|
1
|
Surh YJ: Cancer chemoprevention with
dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Casero RA Jr and Marton LJ: Targeting
polyamine metabolism and function in cancer and other
hyperproliferative diseases. Nat Rev Drug Discov. 6:373–390. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ramani D, De Bandt JP and Cynober L:
Aliphatic polyamines in physiology and diseases. Clin Nutr.
33:14–22. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Thomas T and Thomas TJ: Polyamines in cell
growth and cell death: molecular mechanisms and therapeutic
applications. Cell Mol Life Sci. 58:244–258. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rothenburg S, Koch-Nolte F, Rich A and
Haag F: A polymorphic dinucleotide repeat in the rat nucleolin gene
forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci USA.
98:8985–8990. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Iacomino G, Picariello G and D’Agostino L:
DNA and nuclear aggregates of polyamines. Biochim Biophys Acta.
1823:1745–1755. 2012. View Article : Google Scholar
|
|
7
|
Igarashi K and Kashiwagi K: Modulation of
cellular function by polyamines. Int J Biochem Cell Biol. 42:39–51.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pegg AE and Casero RA Jr: Current status
of the polyamine research field. Methods Mol Biol. 720:3–35. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pegg AE: Mammalian polyamine metabolism
and function. IUBMB Life. 61:880–894. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Coffino P: Regulation of cellular
polyamines by antizyme. Nat Rev Mol Cell Biol. 2:188–194. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bachrach U: Polyamines and cancer:
minireview article. Amino Acids. 26:307–309. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Linsalata M, Caruso MG, Leo S, Guerra V,
D’Attoma B and Di Leo A: Prognostic value of tissue polyamine
levels in human colorectal carcinoma. Anticancer Res. 22:2465–2469.
2002.PubMed/NCBI
|
|
13
|
Linsalata M, Giannini R, Notarnicola M and
Cavallini A: Peroxisome proliferator-activated receptor gamma and
spermidine/spermine N1-acetyltransferase gene expressions are
significantly correlated in human colorectal cancer. BMC Cancer.
6:1912006. View Article : Google Scholar
|
|
14
|
Shantz LM and Levin VA: Regulation of
ornithine decarboxylase during oncogenic transformation: mechanisms
and therapeutic potential. Amino Acids. 33:213–223. 2007.
View Article : Google Scholar
|
|
15
|
Erdman SH, Ignatenko NA, Powell MB, et al:
APC-dependent changes in expression of genes influencing polyamine
metabolism, and consequences for gastrointestinal carcinogenesis,
in the Min mouse. Carcinogenesis. 20:1709–1713. 1999. View Article : Google Scholar
|
|
16
|
Casero RA and Pegg AE: Polyamine
catabolism and disease. Biochem J. 421:323–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Palmer AJ and Wallace HM: The polyamine
transport system as a target for anticancer drug development. Amino
Acids. 38:415–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Thompson PA and Gerner EW: Current
concepts in colorectal cancer prevention. Expert Rev Gastroenterol
Hepatol. 3:369–382. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pegg AE: Regulation of ornithine
decarboxylase. J Biol Chem. 281:14529–14532. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xiao L and Wang J-Y: Posttranscriptional
regulation of gene expression in epithelial cells by polyamines.
Methods Mol Biol. 720:67–79. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ignatenko NA, Babbar N, Mehta D, Casero RA
Jr and Gerner EW: Suppression of polyamine catabolism by activated
Ki-ras in human colon cancer cells. Mol Carcinog. 39:91–102. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Linsalata M, Notarnicola M, Caruso MG, Di
Leo A, Guerra V and Russo F: Polyamine biosynthesis in relation to
K-ras and p-53 mutations in colorectal carcinoma. Scand J
Gastroenterol. 39:470–477. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Notarnicola M, Linsalata M, Caruso MG, et
al: Genetic and biochemical changes in colorectal carcinoma in
relation to morphologic characteristics. Oncol Rep. 10:1987–1991.
2003.PubMed/NCBI
|
|
24
|
Babbar N and Gerner EW: Targeting
polyamines and inflammation for cancer prevention. Recent Results
Cancer Res. 188:49–64. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Seiler N: Thirty years of
polyamine-related approaches to cancer therapy. Retrospect and
prospect Part 1 Selective enzyme inhibitors. Curr Drug Targets.
4:537–564. 2003.
|
|
26
|
Laukaitis CM and Gerner EW: DFMO: targeted
risk reduction therapy for colorectal neoplasia. Best Pract Res
Clin Gastroenterol. 25:495–506. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gerner EW and Meyskens FL Jr: Polyamines
and cancer: old molecules, new understanding. Nat Rev Cancer.
4:781–792. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Love RR, Carbone PP, Verma AK, et al:
Randomized phase I chemoprevention dose-seeking study of
alpha-difluoromethylornithine. J Natl Cancer Inst. 85:732–737.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Levin VA, Uhm JH, Jaeckle KA, et al: Phase
III randomized study of postradiotherapy chemotherapy with
alpha-difluoromethylornithine-procarbazine,
N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosurea, vincristine
(DFMO-PCV) versus PCV for glioblastoma multiforme. Clin Cancer Res.
6:3878–3884. 2000.PubMed/NCBI
|
|
30
|
Leveque J, Burtin F, Catros-Quemener V,
Havouis R and Moulinoux JP: The gastrointestinal polyamine source
depletion enhances DFMO induced polyamine depletion in MCF-7 human
breast cancer cells in vivo. Anticancer Res. 18:2663–2668.
1998.PubMed/NCBI
|
|
31
|
Meyskens FL Jr and Gerner EW: Development
of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin
Cancer Res. 5:945–951. 1999.PubMed/NCBI
|
|
32
|
Gerner EW: Cancer chemoprevention locks
onto a new polyamine metabolic target. Cancer Prev Res (Phila).
3:125–127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Love RR, Jacoby R, Newton MA, et al: A
randomized, placebo-controlled trial of low-dose
alpha-difluoromethylornithine in individuals at risk for colorectal
cancer. Cancer Epidemiol Biomarkers Prev. 7:989–992.
1998.PubMed/NCBI
|
|
34
|
Meyskens FL Jr, Gerner EW, Emerson S, et
al: Effect of alpha-difluoromethylornithine on rectal mucosal
levels of polyamines in a randomized, double-blinded trial for
colon cancer prevention. J Natl Cancer Inst. 90:1212–1218. 1998.
View Article : Google Scholar
|
|
35
|
Flossmann E and Rothwell PM: Effect of
aspirin on long-term risk of colorectal cancer: consistent evidence
from randomised and observational studies. Lancet. 369:1603–1613.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lawson KR, Ignatenko NA, Piazza GA, Cui H
and Gerner EW: Influence of K-ras activation on the survival
responses of Caco-2 cells to the chemopreventive agents sulindac
and difluoromethylornithine. Cancer Epidemiol Biomarkers Prev.
9:1155–1162. 2000.PubMed/NCBI
|
|
37
|
Gerner EW and Meyskens FL Jr: Combination
chemoprevention for colon cancer targeting polyamine synthesis and
inflammation. Clin Cancer Res. 15:758–761. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jacoby RF, Cole CE, Tutsch K, et al:
Chemopreventive efficacy of combined piroxicam and
difluoromethylornithine treatment of Apc mutant Min mouse adenomas,
and selective toxicity against Apc mutant embryos. Cancer Res.
60:1864–1870. 2000.
|
|
39
|
Ignatenko NA, Besselsen DG, Stringer DE,
Blohm-Mangone KA, Cui H and Gerner EW: Combination chemoprevention
of intestinal carcinogenesis in a murine model of familial
adenomatous polyposis. Nutr Cancer. 60(Suppl 1): 30–35. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Thompson PA, Wertheim BC, Zell JA, et al:
Levels of rectal mucosal polyamines and prostaglandin E2 predict
ability of DFMO and sulindac to prevent colorectal adenoma.
Gastroenterology. 139:797–805. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Meyskens FL Jr, McLaren CE, Pelot D, et
al: Difluoromethylornithine plus sulindac for the prevention of
sporadic colorectal adenomas: a randomized placebo-controlled,
double-blind trial. Cancer Prev Res (Phila). 1:32–38. 2008.
View Article : Google Scholar
|
|
42
|
Zell JA, Pelot D, Chen WP, McLaren CE,
Gerner EW and Meyskens FL: Risk of cardiovascular events in a
randomized placebo-controlled, double-blind trial of
difluoromethylornithine plus sulindac for the prevention of
sporadic colorectal adenomas. Cancer Prev Res (Phila). 2:209–212.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zell JA, Ziogas A, Ignatenko N, et al:
Associations of a polymorphism in the ornithine decarboxylase gene
with colorectal cancer survival. Clin Cancer Res. 15:6208–6216.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Martinez ME, O’Brien TG, Fultz KE, et al:
Pronounced reduction in adenoma recurrence associated with aspirin
use and a polymorphism in the ornithine decarboxylase gene. Proc
Natl Acad Sci USA. 100:7859–7864. 2003. View Article : Google Scholar
|
|
45
|
Hubner RA, Muir KR, Liu JF, Logan RF,
Grainge MJ and Houlston RS: Ornithine decarboxylase G316A genotype
is prognostic for colorectal adenoma recurrence and predicts
efficacy of aspirin chemoprevention. Clin Cancer Res. 14:2303–2309.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jell J, Merali S, Hensen ML, et al:
Genetically altered expression of spermidine/spermine
N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA.
J Biol Chem. 282:8404–8413. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jacobs ET, Ahnen DJ, Ashbeck EL, et al:
Association between body mass index and colorectal neoplasia at
follow-up colonoscopy: a pooling study. Am J Epidemiol.
169:657–666. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zell JA, Lin BS, Madson N, McLaren CE,
Gerner EW and Meyskens FL: Role of obesity in a randomized
placebo-controlled trial of difluoromethylornithine (DFMO) +
sulindac for the prevention of sporadic colorectal adenomas. Cancer
Causes Control. 23:1739–1744. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wallace HM and Fraser AV: Inhibitors of
polyamine metabolism: review article. Amino Acids. 26:353–365.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Niiranen K, Pietila M, Pirttila TJ, et al:
Targeted disruption of spermidine/spermine N1-acetyltransferase
gene in mouse embryonic stem cells. Effects on polyamine
homeostasis and sensitivity to polyamine analogues. J Biol Chem.
277:25323–25328. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Battaglia V, DeStefano Shields C,
Murray-Stewart T and Casero RA Jr: Polyamine catabolism in
carcinogenesis: potential targets for chemotherapy and
chemoprevention. Amino Acids. 46:511–519. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Seiler N: Thirty years of
polyamine-related approaches to cancer therapy. Retrospect and
prospect Part 2 Structural analogues and derivatives. Curr Drug
Targets. 4:565–585. 2003.PubMed/NCBI
|
|
53
|
Wallace HM and Niiranen K: Polyamine
analogues - an update. Amino Acids. 33:261–265. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Belting M, Borsig L, Fuster MM, et al:
Tumor attenuation by combined heparan sulfate and polyamine
depletion. Proc Natl Acad Sci USA. 99:371–376. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bonithon-Kopp C, Kronborg O, Giacosa A,
Rath U and Faivre J: Calcium and fibre supplementation in
prevention of colorectal adenoma recurrence: a randomised
intervention trial. European Cancer Prevention Organisation Study
Group. Lancet. 356:1300–1306. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Delzenne NM and Williams CM: Prebiotics
and lipid metabolism. Curr Opin Lipidol. 13:61–67. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Food and Agriculture Organization of the
United Nations and World Health Organization. Probiotics in food:
health and nutritional properties and guidelines for evaluation.
Food and Agriculture Organization of the United Nations, World
Health Organization; Rome: 2006
|
|
58
|
Boesten RJ and de Vos WM: Interactomics in
the human intestine: Lactobacilli and Bifidobacteria
make a difference. J Clin Gastroenterol. 42(Suppl 3): S163–S167.
2008. View Article : Google Scholar
|
|
59
|
Quigley EM: Gut bacteria in health and
disease. Gastroenterol Hepatol (NY). 9:560–569. 2013.PubMed/NCBI
|
|
60
|
Riezzo G, Orlando A, D’Attoma B, et al:
Randomised clinical trial: efficacy of Lactobacillus
paracasei-enriched artichokes in the treatment of patients with
functional constipation - a double-blind, controlled, crossover
study. Aliment Pharmacol Ther. 35:441–450. 2012.
|
|
61
|
Valerio F, de Candia S, Lonigro SL, et al:
Role of the probiotic strain Lactobacillus paracasei
LMGP22043 carried by artichokes in influencing faecal bacteria and
biochemical parameters in human subjects. J Appl Microbiol.
111:155–164. 2011.PubMed/NCBI
|
|
62
|
Sisto A and Lavermicocca P: Suitability of
a probiotic Lactobacillus paracasei strain as a starter
culture in olive fermentation and development of the innovative
patented product ‘probiotic table olives’. Front Microbiol.
3:1742012.
|
|
63
|
Ishikawa H, Akedo I, Otani T, et al:
Randomized trial of dietary fiber and Lactobacillus casei
administration for prevention of colorectal tumors. Int J Cancer.
116:762–767. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zeng H, Lazarova DL and Bordonaro M:
Mechanisms linking dietary fiber, gut microbiota and colon cancer
prevention. World J Gastrointest Oncol. 6:41–51. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kulkarni N and Reddy BS: Inhibitory effect
of Bifidobacterium longum cultures on the
azoxymethane-induced aberrant crypt foci formation and fecal
bacterial beta-glucuronidase. Proc Soc Exp Biol Med. 207:278–283.
1994.
|
|
66
|
Boleij A and Tjalsma H: Gut bacteria in
health and disease: a survey on the interface between intestinal
microbiology and colorectal cancer. Biol Rev Camb Philos Soc.
87:701–730. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Singh J, Rivenson A, Tomita M, Shimamura
S, Ishibashi N and Reddy BS: Bifidobacterium longum, a
lactic acid-producing intestinal bacterium inhibits colon cancer
and modulates the intermediate biomarkers of colon carcinogenesis.
Carcinogenesis. 18:833–841. 1997. View Article : Google Scholar
|
|
68
|
Di Marzio L, Russo FP, D’Alo S, et al:
Apoptotic effects of selected strains of lactic acid bacteria on a
human T leukemia cell line are associated with bacterial arginine
deiminase and/or sphingomyelinase activities. Nutr Cancer.
40:185–196. 2001.
|
|
69
|
Linsalata M, Russo F, Berloco P, et al:
The influence of Lactobacillus brevis on ornithine
decarboxylase activity and polyamine profiles in Helicobacter
pylori-infected gastric mucosa. Helicobacter. 9:165–172.
2004.
|
|
70
|
Famularo G, Perluigi M, Pieluigi M, Coccia
R, Mastroiacovo P and De Simone C: Microecology, bacterial
vaginosis and probiotics: perspectives for bacteriotherapy. Med
Hypotheses. 56:421–430. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Orlando A, Messa C, Linsalata M, Cavallini
A and Russo F: Effects of Lactobacillus rhamnosus GG on
proliferation and polyamine metabolism in HGC-27 human gastric and
DLD-1 colonic cancer cell lines. Immunopharmacol Immunotoxicol.
31:108–116. 2009.
|
|
72
|
Buts JP and De Keyser N: Effects of
Saccharomyces boulardii on intestinal mucosa. Dig Dis Sci.
51:1485–1492. 2006.
|
|
73
|
Linsalata M, Russo F, Berloco P, et al:
Effects of probiotic bacteria (VSL#3) on the polyamine biosynthesis
and cell proliferation of normal colonic mucosa of rats. In Vivo.
19:989–995. 2005.
|
|
74
|
Matsumoto M and Benno Y: Consumption of
Bifidobacterium lactis LKM512 yogurt reduces gut
mutagenicity by increasing gut polyamine contents in healthy adult
subjects. Mutat Res. 568:147–153. 2004.
|
|
75
|
Cederroth CR and Nef S: Soy,
phytoestrogens and metabolism: A review. Mol Cell Endocrinol.
304:30–42. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Thompson LU, Robb P, Serraino M and Cheung
F: Mammalian lignan production from various foods. Nutr Cancer.
16:43–52. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Albini A, Rosano C, Angelini G, et al:
Exogenous hormonal regulation in breast cancer cells by
phytoestrogens and endocrine disruptors. Curr Med Chem.
21:1129–1145. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cassidy A: Potential risks and benefits of
phytoestrogen-rich diets. Int J Vitam Nutr Res. 73:120–126. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cotterchio M, Boucher BA, Manno M,
Gallinger S, Okey A and Harper P: Dietary phytoestrogen intake is
associated with reduced colorectal cancer risk. J Nutr.
136:3046–3053. 2006.PubMed/NCBI
|
|
80
|
Lechner D, Kállay E and Cross HS:
Phytoestrogens and colorectal cancer prevention. Vitam Horm.
70:169–198. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hawrylewicz EJ, Zapata JJ and Blair WH:
Soy and experimental cancer: animal studies. J Nutr. 125:698S–708S.
1995.PubMed/NCBI
|
|
82
|
Linsalata M, Messa C, Russo F, Cavallini A
and Di Leo A: Estrogen receptors and polyamine levels in human
gastric carcinoma. Scand J Gastroenterol. 29:67–70. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Russo F, Linsalata M, Messa C, et al:
Polyamines and estrogen-receptor concentrations in human colorectal
carcinomas. Ital J Gastroenterol. 24:8–12. 1992.PubMed/NCBI
|
|
84
|
Cross HS, Kallay E, Lechner D, Gerdenitsch
W, Adlercreutz H and Armbrecht HJ: Phytoestrogens and vitamin D
metabolism: a new concept for the prevention and therapy of
colorectal, prostate, and mammary carcinomas. J Nutr.
134:1207S–1212S. 2004.PubMed/NCBI
|
|
85
|
Booth C, Hargreaves DF, Hadfield JA,
McGown AT and Potten CS: Isoflavones inhibit intestinal epithelial
cell proliferation and induce apoptosis in vitro. Br J Cancer.
80:1550–1557. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li HQ, Luo Y and Qiao CH: The mechanisms
of anticancer agents by genistein and synthetic derivatives of
isoflavone. Mini Rev Med Chem. 12:350–362. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shon YH, Park SD and Nam KS: Effective
chemopreventive activity of genistein against human breast cancer
cells. J Biochem Mol Biol. 39:448–451. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Linsalata M, Russo F, Notarnicola M, et
al: Effects of genistein on the polyamine metabolism and cell
growth in DLD-1 human colon cancer cells. Nutr Cancer. 52:84–93.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tanaka T, Makita H, Kawabata K, et al:
Chemoprevention of azoxymethane-induced rat colon carcinogenesis by
the naturally occurring flavonoids, diosmin and hesperidin.
Carcinogenesis. 18:957–965. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Au A, Li B, Wang W, Roy H, Koehler K and
Birt D: Effect of dietary apigenin on colonic ornithine
decarboxylase activity, aberrant crypt foci formation, and
tumorigenesis in different experimental models. Nutr Cancer.
54:243–251. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Linsalata M, Orlando A, Messa C, Refolo MG
and Russo F: Quercetin inhibits human DLD-1 colon cancer cell
growth and polyamine biosynthesis. Anticancer Res. 30:3501–3507.
2010.PubMed/NCBI
|
|
92
|
Gosse F, Roussi S, Guyot S, et al:
Potentiation of apple procyanidin-triggered apoptosis by the
polyamine oxidase inactivator MDL 72527 in human colon
cancer-derived metastatic cells. Int J Oncol. 29:423–428. 2006.
|
|
93
|
Ibanez C, Simo C, Garcia-Canas V,
Gomez-Martinez A, Ferragut JA and Cifuentes A: CE/LC-MS
multiplatform for broad metabolomic analysis of dietary polyphenols
effect on colon cancer cells proliferation. Electrophoresis.
33:2328–2336. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wallerath T, Deckert G, Ternes T, et al:
Resveratrol, a polyphenolic phytoalexin present in red wine,
enhances expression and activity of endothelial nitric oxide
synthase. Circulation. 106:1652–1658. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sengottuvelan M, Senthilkumar R and Nalini
N: Modulatory influence of dietary resveratrol during different
phases of 1,2-dimethylhydrazine induced mucosal lipid-peroxidation,
antioxidant status and aberrant crypt foci development in rat colon
carcinogenesis. Biochim Biophys Acta. 1760:1175–1183. 2006.
View Article : Google Scholar
|
|
96
|
Wolter F and Stein J: Resveratrol enhances
the differentiation induced by butyrate in caco-2 colon cancer
cells. J Nutr. 132:2082–2086. 2002.PubMed/NCBI
|
|
97
|
Schneider Y, Vincent F, Duranton B, et al:
Anti-proliferative effect of resveratrol, a natural component of
grapes and wine, on human colonic cancer cells. Cancer Lett.
158:85–91. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Schneider Y, Duranton B, Gosse F,
Schleiffer R, Seiler N and Raul F: Resveratrol inhibits intestinal
tumorigenesis and modulates host-defense-related gene expression in
an animal model of human familial adenomatous polyposis. Nutr
Cancer. 39:102–107. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wolter F, Turchanowa L and Stein J:
Resveratrol-induced modification of polyamine metabolism is
accompanied by induction of c-Fos. Carcinogenesis. 24:469–474.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ulrich S, Loitsch SM, Rau O, et al:
Peroxisome proliferator-activated receptor gamma as a molecular
target of resveratrol-induced modulation of polyamine metabolism.
Cancer Res. 66:7348–7354. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wolter F, Ulrich S and Stein J: Molecular
mechanisms of the chemopreventive effects of resveratrol and its
analogs in colorectal cancer: key role of polyamines? J Nutr.
134:3219–3222. 2004.PubMed/NCBI
|
|
102
|
Henning SM, Wang P, Abgaryan N, et al:
Phenolic acid concentrations in plasma and urine from men consuming
green or black tea and potential chemopreventive properties for
colon cancer. Mol Nutr Food Res. 57:483–493. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yang CS, Li G, Yang Z, Guan F, Chen A and
Ju J: Cancer prevention by tocopherols and tea polyphenols. Cancer
Lett. Feb 8–2013.(Epub ahead of print).
|
|
104
|
Kumazaki M, Noguchi S, Yasui Y, et al:
Anti-cancer effects of naturally occurring compounds through
modulation of signal transduction and miRNA expression in human
colon cancer cells. J Nutr Biochem. 24:1849–1858. 2013. View Article : Google Scholar
|
|
105
|
Melgarejo E, Urdiales JL, Sanchez-Jimenez
F and Medina MA: Targeting polyamines and biogenic amines by green
tea epigallocatechin-3-gallate. Amino Acids. 38:519–523. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bachrach U and Wang YC: Cancer therapy and
prevention by green tea: role of ornithine decarboxylase. Amino
Acids. 22:1–13. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Paul B, Hayes CS, Kim A, Athar M and
Gilmour SK: Elevated polyamines lead to selective induction of
apoptosis and inhibition of tumorigenesis by
(−)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice.
Carcinogenesis. 26:119–124. 2005.PubMed/NCBI
|
|
108
|
Chung JY, Huang C, Meng X, Dong Z and Yang
CS: Inhibition of activator protein 1 activity and cell growth by
purified green tea and black tea polyphenols in H-ras-transformed
cells: structure-activity relationship and mechanisms involved.
Cancer Res. 59:4610–4617. 1999.PubMed/NCBI
|
|
109
|
Gupta S, Ahmad N, Marengo SR, MacLennan
GT, Greenberg NM and Mukhtar H: Chemoprevention of prostate
carcinogenesis by alpha-difluoromethylornithine in TRAMP mice.
Cancer Res. 60:5125–5133. 2000.PubMed/NCBI
|
|
110
|
Milovic V, Turchanowa L, Stein J and
Caspary WF: Transepithelial transport of putrescine across
monolayers of the human intestinal epithelial cell line, Caco-2.
World J Gastroenterol. 7:193–197. 2001.PubMed/NCBI
|
|
111
|
Zoumas-Morse C, Rock CL, Quintana EL,
Neuhouser ML, Gerner EW and Meyskens FL Jr: Development of a
polyamine database for assessing dietary intake. J Am Diet Assoc.
107:1024–1027. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Loser C, Eisel A, Harms D and Folsch UR:
Dietary polyamines are essential luminal growth factors for small
intestinal and colonic mucosal growth and development. Gut.
44:12–16. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Seiler N, Sarhan S, Grauffel C, Jones R,
Knodgen B and Moulinoux JP: Endogenous and exogenous polyamines in
support of tumor growth. Cancer Res. 50:5077–5083. 1990.PubMed/NCBI
|
|
114
|
Muth A, Madan M, Archer JJ, Ocampo N,
Rodriguez L and Phanstiel O: Polyamine transport inhibitors:
design, synthesis, and combination therapies with
difluoromethylornithine. J Med Chem. 57:348–363. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ignatenko NA, Besselsen DG, Roy UK, et al:
Dietary putrescine reduces the intestinal anticarcinogenic activity
of sulindac in a murine model of familial adenomatous polyposis.
Nutr Cancer. 56:172–181. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yerushalmi HF, Besselsen DG, Ignatenko NA,
et al: Role of polyamines in arginine-dependent colon
carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog. 45:764–773.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Gerner EW: Impact of dietary amino acids
and polyamines on intestinal carcinogenesis and chemoprevention in
mouse models. Biochem Soc Trans. 35:322–325. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ignatenko NA, Gerner EW and Besselsen DG:
Defining the role of polyamines in colon carcinogenesis using mouse
models. J Carcinog. 10:102011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zell JA, Ignatenko NA, Yerushalmi HF, et
al: Risk and risk reduction involving arginine intake and meat
consumption in colorectal tumorigenesis and survival. Int J Cancer.
120:459–468. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Vargas AJ, Wertheim BC, Gerner EW, Thomson
CA, Rock CL and Thompson PA: Dietary polyamine intake and risk of
colorectal adenomatous polyps. Am J Clin Nutr. 96:133–141. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Raj KP, Zell JA, Rock CL, et al: Role of
dietary polyamines in a phase III clinical trial of
difluoromethylornithine (DFMO) and sulindac for prevention of
sporadic colorectal adenomas. Br J Cancer. 108:512–518. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Cipolla BG, Havouis R and Moulinoux JP:
Polyamine reduced diet (PRD) nutrition therapy in hormone
refractory prostate cancer patients. Biomed Pharmacother.
64:363–368. 2010. View Article : Google Scholar : PubMed/NCBI
|