Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2015 Volume 46 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2015 Volume 46 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line

  • Authors:
    • Alexander Hedbrant
    • Ann Erlandsson
    • Dick Delbro
    • Jonny Wijkander
  • View Affiliations / Copyright

    Affiliations: Department of Health Sciences, Karlstad University, Karlstad, Sweden, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
    Copyright: © Hedbrant et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 37-46
    |
    Published online on: October 7, 2014
       https://doi.org/10.3892/ijo.2014.2696
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Resistance of tumor cells to chemotherapy, such as 5‑fluorouracil (5‑FU), is an obstacle for successful treatment of cancer. As a follow‑up of a previous study we have investigated the effect of conditioned media (CM) from macrophages of M1 or M2 phenotypes on 5‑FU cytotoxicity on the colon cancer cell lines HT‑29 and CACO‑2. HT‑29 cells, but not CACO‑2 cells, having been treated with a combination of M1 CM and 5‑FU recovered their cell growth to a much larger extent compared to cells having been treated with 5‑FU alone when further cultured for 7 days in fresh media. M1 CM treatment of HT‑29, but not CACO‑2 cells, induced cell cycle arrest in the G0/G1 and G2/M phases. 5‑FU treatment induced accumulation of cells in S‑phase in both HT‑29 and CACO‑2 cells. This accumulation of cells in S‑phase was attenuated by combined M1 CM and 5‑FU treatment in HT‑29 cells, but not in CACO‑2 cells. The mRNA expression of cell cycle regulatory proteins and 5‑FU metabolic enzymes were analyzed in an attempt to find possible mechanisms for the M1 CM induced attenuation of 5‑FU cytotoxicity in HT‑29. Thymidylate synthetase (TS) and thymidine phosphorylase (TP) were found to be substantially downregulated and upregulated, respectively, in HT‑29 cells treated with M1 CM, making them unlikely as mediators of reduced 5‑FU cytotoxicity. Among cell cycle regulating proteins, p21 was induced in HT‑29 cells, but not in CACO‑2 cells, in response to M1 CM treatment. However, small interfering RNA (siRNA) knockdown of p21 had no effect on the M1 CM induced cell cycle arrest seen in HT‑29 and neither did it change the growth recovery after combined treatment of HT‑29 cells with M1 CM and 5‑FU. In conclusion, treatment of HT‑29 cells with M1 CM reduces the cytotoxic effect of 5‑FU and this is mediated by a M1 CM induced cell cycle arrest in the G0/G1 and G2/M phases. So far, we lack an explanation why this action is absent in the CACO‑2 cells. The current findings may be important for optimization of chemotherapy in colon cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Malvezzi M, Bertuccio P, Levi F, La Vecchia C and Negri E: European cancer mortality predictions for the year 2013. Ann Oncol. 24:792–800. 2013.PubMed/NCBI

2 

Rutkowski MR, Stephen TL and Conejo-Garcia JR: Anti-tumor immunity: myeloid leukocytes control the immune landscape. Cell Immunol. 278:21–26. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Schiavoni G, Gabriele L and Mattei F: The tumor microenvironment: a pitch for multiple players. Front Oncol. 3:902013. View Article : Google Scholar : PubMed/NCBI

4 

Mantovani A: Cancer: inflaming metastasis. Nature. 457:36–37. 2009. View Article : Google Scholar

5 

McLean MH, Murray GI, Stewart KN, et al: The inflammatory microenvironment in colorectal neoplasia. PLoS One. 6:e153662011. View Article : Google Scholar : PubMed/NCBI

6 

Zhou Q, Peng RQ, Wu XJ, et al: The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med. 8:132010. View Article : Google Scholar : PubMed/NCBI

7 

Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A and Palmqvist R: High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 13:1472–1479. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Biswas SK, Allavena P and Mantovani A: Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol. 35:585–600. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Ye Y, Huang X, Zhang Y, et al: Calcium influx blocked by SK&F 96365 modulates the LPS plus IFN-γ-induced inflammatory response in murine peritoneal macrophages. Int Immunopharmacol. 12:384–393. 2012. View Article : Google Scholar

12 

Weisser SB, McLarren KW, Kuroda E and Sly LM: Generation and characterization of murine alternatively activated macrophages. Methods Mol Biol. 946:225–239. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Chen PC, Cheng HC, Wang J, et al: Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget. 5:1595–1608. 2014.PubMed/NCBI

14 

Xiao X, Gaffar I, Guo P, et al: M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA. 111:E1211–E1220. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Edin S, Wikberg ML, Dahlin AM, et al: The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 7:e470452012. View Article : Google Scholar : PubMed/NCBI

16 

Kang JC, Chen JS, Lee CH, Chang JJ and Shieh YS: Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol. 102:242–248. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Pancione M, Forte N, Sabatino L, et al: Reduced beta-catenin and peroxisome proliferator-activated receptor-gamma expression levels are associated with colorectal cancer metastatic progression: correlation with tumor-associated macrophages, cyclooxygenase 2, and patient outcome. Hum Pathol. 40:714–725. 2009. View Article : Google Scholar

18 

Bailey C, Negus R, Morris A, et al: Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis. 24:121–130. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Cui YL, Li HK, Zhou HY, Zhang T and Li Q: Correlations of tumor-associated macrophage subtypes with liver metastases of colorectal cancer. Asian Pac J Cancer Prev. 14:1003–1007. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Andre T, Boni C, Navarro M, et al: Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 27:3109–3116. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Graham JS and Cassidy J: Adjuvant therapy in colon cancer. Expert Rev Anticancer Ther. 12:99–109. 2012. View Article : Google Scholar

22 

McDonald GT, Sullivan R, Paré GC and Graham CH: Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression. Exp Cell Res. 316:3197–3206. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Miyazaki K, Shibahara T, Sato D, et al: Influence of chemotherapeutic agents and cytokines on the expression of 5-fluorouracil-associated enzymes in human colon cancer cell lines. J Gastroenterol. 41:140–150. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Scartozzi M, Maccaroni E, Giampieri R, et al: 5-Fluorouracil pharmacogenomics: still rocking after all these years? Pharmacogenomics. 12:251–265. 2011.PubMed/NCBI

25 

Engström A, Erlandsson A, Delbro D and Wijkander J: Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 44:385–392. 2014.PubMed/NCBI

26 

Pfaffl MW, Horgan GW and Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30:e362002. View Article : Google Scholar : PubMed/NCBI

27 

Ruijter JM, Ramakers C, Hoogaars WM, et al: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37:e452009. View Article : Google Scholar : PubMed/NCBI

28 

Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G and Sacchi A: Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 25:304–309. 2006.PubMed/NCBI

29 

Zhang N, Yin Y, Xu SJ and Chen WS: 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 13:1551–1569. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Song B, Wang Y, Xi Y, et al: Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 28:4065–4074. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Harper JW, Elledge SJ, Keyomarsi K, et al: Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 6:387–400. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Choi YK, Seo HS, Choi HS, Kim SR, Shin YC and Ko SG: Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2/M cell cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231. Mol Cell Biochem. 363:119–128. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Sturm I, Rau B, Schlag PM, et al: Genetic dissection of apoptosis and cell cycle control in response of colorectal cancer treated with preoperative radiochemotherapy. BMC Cancer. 6:1242006. View Article : Google Scholar : PubMed/NCBI

34 

Yoshiba S, Ito D, Nagumo T, Shirota T, Hatori M and Shintani S: Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G(1) phase cell cycle arrest. Oral Oncol. 45:109–115. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993. View Article : Google Scholar : PubMed/NCBI

36 

Rodrigues NR, Rowan A, Smith ME, et al: p53 mutations in colorectal cancer. Proc Natl Acad Sci USA. 87:7555–7559. 1990. View Article : Google Scholar

37 

Seoane J, Le HV, Shen L, Anderson SA and Massagué J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 117:211–223. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Fu G and Peng C: Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells. Oncogene. 30:3953–3966. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Stahl M, Dijkers PF, Kops GJ, et al: The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. 168:5024–5031. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Notas G, Alexaki VI, Kampa M, et al: APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol. 189:4748–4758. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Doroshow JH, Multhauf P, Leong L, et al: Prospective randomized comparison of fluorouracil versus fluorouracil and high-dose continuous infusion leucovorin calcium for the treatment of advanced measurable colorectal cancer in patients previously unexposed to chemotherapy. J Clin Oncol. 8:491–501. 1990.

42 

Schwartz EL, Baptiste N, Wadler S and Makower D: Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J Biol Chem. 270:19073–19077. 1995. View Article : Google Scholar : PubMed/NCBI

43 

Pritchard DM, Watson AJ, Potten CS, Jackman AL and Hickman JA: Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci USA. 94:1795–1799. 1997. View Article : Google Scholar

44 

Peters GJ, van Groeningen CJ, Laurensse EJ and Pinedo HM: A comparison of 5-fluorouracil metabolism in human colorectal cancer and colon mucosa. Cancer. 68:1903–1909. 1991. View Article : Google Scholar : PubMed/NCBI

45 

Etienne MC, Chéradame S, Fischel JL, et al: Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol. 13:1663–1670. 1995.PubMed/NCBI

46 

Takagi K, Sowa Y, Cevik OM, Nakanishi R and Sakai T: CDK inhibitor enhances the sensitivity to 5-fluorouracil in colorectal cancer cells. Int J Oncol. 32:1105–1110. 2008.PubMed/NCBI

47 

Matsushita S, Ikeda R, Nishizawa Y, et al: The role of thymidine phosphorylase in the induction of early growth response protein-1 and thrombospondin-1 by 5-fluorouracil in human cancer carcinoma cells. Int J Oncol. 36:1193–1200. 2010.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hedbrant A, Erlandsson A, Delbro D and Wijkander J: Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line. Int J Oncol 46: 37-46, 2015.
APA
Hedbrant, A., Erlandsson, A., Delbro, D., & Wijkander, J. (2015). Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line. International Journal of Oncology, 46, 37-46. https://doi.org/10.3892/ijo.2014.2696
MLA
Hedbrant, A., Erlandsson, A., Delbro, D., Wijkander, J."Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line". International Journal of Oncology 46.1 (2015): 37-46.
Chicago
Hedbrant, A., Erlandsson, A., Delbro, D., Wijkander, J."Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line". International Journal of Oncology 46, no. 1 (2015): 37-46. https://doi.org/10.3892/ijo.2014.2696
Copy and paste a formatted citation
x
Spandidos Publications style
Hedbrant A, Erlandsson A, Delbro D and Wijkander J: Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line. Int J Oncol 46: 37-46, 2015.
APA
Hedbrant, A., Erlandsson, A., Delbro, D., & Wijkander, J. (2015). Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line. International Journal of Oncology, 46, 37-46. https://doi.org/10.3892/ijo.2014.2696
MLA
Hedbrant, A., Erlandsson, A., Delbro, D., Wijkander, J."Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line". International Journal of Oncology 46.1 (2015): 37-46.
Chicago
Hedbrant, A., Erlandsson, A., Delbro, D., Wijkander, J."Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‑fluorouracil on the HT‑29 colon cancer cell line". International Journal of Oncology 46, no. 1 (2015): 37-46. https://doi.org/10.3892/ijo.2014.2696
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team