Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2015 Volume 46 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2015 Volume 46 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling

  • Authors:
    • Maciej Tarnowski
    • Marta Tkacz
    • Michał Czerewaty
    • Agata Poniewierska‑Baran
    • Katarzyna Grymuła
    • Mariusz Z. Ratajczak
  • View Affiliations / Copyright

    Affiliations: Department of Physiology Pomeranian Medical University, Szczecin, Poland, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
  • Pages: 2241-2250
    |
    Published online on: February 24, 2015
       https://doi.org/10.3892/ijo.2015.2906
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Insulin‑like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin‑like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation‑promoting IGF2 and downregulation of proliferation‑inhibiting non‑coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Barr FG, Galili N, Holick J, Biegel JA, Rovera G and Emanuel BS: Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 3:113–117. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Collins MH, Zhao H, Womer RB and Barr FG: Proliferative and apoptotic differences between alveolar rhabdomyosarcoma subtypes: a comparative study of tumors containing PAX3-FKHR or PAX7-FKHR gene fusions. Med Pediatr Oncol. 37:83–89. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Hazelton BJ, Houghton JA, Parham DM, Douglass EC, Torrance PM, Holt H and Houghton PJ: Characterization of cell lines derived from xenografts of childhood rhabdomyosarcoma. Cancer Res. 47:4501–4507. 1987.PubMed/NCBI

4 

Kelly KM, Womer RB and Barr FG: PAX3-FKHR and PAX7-FKHR gene fusions in rhabdomyosarcoma. J Pediatr Hematol Oncol. 20:517–518. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Sandberg AA, Stone JF, Czarnecki L and Cohen JD: Hematologic masquerade of rhabdomyosarcoma. Am J Hematol. 68:51–57. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Sharp R, Recio JA, Jhappan C, et al: Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nat Med. 8:1276–1280. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Gordon T, McManus A, Anderson J, Min T, Swansbury J, Pritchard-Jones K and Shipley J; United kingdom Children’s Cancer Study Group; United Kingdom Cancer Cytogenetics Group. Cytogenetic abnormalities in 42 rhabdomyosarcoma: a United Kingdom Cancer Cytogenetics Group Study. Med Pediatr Oncol. 36:259–267. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Gurney JG, Severson RK, Davis S and Robison LL: Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 75:2186–2195. 1995. View Article : Google Scholar : PubMed/NCBI

9 

Davis RJ, D’Cruz CM, Lovell MA, Biegel JA and Barr FG: Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54:2869–2872. 1994.PubMed/NCBI

10 

Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS, Rovera G and Barr FG: Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 5:230–235. 1993. View Article : Google Scholar : PubMed/NCBI

11 

Bennicelli JL, Advani S, Schäfer BW and Barr FG: PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene. 18:4348–4356. 1999. View Article : Google Scholar : PubMed/NCBI

12 

Barr FG, Nauta LE, Davis RJ, Schäfer BW, Nycum LM and Biegel JA: In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet. 5:15–21. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Anderson J, Gordon A, Pritchard-Jones K and Shipley J: Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer. 26:275–285. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Barr FG: Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 20:5736–5746. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Anderson J, Gordon A, McManus A, Shipley J and Pritchard-Jones K: Disruption of imprinted genes at chromosome region 11p15.5 in paediatric rhabdomyosarcoma. Neoplasia. 1:340–348. 1999. View Article : Google Scholar

16 

Casola S, Pedone PV, Cavazzana AO, Basso G, Luksch R, d’Amore ES, Carli M, Bruni CB and Riccio A: Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene. 14:1503–1510. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Zhan S, Shapiro DN and Helman LJ: Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest. 94:445–448. 1994. View Article : Google Scholar : PubMed/NCBI

18 

Schneider G, Bowser MJ, Shin DM, Barr FG and Ratajczak MZ: The paternally imprinted DLK1-GTL2 locus is differentially methylated in embryonal and alveolar rhabdomyosarcomas. Int J Oncol. 44:295–300. 2014.

19 

El-Badry OM, Minniti C, Kohn EC, Houghton PJ, Daughaday WH and Helman LJ: Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ. 1:325–331. 1990.PubMed/NCBI

20 

Wang W, Kumar P, Wang W, Epstein J, Helman L, Moore JV and Kumar S: Insulin-like growth factor II and PAX3-FKHR cooperate in the oncogenesis of rhabdomyosarcoma. Cancer Res. 58:4426–4433. 1998.PubMed/NCBI

21 

Hahn H, Wojnowski L, Specht K, et al: Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem. 275:28341–28344. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Makawita S, Ho M, Durbin AD, Thorner PS, Malkin D and Somers GR: Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatr Dev Pathol. 12:127–135. 2009. View Article : Google Scholar

23 

Rikhof B, de Jong S, Suurmeijer AJ, Meijer C and van der Graaf WT: The insulin-like growth factor system and sarcomas. J Pathol. 217:469–482. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Martins AS, Olmos D, Missiaglia E and Shipley J: Targeting the insulin-like growth factor pathway in rhabdomyosarcomas: rationale and future perspectives. Sarcoma. 2011:2097362011. View Article : Google Scholar : PubMed/NCBI

25 

Gallagher EJ and LeRoith D: The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol Metab. 21:610–618. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Yoshimizu T, Miroglio A, Ripoche MA, et al: The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA. 105:12417–12422. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T and Curgy JJ: Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 23:1885–1895. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G and Reik W: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 14:659–665. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Kimura S, Kuramoto K, Homan J, Naruoka H, Ego T, Nogawa M, Sugahara S and Naito H: Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM-1. Anticancer Res. 32:795–798. 2012.PubMed/NCBI

30 

Thakur S, Feng X, Qiao Shi Z, Ganapathy A, Kumar Mishra M, Atadja P, Morris D and Riabowol K: ING1 and 5-azacytidine act synergistically to block breast cancer cell growth. PLoS One. 7:e436712012. View Article : Google Scholar : PubMed/NCBI

31 

Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J, Kucia M and Ratajczak MZ: Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer. 127:2554–2568. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Pàldi A, Jouannet P and Jeanpierre M: Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 9:2183–2187. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Tarnowski M, Schneider G, Amann G, Clark G, Houghton P, Barr FG, Kenner L, Ratajczak MZ and Kucia M: RasGRF1 regulates proliferation and metastatic behavior of human alveolar rhabdomyosarcomas. Int J Oncol. 41:995–1004. 2012.PubMed/NCBI

34 

Baylin SB, Herman JG, Graff JR, Vertino PM and Issa JP: Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 72:141–196. 1998. View Article : Google Scholar

35 

Bird A: The essentials of DNA methylation. Cell. 70:5–8. 1992. View Article : Google Scholar : PubMed/NCBI

36 

Leonhardt H and Cardoso MC: DNA methylation, nuclear structure, gene expression and cancer. J Cell Biochem. (Suppl 35): 78–83. 2000. View Article : Google Scholar

37 

Esteller M: Cancer epigenetics: DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol. 532:39–49. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Dammann RH, Kirsch S, Schagdarsurengin U, Dansranjavin T, Gradhand E, Schmitt WD and Hauptmann S: Frequent aberrant methylation of the imprinted IGF2/H19 locus and LINE1 hypomethylation in ovarian carcinoma. Int J Oncol. 36:171–179. 2010.

39 

Smilinich NJ, Day CD, Fitzpatrick GV, et al: A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci USA. 96:8064–8069. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Bell AC and Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 405:482–485. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature. 447:433–440. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Feinberg AP: The two-domain hypothesis in Beckwith-Wiedemann syndrome. J Clin Invest. 106:739–740. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Lynch CA, Tycko B, Bestor TH and Walsh CP: Reactivation of a silenced H19 gene in human rhabdomyosarcoma by demethylation of DNA but not by histone hyperacetylation. Mol Cancer. 1:22002. View Article : Google Scholar : PubMed/NCBI

44 

Grandjean V, O’Neill L, Sado T, Turner B and Ferguson-Smith A: Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2-H19 domain. FEBS Lett. 488:165–169. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Svensson K, Mattsson R, James TC, Wentzel P, Pilartz M, MacLaughlin J, Miller SJ, Olsson T, Eriksson UJ and Ohlsson R: The paternal allele of the H19 gene is progressively silenced during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development. 125:61–69. 1998.

46 

Jones PA, Taylor SM and Wilson VL: Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res. 84:202–211. 1983.PubMed/NCBI

47 

Taylor SM and Jones PA: Mechanism of action of eukaryotic DNA methyltransferase. Use of 5-azacytosine-containing DNA. J Mol Biol. 162:679–692. 1982. View Article : Google Scholar : PubMed/NCBI

48 

Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C and MacBeth KJ: A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 5:e90012010. View Article : Google Scholar : PubMed/NCBI

49 

Greggs WM 3rd, Clouser CL, Patterson SE and Mansky LM: Discovery of drugs that possess activity against feline leukemia virus. J Gen Virol. 93:900–905. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Dapp MJ, Clouser CL, Patterson S and Mansky LM: 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol. 83:11950–11958. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Clouser CL, Patterson SE and Mansky LM: Exploiting drug repositioning for discovery of a novel HIV combination therapy. J Virol. 84:9301–9309. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Ley TJ, DeSimone J, Anagnou NP, Keller GH, Humphries RK, Turner PH, Young NS, Keller P and Nienhuis AW: 5-Azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med. 307:1469–1475. 1982. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tarnowski M, Tkacz M, Czerewaty M, Poniewierska‑Baran A, Grymuła K and Ratajczak MZ: 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. Int J Oncol 46: 2241-2250, 2015.
APA
Tarnowski, M., Tkacz, M., Czerewaty, M., Poniewierska‑Baran, A., Grymuła, K., & Ratajczak, M.Z. (2015). 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. International Journal of Oncology, 46, 2241-2250. https://doi.org/10.3892/ijo.2015.2906
MLA
Tarnowski, M., Tkacz, M., Czerewaty, M., Poniewierska‑Baran, A., Grymuła, K., Ratajczak, M. Z."5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling". International Journal of Oncology 46.5 (2015): 2241-2250.
Chicago
Tarnowski, M., Tkacz, M., Czerewaty, M., Poniewierska‑Baran, A., Grymuła, K., Ratajczak, M. Z."5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling". International Journal of Oncology 46, no. 5 (2015): 2241-2250. https://doi.org/10.3892/ijo.2015.2906
Copy and paste a formatted citation
x
Spandidos Publications style
Tarnowski M, Tkacz M, Czerewaty M, Poniewierska‑Baran A, Grymuła K and Ratajczak MZ: 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. Int J Oncol 46: 2241-2250, 2015.
APA
Tarnowski, M., Tkacz, M., Czerewaty, M., Poniewierska‑Baran, A., Grymuła, K., & Ratajczak, M.Z. (2015). 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. International Journal of Oncology, 46, 2241-2250. https://doi.org/10.3892/ijo.2015.2906
MLA
Tarnowski, M., Tkacz, M., Czerewaty, M., Poniewierska‑Baran, A., Grymuła, K., Ratajczak, M. Z."5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling". International Journal of Oncology 46.5 (2015): 2241-2250.
Chicago
Tarnowski, M., Tkacz, M., Czerewaty, M., Poniewierska‑Baran, A., Grymuła, K., Ratajczak, M. Z."5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling". International Journal of Oncology 46, no. 5 (2015): 2241-2250. https://doi.org/10.3892/ijo.2015.2906
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team