|
1
|
Warburg O: On respiratory impairment in
cancer cells. Science. 124:269–270. 1956.PubMed/NCBI
|
|
2
|
Younes M, Lechago LV, Somoano JR, Mosharaf
M and Lechago J: Wide expression of the human erythrocyte glucose
transporter Glut1 in human cancers. Cancer Res. 56:1164–1167.
1996.PubMed/NCBI
|
|
3
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Plathow C and Weber WA: Tumor cell
metabolism imaging. J Nucl Med. 49(Suppl 2): S43–S63. 2008.
View Article : Google Scholar
|
|
5
|
Plas DR and Thompson CB: Akt-dependent
transformation: there is more to growth than just surviving.
Oncogene. 24:7435–7442. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Elstrom RL, Bauer DE, Buzzai M, et al: Akt
stimulates aerobic glycolysis in cancer cells. Cancer Res.
64:3892–3899. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vousden KH and Ryan KM: p53 and
metabolism. Nat Rev Cancer. 9:691–700. 2009. View Article : Google Scholar
|
|
8
|
Stambolic V, MacPherson D, Sas D, et al:
Regulation of PTEN transcription by p53. Mol Cell. 8:317–325. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jones RG, Plas DR, Kubek S, et al:
AMP-activated protein kinase induces a p53-dependent metabolic
checkpoint. Mol Cell. 18:283–293. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shackelford DB and Shaw RJ: The LKB1-AMPK
pathway: metabolism and growth control in tumour suppression. Nat
Rev Cancer. 9:563–575. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lu H, Forbes RA and Verma A:
Hypoxia-inducible factor 1 activation by aerobic glycolysis
implicates the Warburg effect in carcinogenesis. J Biol Chem.
277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhong H, De Marzo AM, Laughner E, et al:
Overexpression of hypoxia-inducible factor 1alpha in common human
cancers and their metastases. Cancer Res. 59:5830–5835.
1999.PubMed/NCBI
|
|
13
|
Talks KL, Turley H, Gatter KC, et al: The
expression and distribution of the hypoxia-inducible factors
HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and
tumor-associated macrophages. Am J Pathol. 157:411–421. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Matsuyama T, Nakanishi K, Hayashi T, et
al: Expression of hypoxia-inducible factor-1alpha in esophageal
squamous cell carcinoma. Cancer Sci. 96:176–182. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ogane N, Yasuda M, Shimizu M, et al:
Clinicopathological implications of expressions of hypoxia-related
molecules in esophageal superficial squamous cell carcinoma. Ann
Diagn Pathol. 14:23–29. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang ZG, Zhang QN, Wang XH and Tian JH:
Hypoxia-inducible factor 1 alpha (HIF-1alpha) as a prognostic
indicator in patients with gastric tumors: a meta-analysis. Asian
Pac J Cancer Prev. 14:4195–4198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lin S, Ma R, Zheng XY, et al:
Meta-analysis of immunohistochemical expression of hypoxia
inducible factor-1alpha as a prognostic role in gastric cancer.
World J Gastroenterol. 20:1107–1113. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Baba Y, Nosho K, Shima K, et al: HIF1A
overexpression is associated with poor prognosis in a cohort of 731
colorectal cancers. Am J Pathol. 176:2292–2301. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zheng SS, Chen XH, Yin X and Zhang BH:
Prognostic significance of HIF-1alpha expression in hepatocellular
carcinoma: a meta-analysis. PloS One. 8:e657532013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nakamura J, Kitajima Y, Kai K, et al:
Hypoxia-inducible factor-1alpha expression predicts the response to
5-fluorouracil-based adjuvant chemotherapy in advanced gastric
cancer. Oncol Rep. 22:693–699. 2009.
|
|
21
|
Nakamura J, Kitajima Y, Kai K, et al:
HIF-1alpha is an unfavorable determinant of relapse in gastric
cancer patients who underwent curative surgery followed by adjuvant
5-FU chemotherapy. Int J Cancer. 127:1158–1171. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Griffiths EA, Pritchard SA, McGrath SM, et
al: Hypoxia-associated markers in gastric carcinogenesis and
HIF-2alpha in gastric and gastro-oesophageal cancer prognosis. Br J
Cancer. 98:965–973. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rasheed S, Harris AL, Tekkis PP, et al:
Hypoxia-inducible factor-1alpha and -2alpha are expressed in most
rectal cancers but only hypoxia-inducible factor-1alpha is
associated with prognosis. Br J Cancer. 100:1666–1673. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dang CV, Le A and Gao P: MYC-induced
cancer cell energy metabolism and therapeutic opportunities. Clin
Cancer Res. 15:6479–6483. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Calcagno DQ, Leal MF, Assumpcao PP, Smith
MA and Burbano RR: MYC and gastric adenocarcinoma carcinogenesis.
World J Gastroenterol. 14:5962–5968. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu Y, Gong LP, Dong XL and Liu HG:
Detection of C-MYC oncogene translocation and copy number change in
the normal-dysplasia- carcinoma sequence of the larynx by
fluorescence in situ hybridization. Diagn Cytopathol. 41:515–519.
2013. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tuupanen S, Yan J, Turunen M, et al:
Characterization of the colorectal cancer-associated enhancer
MYC-335 at 8q24: the role of rs67491583. Cancer Genet. 205:25–33.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Amente S, Lania L and Majello B:
Epigenetic reprogramming of Myc target genes. Am J Cancer Res.
1:413–418. 2011.PubMed/NCBI
|
|
29
|
de Souza CR, Leal MF, Calcagno DQ, et al:
MYC deregulation in gastric cancer and its clinicopathological
implications. PloS One. 8:e644202013.PubMed/NCBI
|
|
30
|
He C, Jiang H, Geng S, et al: Expression
and prognostic value of c-Myc and Fas (CD95/APO1) in patients with
pancreatic cancer. Int J Clin Exp Pathol. 7:742–750.
2014.PubMed/NCBI
|
|
31
|
Mueckler M, Caruso C, Baldwin SA, et al:
Sequence and structure of a human glucose transporter. Science.
229:941–945. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Joost HG and Thorens B: The extended
GLUT-family of sugar/polyol transport facilitators: nomenclature,
sequence characteristics, and potential function of its novel
members (review). Mol Membr Biol. 18:247–256. 2001. View Article : Google Scholar
|
|
33
|
Younes M, Lechago LV, Somoano JR, Mosharaf
M and Lechago J: Immunohistochemical detection of Glut3 in human
tumors and normal tissues. Anticancer Res. 17:2747–2750.
1997.PubMed/NCBI
|
|
34
|
Ayala FR, Rocha RM, Carvalho KC, et al:
GLUT1 and GLUT3 as potential prognostic markers for oral squamous
cell carcinoma. Molecules. 15:2374–2387. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fonteyne P, Casneuf V, Pauwels P, et al:
Expression of hexokinases and glucose transporters in treated and
untreated oesophageal adenocarcinoma. Histol Histopathol.
24:971–977. 2009.PubMed/NCBI
|
|
36
|
Carvalho KC, Cunha IW, Rocha RM, et al:
GLUT1 expression in malignant tumors and its use as an
immunodiagnostic marker. Clinics (Sao Paulo). 66:965–972. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Griffiths EA, Pritchard SA, Welch IM,
Price PM and West CM: Is the hypoxia-inducible factor pathway
important in gastric cancer? Eur J Cancer. 41:2792–2805. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yun J, Rago C, Cheong I, et al: Glucose
deprivation contributes to the development of KRAS pathway
mutations in tumor cells. Science. 325:1555–1559. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kawada K, Nakamoto Y, Kawada M, et al:
Relationship between 18F-fluorodeoxyglucose accumulation
and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res.
18:1696–1703. 2012.
|
|
40
|
Yang W, Zheng Y, Xia Y, et al:
ERK1/2-dependent phosphorylation and nuclear translocation of PKM2
promotes the Warburg effect. Nat Cell Biol. 14:1295–1304. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Young CD, Lewis AS, Rudolph MC, et al:
Modulation of glucose transporter 1 (GLUT1) expression levels
alters mouse mammary tumor cell growth in vitro and in vivo. PloS
One. 6:e232052011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sawayama H, Ishimoto T, Watanabe M, et al:
High expression of glucose transporter 1 on primary lesions of
esophageal squamous cell carcinoma is associated with hematogenous
recurrence. Ann Surg Oncol. 21:1756–1762. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tohma T, Okazumi S, Makino H, et al:
Overexpression of glucose transporter 1 in esophageal squamous cell
carcinomas: a marker for poor prognosis. Dis Esophagus. 18:185–189.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kawamura T, Kusakabe T, Sugino T, et al:
Expression of glucose transporter-1 in human gastric carcinoma:
association with tumor aggressiveness, metastasis, and patient
survival. Cancer. 92:634–641. 2001. View Article : Google Scholar
|
|
45
|
Jung JH, Im S, Jung ES and Kang CS:
Clinicopathological implications of the expression of
hypoxia-related proteins in gastric cancer. Int J Med Sci.
10:1217–1223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Haber RS, Rathan A, Weiser KR, et al:
GLUT1 glucose transporter expression in colorectal carcinoma: a
marker for poor prognosis. Cancer. 83:34–40. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Korkeila E, Jaakkola PM, Syrjanen K,
Pyrhonen S and Sundstrom J: Pronounced tumour regression after
radiotherapy is associated with negative/weak glucose transporter-1
expression in rectal cancer. Anticancer Res. 31:311–315.
2011.PubMed/NCBI
|
|
48
|
Kitamura K, Hatano E, Higashi T, et al:
Proliferative activity in hepatocellular carcinoma is closely
correlated with glucose metabolism but not angiogenesis. J Hepatol.
55:846–857. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Legan M, Tevzic S, Tolar A, Luzar B and
Marolt VF: Glucose transporter-1 (GLUT-1) immunoreactivity in
benign, premalignant and malignant lesions of the gallbladder.
Pathol Oncol Res. 17:61–66. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kim YW, Park YK, Yoon TY and Lee SM:
Expression of the GLUT1 glucose transporter in gallbladder
carcinomas. Hepatogastroenterology. 49:907–911. 2002.PubMed/NCBI
|
|
51
|
Sattler UG and Mueller-Klieser W: The
anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol.
85:963–971. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hirschhaeuser F, Sattler UG and
Mueller-Klieser W: Lactate: a metabolic key player in cancer.
Cancer Res. 71:6921–6925. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brophy S, Sheehan KM, McNamara DA, Deasy
J, Bouchier-Hayes DJ and Kay EW: GLUT-1 expression and response to
chemoradiotherapy in rectal cancer. Int J Cancer. 125:2778–2782.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cao X, Fang L, Gibbs S, et al: Glucose
uptake inhibitor sensitizes cancer cells to daunorubicin and
overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol.
59:495–505. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu CH, Ho YS, Tsai CY, et al: In vitro and
in vivo study of phloretin-induced apoptosis in human liver cancer
cells involving inhibition of type II glucose transporter. Int J
Cancer. 124:2210–2219. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu Y, Cao Y, Zhang W, et al: A
small-molecule inhibitor of glucose transporter 1 downregulates
glycolysis, induces cell-cycle arrest, and inhibits cancer cell
growth in vitro and in vivo. Mol Cancer Ther. 11:1672–1682. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mathupala SP, Ko YH and Pedersen PL:
Hexokinase-2 bound to mitochondria: cancer’s stygian link to the
‘Warburg Effect’ and a pivotal target for effective therapy. Semin
Cancer Biol. 19:17–24. 2009.
|
|
58
|
Kwee SA, Hernandez B, Chan O and Wong L:
Choline kinase alpha and hexokinase-2 protein expression in
hepatocellular carcinoma: association with survival. PloS One.
7:e465912012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Paudyal B, Paudyal P, Oriuchi N, Tsushima
Y, Nakajima T and Endo K: Clinical implication of glucose transport
and metabolism evaluated by 18F-FDG PET in
hepatocellular carcinoma. Int J Oncol. 33:1047–1054.
2008.PubMed/NCBI
|
|
60
|
Seo S, Hatano E, Higashi T, et al:
Fluorine-18 fluorodeoxyglucose positron emission tomography
predicts tumor differentiation, P-glycoprotein expression, and
outcome after resection in hepatocellular carcinoma. Clin Cancer
Res. 13:427–433. 2007. View Article : Google Scholar
|
|
61
|
Ganapathy-Kanniappan S, Vali M,
Kunjithapatham R, et al: 3-bromopyruvate: a new targeted
antiglycolytic agent and a promise for cancer therapy. Curr Pharm
Biotechnol. 11:510–517. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
David CJ, Chen M, Assanah M, Canoll P and
Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate
kinase mRNA splicing in cancer. Nature. 463:364–368. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Clower CV, Chatterjee D, Wang Z, Cantley
LC, Vander Heiden MG and Krainer AR: The alternative splicing
repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform
expression and cell metabolism. Proc Natl Acad Sci USA.
107:1894–1899. 2010. View Article : Google Scholar
|
|
64
|
Christofk HR, Vander Heiden MG, Harris MH,
et al: The M2 splice isoform of pyruvate kinase is important for
cancer metabolism and tumour growth. Nature. 452:230–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Christofk HR, Vander Heiden MG, Wu N,
Asara JM and Cantley LC: Pyruvate kinase M2 is a
phosphotyrosine-binding protein. Nature. 452:181–186. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Anastasiou D, Yu Y, Israelsen WJ, et al:
Pyruvate kinase M2 activators promote tetramer formation and
suppress tumorigenesis. Nat Chem Biol. 8:839–847. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang W and Lu Z: Regulation and function
of pyruvate kinase M2 in cancer. Cancer Lett. 339:153–158. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tamada M, Suematsu M and Saya H: Pyruvate
kinase M2: multiple faces for conferring benefits on cancer cells.
Clin Cancer Res. 18:5554–5561. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kaplon J, Zheng L, Meissl K, et al: A key
role for mitochondrial gatekeeper pyruvate dehydrogenase in
oncogene-induced senescence. Nature. 498:109–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hur H, Xuan Y, Kim YB, et al: Expression
of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential
therapeutic target. Int J Oncol. 42:44–54. 2013.PubMed/NCBI
|
|
71
|
Lu CW, Lin SC, Chien CW, et al:
Overexpression of pyruvate dehydrogenase kinase 3 increases drug
resistance and early recurrence in colon cancer. Am J Pathol.
179:1405–1414. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Peifer C and Alessi DR: Small-molecule
inhibitors of PDK1. Chem Med Chem. 3:1810–1838. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tong J, Xie G, He J, Li J, Pan F and Liang
H: Synergistic antitumor effect of dichloroacetate in combination
with 5-fluorouracil in colorectal cancer. J Biomed Biotechnol.
2011:7405642011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shen YC, Ou DL, Hsu C, et al: Activating
oxidative phosphorylation by a pyruvate dehydrogenase kinase
inhibitor overcomes sorafenib resistance of hepatocellular
carcinoma. Br J Cancer. 108:72–81. 2013. View Article : Google Scholar
|
|
75
|
Fantin VR, St-Pierre J and Leder P:
Attenuation of LDH-A expression uncovers a link between glycolysis,
mitochondrial physiology, and tumor maintenance. Cancer Cell.
9:425–434. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Goldman RD, Kaplan NO and Hall TC: Lactic
dehydrogenase in human neoplastic tissues. Cancer Res. 24:389–399.
1964.PubMed/NCBI
|
|
77
|
Fan J, Hitosugi T, Chung TW, et al:
Tyrosine phosphorylation of lactate dehydrogenase A is important
for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol.
31:4938–4950. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Koukourakis MI, Giatromanolaki A, Sivridis
E, Gatter KC and Harris AL: Lactate dehydrogenase 5 expression in
operable colorectal cancer: strong association with survival and
activated vascular endothelial growth factor pathway - a report of
the Tumour Angiogenesis Research Group. J Clin Oncol. 24:4301–4308.
2006. View Article : Google Scholar
|
|
79
|
Sheng SL, Liu JJ, Dai YH, Sun XG, Xiong XP
and Huang G: Knockdown of lactate dehydrogenase A suppresses tumor
growth and metastasis of human hepatocellular carcinoma. FEBS J.
279:3898–3910. 2012. View Article : Google Scholar
|
|
80
|
Zhang Y, Zhang X, Wang X, et al:
Inhibition of LDH-A by lentivirus-mediated small interfering RNA
suppresses intestinaltype gastric cancer tumorigenicity through the
downregulation of Oct4. Cancer Lett. 321:45–54. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Le A, Cooper CR, Gouw AM, et al:
Inhibition of lactate dehydrogenase A induces oxidative stress and
inhibits tumor progression. Proc Natl Acad Sci USA. 107:2037–2042.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung
YS and Choi JY: Synergistic anti-cancer effect of phenformin and
oxamate. PloS One. 9:e855762014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou M, Zhao Y, Ding Y, et al: Warburg
effect in chemosensitivity: targeting lactate dehydrogenase-A
re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer.
9:332010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sumiyoshi Y, Kakeji Y, Egashira A,
Mizokami K, Orita H and Maehara Y: Overexpression of
hypoxia-inducible factor 1alpha and p53 is a marker for an
unfavorable prognosis in gastric cancer. Clin Cancer Res.
12:5112–5117. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Isobe T, Aoyagi K, Koufuji K, et al:
Clinicopathological significance of hypoxia-inducible factor-1
alpha (HIF-1alpha) expression in gastric cancer. Int J Clin Oncol.
18:293–304. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Theodoropoulos GE, Lazaris AC,
Theodoropoulos VE, et al: Hypoxia, angiogenesis and apoptosis
markers in locally advanced rectal cancer. Int J Colorectal Dis.
21:248–257. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dai CX, Gao Q, Qiu SJ, et al:
Hypoxia-inducible factor-1 alpha, in association with inflammation,
angiogenesis and MYC, is a critical prognostic factor in patients
with HCC after surgery. BMC Cancer. 9:4182009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu L, Zhu XD, Wang WQ, et al: Activation
of beta-catenin by hypoxia in hepatocellular carcinoma contributes
to enhanced metastatic potential and poor prognosis. Clin Cancer
Res. 16:2740–2750. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Couvelard A, O’Toole D, Leek R, et al:
Expression of hypoxia-inducible factors is correlated with the
presence of a fibrotic focus and angiogenesis in pancreatic ductal
adenocarcinomas. Histopathology. 46:668–676. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Shen YM, Arbman G, Olsson B and Sun XF:
Overexpression of GLUT1 in colorectal cancer is independently
associated with poor prognosis. Int J Biol Markers. 26:166–172.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Pizzi S, Porzionato A, Pasquali C, et al:
Glucose transporter-1 expression and prognostic significance in
pancreatic carcinogenesis. Histol Histopathol. 24:175–185.
2009.PubMed/NCBI
|
|
92
|
Rho M, Kim J, Jee CD, et al: Expression of
type 2 hexokinase and mitochondria-related genes in gastric
carcinoma tissues and cell lines. Anticancer Res. 27:251–258.
2007.PubMed/NCBI
|
|
93
|
Qiu MZ, Han B, Luo HY, et al: Expressions
of hypoxia-inducible factor-1alpha and hexokinase-II in gastric
adenocarcinoma: the impact on prognosis and correlation to
clinicopathologic features. Tumour Biol. 32:159–166. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gong L, Cui Z, Chen P, Han H, Peng J and
Leng X: Reduced survival of patients with hepatocellular carcinoma
expressing hexokinase II. Med Oncol. 29:909–914. 2012. View Article : Google Scholar
|
|
95
|
Zhan C, Shi Y, Lu C and Wang Q: Pyruvate
kinase M2 is highly correlated with the differentiation and the
prognosis of esophageal squamous cell cancer. Dis Esophagus.
26:746–753. 2013.PubMed/NCBI
|
|
96
|
Lim JY, Yoon SO, Seol SY, et al:
Overexpression of the M2 isoform of pyruvate kinase is an adverse
prognostic factor for signet ring cell gastric cancer. World J
Gastroenterol. 18:4037–4043. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li J, Yang Z, Zou Q, et al: PKM2 and ACVR
1C are prognostic markers for poor prognosis of gallbladder cancer.
Clin Transl Oncol. 16:200–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kolev Y, Uetake H, Takagi Y and Sugihara
K: Lactate dehydrogenase- 5 (LDH-5) expression in human gastric
cancer: association with hypoxia-inducible factor (HIF-1alpha)
pathway, angiogenic factors production and poor prognosis. Ann Surg
Oncol. 15:2336–2344. 2008. View Article : Google Scholar
|
|
99
|
Yu SJ, Yoon JH, Yang JI, et al:
Enhancement of hexokinase II inhibitor-induced apoptosis in
hepatocellular carcinoma cells via augmenting ER stress and
anti-angiogenesis by protein disulfide isomerase inhibition. J
Bioenerg Biomembr. 44:101–115. 2012. View Article : Google Scholar
|
|
100
|
Zhou Y, Tozzi F, Chen J, et al:
Intracellular ATP levels are a pivotal determinant of
chemoresistance in colon cancer cells. Cancer Res. 72:304–314.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Vander Heiden MG, Christofk HR, Schuman E,
et al: Identification of small molecule inhibitors of pyruvate
kinase M2. Biochem Pharmacol. 79:1118–1124. 2010.PubMed/NCBI
|
|
102
|
Feldman RI, Wu JM, Polokoff MA, et al:
Novel small molecule inhibitors of 3-phosphoinositide-dependent
kinase-1. J Biol Chem. 280:19867–19874. 2005. View Article : Google Scholar : PubMed/NCBI
|