|
1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar
|
|
2
|
Prostate Cancer Trialists’ Collaborative
Group. Maximum androgen blockade in advanced prostate cancer: an
overview of the randomised trials. Lancet. 355:1491–1498. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Berthold DR, Pond GR, Soban F, de Wit R,
Eisenberger M and Tannock IF: Docetaxel plus prednisone or
mitoxantrone plus prednisone for advanced prostate cancer: updated
survival in the TAX 327 study. J Clin Oncol. 26:242–245. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tannock IF, de Wit R, Berry WR, et al:
Docetaxel plus prednisone or mitoxantrone plus prednisone for
advanced prostate cancer. N Engl J Med. 351:1502–1512. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ryan CJ, Smith MR, de Bono JS, et al:
Abiraterone in metastatic prostate cancer without previous
chemotherapy. N Engl J Med. 368:138–148. 2013. View Article : Google Scholar
|
|
6
|
Beer TM, Armstrong AJ, Sternberg CN, et
al: Enzalutamide in men with chemotherapy-naive metastatic prostate
cancer (mCRPC): Results of phase III PREVAIL study. J Clin Oncol.
32(Suppl 4): abs. LBA1ˆ. 2014.PubMed/NCBI
|
|
7
|
Taylor BS, Schultz N, Hieronymus H, et al:
Integrative genomic profiling of human prostate cancer. Cancer
Cell. 18:11–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mulholland DJ, Kobayashi N, Ruscetti M, et
al: Pten loss and RAS/MAPK activation cooperate to promote EMT and
metastasis initiated from prostate cancer stem/progenitor cells.
Cancer Res. 72:1878–1889. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Carver BS, Chapinski C, Wongvipat J, et
al: Reciprocal feedback regulation of PI3K and androgen receptor
signaling in PTEN-deficient prostate cancer. Cancer Cell.
19:575–586. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bennett NC, Gardiner RA, Hooper JD,
Johnson DW and Gobe GC: Molecular cell biology of androgen receptor
signalling. Int J Biochem Cell Biol. 42:813–827. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ryan CJ and Tindall DJ: Androgen receptor
rediscovered: the new biology and targeting the androgen receptor
therapeutically. J Clin Oncol. 29:3651–3658. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Koivisto P, Kononen J, Palmberg C, et al:
Androgen receptor gene amplification: a possible molecular
mechanism for androgen deprivation therapy failure in prostate
cancer. Cancer Res. 57:314–319. 1997.PubMed/NCBI
|
|
13
|
Edwards J, Krishna NS, Grigor KM and
Bartlett JM: Androgen receptor gene amplification and protein
expression in hormone refractory prostate cancer. Br J Cancer.
89:552–556. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dehm SM, Schmidt LJ, Heemers HV, Vessella
RL and Tindall DJ: Splicing of a novel androgen receptor exon
generates a constitutively active androgen receptor that mediates
prostate cancer therapy resistance. Cancer Res. 68:5469–5477. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sun S, Sprenger CC, Vessella RL, et al:
Castration resistance in human prostate cancer is conferred by a
frequently occurring androgen receptor splice variant. J Clin
Invest. 120:2715–2730. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen S, Xu Y, Yuan X, Bubley GJ and Balk
SP: Androgen receptor phosphorylation and stabilization in prostate
cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA.
103:15969–15974. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fujimoto N, Mizokami A, Harada S and
Matsumoto T: Different expression of androgen receptor coactivators
in human prostate. Urology. 58:289–294. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Taplin ME, Rajeshkumar B, Halabi S, et al:
Androgen receptor mutations in androgen-independent prostate
cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol.
21:2673–2678. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sack JS, Kish KF, Wang C, et al:
Crystallographic structures of the ligand-binding domains of the
androgen receptor and its T877A mutant complexed with the natural
agonist dihydrotes-tosterone. Proc Natl Acad Sci USA. 98:4904–4909.
2001. View Article : Google Scholar
|
|
20
|
Stein MN, Patel N, Bershadskiy A, Sokoloff
A and Singer EA: Androgen synthesis inhibitors in the treatment of
castration-resistant prostate cancer. Asian J Androl. 16:387–400.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Abreu-Martin MT, Chari A, Palladino AA,
Craft NA and Sawyers CL: Mitogen-activated protein kinase kinase
kinase 1 activates androgen receptor-dependent transcription and
apoptosis in prostate cancer. Mol Cell Biol. 19:5143–5154.
1999.
|
|
22
|
Bakin RE, Gioeli D, Sikes RA, Bissonette
EA and Weber MJ: Constitutive activation of the
Ras/mitogen-activated protein kinase signaling pathway promotes
androgen hypersensitivity in LNCaP prostate cancer cells. Cancer
Res. 63:1981–1989. 2003.
|
|
23
|
Araujo JC, Trudel GC, Saad F, et al:
Docetaxel and dasatinib or placebo in men with metastatic
castration-resistant prostate cancer (READY): a randomised,
double-blind phase 3 trial. Lancet Oncol. 14:1307–1316. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cea R: Interim analysis results of
COU-AA-302, a randomized, phase 3 study of abiraterone acetate (AA)
in chemotherapie-naive patients with metastatic
castration-resistant prostate cancer (mCRPC). J Clin Oncol. (Suppl
30): abs LBA4518. 2012.
|
|
25
|
De Bono JS, Logothetis CJ, Molina A, et
al: Abiraterone and increased survival in metastatic prostate
cancer. N Engl J Med. 364:1995–2005. 2011.
|
|
26
|
Sridhar SS, Freedland SJ, Gleave ME, et
al: Castration-resistant prostate cancer: from new pathophysiology
to new treatment. Eur Urol. 65:289–299. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tran C, Ouk S, Clegg NJ, et al:
Development of a second-generation antiandrogen for treatment of
advanced prostate cancer. Science. 324:787–790. 2009. View Article : Google Scholar
|
|
28
|
De Bono JS: Primary, secondary, and
quality-of-life endpoint results from the phase III AFFIRM study of
MDV3100, an androgen receptor signaling inhibitor. J Clin Oncol.
(Suppl 30): abs 4519. 2012.
|
|
29
|
Scher HI, Fizazi K, Saad F, et al:
Increased survival with enzalutamide in prostate cancer after
chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Clegg NJ, Wongvipat J, Joseph JD, et al:
ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer
Res. 72:1494–1503. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rathkopf DE, Morris MJ, Fox JJ, et al:
Phase I study of ARN-509, a novel antiandrogen, in the treatment of
castration-resistant prostate cancer. J Clin Oncol.
31:3525–3530
|
|
32
|
Wong KK, Engelman JA and Cantley LC:
Targeting the PI3K signaling pathway in cancer. Curr Opin Genet
Dev. 20:87–90. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
LoPiccolo J, Blumenthal GM, Bernstein WB
and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: effective
combinations and clinical considerations. Drug Resist Updat.
11:32–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Vlietstra RJ, van Alewijk DC, Hermans KG,
van Steenbrugge GJ and Trapman J: Frequent inactivation of PTEN in
prostate cancer cell lines and xenografts. Cancer Res.
58:2720–2723. 1998.PubMed/NCBI
|
|
35
|
Verhagen PC, van Duijn PW, Hermans KG, et
al: The PTEN gene in locally progressive prostate cancer is
preferentially inactivated by bi-allelic gene deletion. J Pathol.
208:699–707. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Konishi N, Nakamura M, Kishi M, Nishimine
M, Ishida E and Shimada K: Heterogeneous methylation and deletion
patterns of the INK4a/ARF locus within prostate carcinomas. Am J
Pathol. 160:1207–1214. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bitting RL and Armstrong AJ: Targeting the
PI3K/Akt/mTOR pathway in castration-resistant prostate cancer.
Endocr Relat Cancer. 20:R83–R99. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ando Y, Inada-Inoue M, Mitsuma A, et al:
Phase I dose-escalation study of buparlisib (BKM120), an oral
pan-class I PI3K inhibitor, in Japanese patients with advanced
solid tumors. Cancer Sci. 105:347–353
|
|
39
|
Bendell JC, Rodon J, Burris HA, et al:
Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K
inhibitor, in patients with advanced solid tumors. J Clin Oncol.
30:282–290. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Busaidy NL, Farooki A, Dowlati A, et al:
Management of metabolic effects associated with anticancer agents
targeting the PI3K-Akt-mTOR pathway. J Clin Oncol. 30:2919–2928.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Armstrong GT, Kawashima T, Leisenring W,
et al: Aging and risk of severe, disabling, life-threatening, and
fatal events in the childhood cancer survivor study. J Clin Oncol.
32:1218–1227. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
McCubrey JA, Steelman LS, Chappell WH, et
al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant
transformation and drug resistance. Biochim Biophys Acta.
1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
McCubrey JA, Steelman LS, Abrams SL, et
al: Roles of the Raf/MEK/ERK and PI3K/PTEN/AKT pathways in
malignant transformation and drug resistance. Adv Enzyme Regul.
46:249–279. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ramsay AK, McCracken SR, Soofi M, et al:
ERK5 signalling in prostate cancer promotes an invasive phenotype.
Br J Cancer. 104:664–672. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kim EK and Choi EJ: Pathological roles of
MAPK signaling pathways in human diseases. Biochim Biophys Acta.
1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kinkade CW, Castillo-Martin M, Puzio-Kuter
A, et al: Targeting AKT/mTOR and ERK MAPK signaling inhibits
hormone-refractory prostate cancer in a preclinical mouse model. J
Clin Invest. 118:3051–3064. 2008.PubMed/NCBI
|
|
47
|
Shimizu T, Tolcher AW, Papadopoulos KP, et
al: The clinical effect of the dual-targeting strategy involving
PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced
cancer. Clin Cancer Res. 18:2316–2325. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Drake JM, Graham NA, Stoyanova T, et al:
Oncogene-specific activation of tyrosine kinase networks during
prostate cancer progression. Proc Natl Acad Sci USA. 109:1643–1648.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Carey AM, Pramanik R, Nicholson LJ, et al:
Ras-MEK-ERK signaling cascade regulates androgen receptor
element-inducible gene transcription and DNA synthesis in prostate
cancer cells. Int J Cancer. 121:520–527. 2007. View Article : Google Scholar
|
|
50
|
Weber MJ and Gioeli D: Ras signaling in
prostate cancer progression. J Cell Biochem. 91:13–25. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gioeli D, Wunderlich W, Sebolt-Leopold J,
et al: Compensatory pathways induced by MEK inhibition are
effective drug targets for combination therapy against
castration-resistant prostate cancer. Mol Cancer Ther.
10:1581–1590. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Steelman LS, Abrams SL, Shelton JG, et al:
Dominant roles of the Raf/MEK/ERK pathway in cell cycle
progression, prevention of apoptosis and sensitivity to
chemotherapeutic drugs. Cell Cycle. 9:1629–1638. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zelivianski S, Spellman M, Kellerman M, et
al: ERK inhibitor PD98059 enhances docetaxel-induced apoptosis of
androgen-independent human prostate cancer cells. Int J Cancer.
107:478–485. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Menzies AM and Long GV: Dabrafenib and
Trametinib, alone and in combination for BRAF-mutant metastatic
melanoma. Clin Cancer Res. 20:2035–2043. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Schadendorf D, Amonkar MM, Milhem M, et
al: Functional and symptom impact of trametinib versus chemotherapy
in BRAF V600E advanced or metastatic melanoma: quality-of-life
analyses of the METRIC study. Ann Oncol. 25:700–706
|
|
56
|
Anforth R, Liu M, Nguyen B, et al:
Acneiform eruptions: A common cutaneous toxicity of the MEK
inhibitor trametinib. Australas J Dermatol. View Article : Google Scholar : 2013.[Epub ahead
of print].
|
|
57
|
Kim KB, Kefford R, Pavlick AC, et al:
Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients
with metastatic BRAF-mutant cutaneous melanoma previously treated
with or without a BRAF inhibitor. J Clin Oncol. 31:482–489. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Giacinti C and Giordano A: RB and cell
cycle progression. Oncogene. 25:5220–5227. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sellers WR and Kaelin WG Jr: Role of the
retinoblastoma protein in the pathogenesis of human cancer. J Clin
Oncol. 15:3301–3312. 1997.PubMed/NCBI
|
|
60
|
Grasso CS, Wu YM, Robinson DR, et al: The
mutational landscape of lethal castration-resistant prostate
cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sharma A, Yeow WS, Ertel A, et al: The
retinoblastoma tumor suppressor controls androgen signaling and
human prostate cancer progression. J Clin Invest. 120:4478–4492.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dyson N: The regulation of E2F by
pRB-family proteins. Genes Dev. 12:2245–2262. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mashal RD, Lester S, Corless C, et al:
Expression of cell cycle-regulated proteins in prostate cancer.
Cancer Res. 56:4159–4163. 1996.PubMed/NCBI
|
|
64
|
Drobnjak M, Osman I, Scher HI, Fazzari M
and Cordon-Cardo C: Overexpression of cyclin D1 is associated with
metastatic prostate cancer to bone. Clin Cancer Res. 6:1891–1895.
2000.PubMed/NCBI
|
|
65
|
Aparicio A, Den RB and Knudsen KE: Time to
stratify? The retinoblastoma protein in castrate-resistant prostate
cancer. Nat Rev Urol. 8:562–568. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tan HL, Sood A, Rahimi HA, et al: Rb loss
is characteristic of prostatic small cell neuroendocrine carcinoma.
Clin Cancer Res. 20:890–903. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nathwani SM, Cloonan SM, Stronach M, et
al: Novel microtubule-targeting agents, pyrrolo-1,5-benzoxazepines,
induce cell cycle arrest and apoptosis in prostate cancer cells.
Oncol Rep. 24:1499–1507. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Reiner T, de las Pozas A and Perez-Stable
C: Sequential combinations of flavopiridol and docetaxel inhibit
prostate tumors, induce apoptosis, and decrease angiogenesis in the
Ggamma/T-15 transgenic mouse model of prostate cancer. Prostate.
66:1487–1497. 2006. View Article : Google Scholar
|
|
69
|
Gomez LA, de Las Pozas A and Perez-Stable
C: Sequential combination of flavopiridol and docetaxel reduces the
levels of X-linked inhibitor of apoptosis and AKT proteins and
stimulates apoptosis in human LNCaP prostate cancer cells. Mol
Cancer Ther. 5:1216–1226. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Willder JM, Heng SJ, McCall P, Adams CE,
Tannahill C, Fyffe G, Seywright M, Horgan PG, Leung HY, Underwood
MA and Edwards J: Androgen receptor phosphorylation at serine 515
by Cdk1 predicts biochemical relapse in prostate cancer patients.
Br J Cancer. 15:139–148. 2013.PubMed/NCBI
|
|
71
|
Gilbert MR, Dignam J, Pugh S, et al: Reply
to m. C Chamberlain J Clin Oncol. 32:1634–1635. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vici P, Capomolla E, Foggi P, et al: High
activity of salvage treatment with biweekly paclitaxel-gemcitabine
combination in heavily pretreated breast cancer patients. J Exp
Clin Cancer Res. 25:39–44. 2006.PubMed/NCBI
|
|
73
|
Wang X, Hawk N, Yue P, et al: Overcoming
mTOR inhibition-induced paradoxical activation of survival
signaling pathways enhances mTOR inhibitors’ anticancer efficacy.
Cancer Biol Ther. 7:1952–1958. 2008.PubMed/NCBI
|
|
74
|
Chu S, Holtz M, Gupta M and Bhatia R:
BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase
activity in chronic myelogenous leukemia CD34+ cells.
Blood. 103:3167–3174. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yu C, Krystal G, Varticovksi L, et al:
Pharmacologic mitogen-activated protein/extracellular
signal-regulated kinase kinase/ mitogen-activated protein kinase
inhibitors interact synergistically with STI571 to induce apoptosis
in Bcr/Abl-expressing human leukemia cells. Cancer Res. 62:188–199.
2002.
|
|
76
|
Packer LM, Rana S, Hayward R, et al:
Nilotinib and MEK inhibitors induce synthetic lethality through
paradoxical activation of RAF in drug-resistant chronic myeloid
leukemia. Cancer Cell. 20:715–727. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dickson MA and Schwartz GK: Development of
cell-cycle inhibitors for cancer therapy. Curr Oncol. 16:36–43.
2009.PubMed/NCBI
|