2008. View Article : Google Scholar : PubMed/NCBI

3. 

Thike AA, Cheok PY, Jara-Lazaro AR, et al: Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol. 23:123–133. 2010. View Article : Google Scholar : PubMed/NCBI

4. 

Dent R, Trudeau M, Pritchard KI, et al: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI

5. 

Isakoff SJ: Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J. 16:53–61. 2010. View Article : Google Scholar : PubMed/NCBI

6. 

Marquette C and Nabell L: Chemotherapy-resistant metastatic breast cancer. Curr Treat Options Oncol. 13:263–275. 2012. View Article : Google Scholar : PubMed/NCBI

7. 

Chen ZS and Tiwari AK: Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 278:3226–3245. 2011. View Article : Google Scholar : PubMed/NCBI

8. 

Baguley BC: Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 46:308–316. 2010. View Article : Google Scholar : PubMed/NCBI

9. 

Abraham J, Edgerly M, Wilson R, et al: A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine. Clin Cancer Res. 15:3574–3582. 2009. View Article : Google Scholar : PubMed/NCBI

10. 

Ruff P, Vorobiof DA, Jordaan JP, et al: A randomized, placebo-controlled, double-blind phase 2 study of docetaxel compared to docetaxel plus zosuquidar (LY335979) in women with metastatic or locally recurrent breast cancer who have received one prior chemotherapy regimen. Cancer Chemother Pharmacol. 64:763–768. 2009. View Article : Google Scholar

11. 

Zheng G, Peng F, Ding R, et al: Identification of proteins responsible for the multiple drug resistance in 5-fluorouracil-induced breast cancer cell using proteomics analysis. J Cancer Res Clin Oncol. 136:1477–1488. 2010. View Article : Google Scholar : PubMed/NCBI

12. 

Nakamura A, Nakajima G, Okuyama R, et al: Enhancement of 5-fluorouracil-induced cytotoxicity by leucovorin in 5-fluorouracil-resistant gastric cancer cells with upregulated expression of thymidylate synthase. Gastric Cancer. Mar 15–2013.(Epub ahead of print).

13. 

Kodera Y, Ito S, Fujiwara M, et al: Gene expression of 5-fluorouracil metabolic enzymes in primary gastric cancer: correlation with drug sensitivity against 5-fluorouracil. Cancer Lett. 252:307–313. 2007. View Article : Google Scholar : PubMed/NCBI

14. 

Ichikawa W, Takahashi T, Suto K, et al: Thymidylate synthase predictive power is overcome by irinotecan combination therapy with S-1 for gastric cancer. Br J Cancer. 91:1245–1250. 2004. View Article : Google Scholar : PubMed/NCBI

15. 

Longley DB, Harkin DP and Johnston PG: 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI

16. 

Zhang X, Yashiro M, Qiu H, et al: Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res. 30:915–921. 2010.PubMed/NCBI

17. 

Uchibori K, Kasamatsu A, Sunaga M, et al: Establishment and characterization of two 5-fluorouracil-resistant hepatocellular carcinoma cell lines. Int J Oncol. 40:1005–1010. 2012.PubMed/NCBI

18. 

Yanagihara K, Takigahira M, Tanaka H, et al: Establishment and molecular profiling of a novel human pancreatic cancer panel for 5-FU. Cancer Sci. 99:1859–1864. 2008. View Article : Google Scholar : PubMed/NCBI

19. 

Kakehashi A, Ishii N, Shibata T, et al: Mitochondrial prohibitins and septin 9 are implicated in the onset of rat hepatocarcinogenesis. Toxicol Sci. 119:61–72. 2011. View Article : Google Scholar : PubMed/NCBI

20. 

Park JS, Young Yoon S, Kim JM, et al: Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett. 214:19–33. 2004. View Article : Google Scholar : PubMed/NCBI

21. 

Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI

22. 

Shieh SY, Ikeda M, Taya Y, et al: DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 91:325–334. 1997. View Article : Google Scholar : PubMed/NCBI

23. 

Tibbetts RS, Brumbaugh KM, Williams JM, et al: A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13:152–157. 1999. View Article : Google Scholar : PubMed/NCBI

24. 

Shin JY, Kim JO, Lee SK, et al: LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells. BMC Cancer. 10:4252010. View Article : Google Scholar : PubMed/NCBI

25. 

Yanamoto S, Iwamoto T, Kawasaki G, et al: Silencing of the p53R2 gene by RNA interference inhibits growth and enhances 5-fluorouracil sensitivity of oral cancer cells. Cancer Lett. 223:67–76. 2005. View Article : Google Scholar : PubMed/NCBI

26. 

Chu E, Drake JC, Koeller DM, et al: Induction of thymidylate synthase associated with multidrug resistance in human breast and colon cancer cell lines. Mol Pharmacol. 39:136–143. 1991.PubMed/NCBI

27. 

Peters GJ, Backus HH, Freemantle S, et al: Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta. 1587:194–205. 2002. View Article : Google Scholar : PubMed/NCBI

28. 

Chen J, Shen BY, Deng XX, et al: SKP1-CULLIN1-F-box (SCF)-mediated DRG2 degradation facilitated chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 420:651–655. 2012. View Article : Google Scholar : PubMed/NCBI

29. 

Nakayama KI and Nakayama K: Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 6:369–381. 2006. View Article : Google Scholar : PubMed/NCBI

30. 

Chan CH, Li CF, Yang WL, et al: The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 149:1098–1111. 2012. View Article : Google Scholar : PubMed/NCBI

31. 

Zhu D, Cardenas ME and Heitman J: Calcineurin mutants render T lymphocytes resistant to cyclosporin A. Mol Pharmacol. 50:506–511. 1996.PubMed/NCBI

32. 

Colgan J, Asmal M, Yu B, et al: Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine. J Immunol. 174:6030–6038. 2005. View Article : Google Scholar : PubMed/NCBI

33. 

Wong CS, Wong VW, Chan CM, et al: Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Oncol Rep. 20:89–98. 2008.PubMed/NCBI

34. 

Kuramitsu Y, Taba K, Ryozawa S, et al: Identification of up- and down-regulated proteins in gemcitabine-resistant pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Anticancer Res. 30:3367–3372. 2010.PubMed/NCBI

Related Articles

Journal Cover

December 2013
Volume 43 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Takahashi, K., Tanaka, M., Inagaki, A., Wanibuchi, H., Izumi, Y., Miura, K. ... Iwao, H. (2013). Establishment of a 5-fluorouracil-resistant triple-negative breast cancer cell line. International Journal of Oncology, 43, 1985-1991. https://doi.org/10.3892/ijo.2013.2135
MLA
Takahashi, K., Tanaka, M., Inagaki, A., Wanibuchi, H., Izumi, Y., Miura, K., Nagayama, K., Shiota, M., Iwao, H."Establishment of a 5-fluorouracil-resistant triple-negative breast cancer cell line". International Journal of Oncology 43.6 (2013): 1985-1991.
Chicago
Takahashi, K., Tanaka, M., Inagaki, A., Wanibuchi, H., Izumi, Y., Miura, K., Nagayama, K., Shiota, M., Iwao, H."Establishment of a 5-fluorouracil-resistant triple-negative breast cancer cell line". International Journal of Oncology 43, no. 6 (2013): 1985-1991. https://doi.org/10.3892/ijo.2013.2135