|
1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar
|
|
2
|
López-Gómez M, Malmierca E, de Górgolas M
and Casado E: Cancer in developing countries: The next most
preventable pandemic. The global problem of cancer. Crit Rev Oncol
Hematol. 88:117–122. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wolpin BM and Mayer RJ: Systemic treatment
of colorectal cancer. Gastroenterology. 134:1296–1310. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Johnston PG and Kaye S: Capecitabine: A
novel agent for the treatment of solid tumors. Anticancer Drugs.
12:639–646. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu G, Hu X and Chakrabarty S: Vitamin D
mediates its action in human colon carcinoma cells in a
calcium-sensing receptor-dependent manner: Downregulates malignant
cell behavior and the expression of thymidylate synthase and
survivin and promotes cellular sensitivity to 5-FU. Int J Cancer.
126:631–639. 2010. View Article : Google Scholar
|
|
6
|
Milczarek M, Psurski M, Kutner A and
Wietrzyk J: Vitamin D analogs enhance the anticancer activity of
5-fluorouracil in an in vivo mouse colon cancer model. BMC Cancer.
13:2942013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Holick MF, Frommer JE, McNeill SC,
Richtand NM, Henley JW and Potts JT Jr: Photometabolism of
7-dehydrocholesterol to previtamin D3 in skin. Biochem Biophys Res
Commun. 76:107–114. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Holick MF, DeLuca HF and Avioli LV:
Isolation and identification of 25-hydroxycholecalciferol from
human plasma. Arch Intern Med. 129:56–61. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Holick MF, Schnoes HK, DeLuca HF, Gray RW,
Boyle IT and Suda T: Isolation and identification of
24,25-dihydroxycholecalciferol, a metabolite of vitamin D made in
the kidney. Biochemistry. 11:4251–4255. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Holick MF, Schnoes HK, DeLuca HF, Suda T
and Cousins RJ: Isolation and identification of
1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in
intestine. Biochemistry. 10:2799–2804. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hewison M, Zehnder D, Chakraverty R and
Adams JS: Vitamin D and barrier function: A novel role for
extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol. 215:31–38.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tieu EW, Tang EKY, Tuckey RC and Adams JS:
Kinetic analysis of human CYP24A1 metabolism of vitamin D via the
C24-oxidation pathway. FEBS J. 281:3280–3296. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Haussler MR, Whitfield GK, Haussler CA,
Hsieh JC, Thompson PD, Selznick SH, Dominguez CE and Jurutka PW:
The nuclear vitamin D receptor: Biological and molecular regulatory
properties revealed. J Bone Miner Res. 13:325–349. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Slominski A, Zjawiony J, Wortsman J, Semak
I, Stewart J, Pisarchik A, Sweatman T, Marcos J, Dunbar C and
Tuckey RC: A novel pathway for sequential transformation of
7-dehydrocholesterol and expression of the P450scc system in
mammalian skin. Eur J Biochem. 271:4178–4188. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Slominski A, Semak I, Zjawiony J, Wortsman
J, Li W, Szczesniewski A and Tuckey RC: The cytochrome P450scc
system opens an alternate pathway of vitamin D3 metabolism. FEBS J.
272:4080–4090. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Guryev O, Carvalho RA, Usanov S, Gilep A
and Estabrook RW: A pathway for the metabolism of vitamin D3:
Unique hydroxylated metabolites formed during catalysis with
cytochrome P450scc (CYP11A1). Proc Natl Acad Sci USA.
100:14754–14759. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Slominski A, Semak I, Wortsman J, Zjawiony
J, Li W, Zbytek B and Tuckey RC: An alternative pathway of vitamin
D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to
20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2. FEBS J.
273:2891–2901. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Slominski AT, Li W, Kim TK, Semak I, Wang
J, Zjawiony JK and Tuckey RC: Novel activities of CYP11A1 and their
potential physiological significance. J Steroid Biochem Mol Biol.
151:25–37. 2015. View Article : Google Scholar
|
|
19
|
Slominski AT, Kim TK, Shehabi HZ, Semak I,
Tang EK, Nguyen MN, Benson HA, Korik E, Janjetovic Z, Chen J, et
al: In vivo evidence for a novel pathway of vitamin D3
metabolism initiated by P450scc and modified by CYP27B1. FASEB J.
26:3901–3915. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Slominski AT, Kim TK, Shehabi HZ, Tang EK,
Benson HA, Semak I, Lin Z, Yates CR, Wang J, Li W, et al: In vivo
production of novel vitamin D2 hydroxy-derivatives by human
placentas, epidermal keratinocytes, Caco-2 colon cells and the
adrenal gland. Mol Cell Endocrinol. 383:181–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Slominski AT, Janjetovic Z, Kim TK,
Wasilewski P, Rosas S, Hanna S, Sayre RM, Dowdy JC, Li W and Tuckey
RC: Novel non-calcemic secosteroids that are produced by human
epidermal keratinocytes protect against solar radiation. J Steroid
Biochem Mol Biol. 148:52–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Slominski AT, Kim TK, Li W, Yi AK,
Postlethwaite A and Tuckey RC: The role of CYP11A1 in the
production of vitamin D metabolites and their role in the
regulation of epidermal functions. J Steroid Biochem Mol Biol.
144:28–39. 2014. View Article : Google Scholar
|
|
23
|
Slominski A, Janjetovic Z, Tuckey RC,
Nguyen MN, Bhattacharya KG, Wang J, Li W, Jiao Y, Gu W, Brown M, et
al: 20S-hydroxyvitamin D3, noncalcemic product of
CYP11A1 action on vitamin D3, exhibits potent
antifibrogenic activity in vivo. J Clin Endocrinol Metab.
98:E298–E303. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Slominski AT, Kim TK, Chen J, Nguyen MN,
Li W, Yates CR, Sweatman T, Janjetovic Z and Tuckey RC: Cytochrome
P450scc-dependent metabolism of 7-dehydrocholesterol in placenta
and epidermal keratinocytes. Int J Biochem Cell Biol. 44:2003–2018.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Slominski AT, Kim TK, Janjetovic Z, Tuckey
RC, Bieniek R, Yue J, Li W, Chen J, Nguyen MN, Tang EK, et al:
20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with
potent antiproliferative and prodifferentiation activities in
normal and malignant cells. Am J Physiol Cell Physiol.
300:C526–C541. 2011. View Article : Google Scholar :
|
|
26
|
Slominski AT, Janjetovic Z, Fuller BE,
Zmijewski MA, Tuckey RC, Nguyen MN, Sweatman T, Li W, Zjawiony J,
Miller D, et al: Products of vitamin D3 or 7-dehydrocholesterol
metabolism by cytochrome P450scc show anti-leukemia effects, having
low or absent calcemic activity. PLoS One. 5:e99072010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Slominski AT, Kim TK, Takeda Y, Janjetovic
Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey
RC, et al: RORα and RORγ are expressed in human skin and serve as
receptors for endogenously produced noncalcemic 20-hydroxy-and
20,23-dihydroxyvitamin D. FASEB J. 28:2775–2789. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zbytek B, Janjetovic Z, Tuckey RC,
Zmijewski MA, Sweatman TW, Jones E, Nguyen MN and Slominski AT:
20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by
cytochrome P450scc, stimulates keratinocyte differentiation. J
Invest Dermatol. 128:2271–2280. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Slominski AT, Janjetovic Z, Kim TK, Wright
AC, Grese LN, Riney SJ, Nguyen MN and Tuckey RC: Novel vitamin D
hydroxy-derivatives inhibit melanoma growth and show differential
effects on normal melanocytes. Anticancer Res. 32:3733–3742.
2012.PubMed/NCBI
|
|
30
|
Janjetovic Z, Brozyna AA, Tuckey RC, Kim
TK, Nguyen MN, Jozwicki W, Pfeffer SR, Pfeffer LM and Slominski AT:
High basal NF-κB activity in nonpigmented melanoma cells is
associated with an enhanced sensitivity to vitamin D3 derivatives.
Br J Cancer. 105:1874–1884. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang J, Slominski A, Tuckey RC, Janjetovic
Z, Kulkarni A, Chen J, Postlethwaite AE, Miller D and Li W:
20-hydroxyvitamin D3 inhibits proliferation of cancer
cells with high efficacy while being non-toxic. Anticancer Res.
32:739–746. 2012.PubMed/NCBI
|
|
32
|
Holick MF: Vitamin D and bone health. J
Nutr. 126(Suppl): 1159S–1164S. 1996.PubMed/NCBI
|
|
33
|
Hayes CE, Nashold FE, Spach KM and
Pedersen LB: The immunological functions of the vitamin D endocrine
system. Cell Mol Biol (Noisy-le-grand). 49:277–300. 2003.
|
|
34
|
Pálmer HG, Sánchez-Carbayo M,
Ordóñez-Morán P, Larriba MJ, Cordón-Cardó C and Muñoz A: Genetic
signatures of differentiation induced by 1alpha,25-dihydroxyvitamin
D3 in human colon cancer cells. Cancer Res.
63:7799–7806. 2003.
|
|
35
|
Shabahang M, Buras RR, Davoodi F,
Schumaker LM, Nauta RJ and Evans SR: 1,25-Dihydroxyvitamin
D3 receptor as a marker of human colon carcinoma cell
line differentiation and growth inhibition. Cancer Res.
53:3712–3718. 1993.PubMed/NCBI
|
|
36
|
Leyssens C, Verlinden L and Verstuyf A:
The future of vitamin D analogs. Front Physiol. 5:1222014.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hansen CM, Hamberg KJ, Binderup E and
Binderup L: Seocalcitol (EB 1089): A vitamin D analogue of
anti-cancer potential. Background, design, synthesis, pre-clinical
and clinical evaluation. Curr Pharm Des. 6:803–828. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Slominski AT and Carlson JA: Melanoma
resistance: A bright future for academicians and a challenge for
patient advocates. Mayo Clin Proc. 89:429–433. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bikle DD: Vitamin D: An ancient hormone.
Exp Dermatol. 20:7–13. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Brown AJ, Dusso A and Slatopolsky E:
Vitamin D. Am J Physiol. 277:F157–F175. 1999.PubMed/NCBI
|
|
41
|
Ebert R, Schütze N, Adamski J and Jakob F:
Vitamin D signaling is modulated on multiple levels in health and
disease. Mol Cell Endocrinol. 248:149–159. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Whitfield GK, Jurutka PW, Haussler CA,
Hsieh JC, Barthel TK, Jacobs ET, Encinas Dominguez C, Thatcher ML
and Haussler MR: Nuclear vitamin D receptor: structure-function,
molecular control of gene transcription, and novel bioactions.
Vitamin D. 2nd edition. Feldman D, Pike JW and Glorieux FH:
Elsevier Academic Press; Oxford: pp. 219–261. 2005, View Article : Google Scholar
|
|
43
|
Khanal R and Nemere I: Membrane receptors
for vitamin D metabolites. Crit Rev Eukaryot Gene Expr. 17:31–47.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bouvier M: Accessory proteins and the
assembly of human class I MHC molecules: A molecular and structural
perspective. Mol Immunol. 39:697–706. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Eufemi M, Coppari S, Altieri F, Grillo C,
Ferraro A and Turano C: ERp57 is present in STAT3-DNA complexes.
Biochem Biophys Res Commun. 323:1306–1312. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ozkan B, Hatun S and Bereket A: Vitamin D
intoxication. Turk J Pediatr. 54:93–98. 2012.PubMed/NCBI
|
|
47
|
Wierzbicka J, Piotrowska A and Żmijewski
MA: The renaissance of vitamin D. Acta Biochim Pol. 61:679–686.
2014.
|
|
48
|
Wierzbicki PM, Adrych K, Kartanowicz D,
Stanislawowski M, Kowalczyk A, Godlewski J, Skwierz-Bogdanska I,
Celinski K, Gach T, Kulig J, et al: Underexpression of LATS1 TSG in
colorectal cancer is associated with promoter hypermethylation.
World J Gastroenterol. 19:4363–4373. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wierzbicki PM, Klacz J, Rybarczyk A,
Slebioda T, Stanislawowski M, Wronska A, Kowalczyk A, Matuszewski M
and Kmiec Z: Identification of a suitable qPCR reference gene in
metastatic clear cell renal cell carcinoma. Tumour Biol.
35:12473–12487. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ren S, Nguyen L, Wu S, Encinas C, Adams JS
and Hewison M: Alternative splicing of vitamin D-24-hydroxylase: A
novel mechanism for the regulation of extrarenal
1,25-dihydroxyvitamin D synthesis. J Biol Chem. 280:20604–20611.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Binderup L: Comparison of calcipotriol
with selected metabolites and analogues of vitamin D3: Effects on
cell growth regulation in vitro and calcium metabolism in vivo.
Pharmacol Toxicol. 72:240–244. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ieta K, Tanaka F, Haraguchi N, Kita Y,
Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H and Mori M:
Biological and genetic characteristics of tumor-initiating cells in
colon cancer. Ann Surg Oncol. 15:638–648. 2008. View Article : Google Scholar
|
|
53
|
Tuohimaa P, Wang JH, Khan S, Kuuslahti M,
Qian K, Manninen T, Auvinen P, Vihinen M and Lou YR: Gene
expression profiles in human and mouse primary cells provide new
insights into the differential actions of vitamin D3 metabolites.
PLoS One. 8:e753382013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Benton G, Arnaoutova I, George J, Kleinman
HK and Koblinski J: Matrigel: From discovery and ECM mimicry to
assays and models for cancer research. Adv Drug Deliv Rev.
79–80:3–18. 2014. View Article : Google Scholar
|
|
55
|
Evans SR, Schwartz AM, Shchepotin EI,
Uskokovic M and Shchepotin IB: Growth inhibitory effects of
1,25-dihydroxyvitamin D3 and its synthetic analogue,
1α,25-dihydroxy-16-ene-23yne-26,27-hexafluoro-19-nor-cholecalcifero
l (Ro 25-6760), on a human colon cancer xenograft. Clin Cancer Res.
4:2869–2876. 1998.PubMed/NCBI
|
|
56
|
Cross HS, Bises G, Lechner D, Manhardt T
and Kállay E: The Vitamin D endocrine system of the gut - its
possible role in colorectal cancer prevention. J Steroid Biochem
Mol Biol. 97:121–128. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Milczarek M, Filip-Psurska B, Swiętnicki
W, Kutner A and Wietrzyk J: Vitamin D analogs combined with
5-fluorouracil in human HT-29 colon cancer treatment. Oncol Rep.
32:491–504. 2014.PubMed/NCBI
|
|
58
|
Milczarek M, Rosinska S, Psurski M,
Maciejewska M, Kutner A and Wietrzyk J: Combined colonic cancer
treatment with vitamin D analogs and irinotecan or oxaliplatin.
Anticancer Res. 33:433–444. 2013.PubMed/NCBI
|
|
59
|
Tanaka Y, Bush KK, Klauck TM and Higgins
PJ: Enhancement of butyrate-induced differentiation of HT-29 human
colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochem
Pharmacol. 38:3859–3865. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cross HS, Farsoudi KH and Peterlik M:
Growth inhibition of human colon adenocarcinoma-derived Caco-2
cells by 1,25-dihydroxyvitamin D3 and two synthetic analogs:
Relation to in vitro hypercalcemic potential. Naunyn Schmiedebergs
Arch Pharmacol. 347:105–110. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Höbaus J, Fetahu IS, Khorchide M, Manhardt
T and Kallay E: Epigenetic regulation of the 1,25-dihydroxyvitamin
D3 24-hydroxylase (CYP24A1) in colon cancer cells. J
Steroid Biochem Mol Biol. 136:296–299. 2013. View Article : Google Scholar
|
|
62
|
Mordan-McCombs S, Valrance M, Zinser G,
Tenniswood M and Welsh J: Calcium, vitamin D and the vitamin D
receptor: Impact on prostate and breast cancer in preclinical
models. Nutr Rev. 65:S131–S133. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Peleg S and Nguyen CV: The importance of
nuclear import in protection of the vitamin D receptor from
polyubiquitination and proteasome-mediated degradation. J Cell
Biochem. 110:926–934. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zgaga L, Theodoratou E, Farrington SM, Din
FV, Ooi LY, Glodzik D, Johnston S, Tenesa A, Campbell H and Dunlop
MG: Plasma vitamin D concentration influences survival outcome
after a diagnosis of colorectal cancer. J Clin Oncol. 32:2430–2439.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Köstner K, Denzer N, Müller CS, Klein R,
Tilgen W and Reichrath J: The relevance of vitamin D receptor (VDR)
gene polymorphisms for cancer: A review of the literature.
Anticancer Res. 29:3511–3536. 2009.PubMed/NCBI
|
|
66
|
Laczmanska I, Laczmanski L, Bebenek M,
Karpinski P, Czemarmazowicz H, Ramsey D, Milewicz A and Sasiadek
MM: Vitamin D receptor gene polymorphisms in relation to the risk
of colorectal cancer in the Polish population. Tumour Biol.
35:12397–12401. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vandewalle B, Adenis A, Hornez L,
Revillion F and Lefebvre J: 1,25-dihydroxyvitamin D3
receptors in normal and malignant human colorectal tissues. Cancer
Lett. 86:67–73. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Brożyna AA, Jozwicki W, Janjetovic Z and
Slominski AT: Expression of vitamin D receptor decreases during
progression of pigmented skin lesions. Hum Pathol. 42:618–631.
2011. View Article : Google Scholar
|
|
69
|
Brożyna AA, Jóźwicki W and Slominski AT:
Decreased VDR expression in cutaneous melanomas as marker of tumor
progression: New data and analyses. Anticancer Res. 34:2735–2743.
2014.
|
|
70
|
Reichrath J, Rech M, Moeini M, Meese E,
Tilgen W and Seifert M: In vitro comparison of the vitamin D
endocrine system in 1,25(OH)2D3-responsive
and -resistant melanoma cells. Cancer Biol Ther. 6:48–55. 2007.
View Article : Google Scholar
|
|
71
|
Albertson DG, Ylstra B, Segraves R,
Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW and Pinkel D:
Quantitative mapping of amplicon structure by array CGH identifies
CYP24 as a candidate oncogene. Nat Genet. 25:144–146. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Brożyna AA, Jochymski C, Janjetovic Z,
Jóźwicki W, Tuckey RC and Slominski AT: CYP24A1 expression
inversely correlates with melanoma progression: Clinic-pathological
studies. Int J Mol Sci. 15:19000–19017. 2014. View Article : Google Scholar
|
|
73
|
Flanagan JN, Young MV, Persons KS, Wang L,
Mathieu JS, Whitlatch LW, Holick MF and Chen TC: Vitamin D
metabolism in human prostate cells: Implications for prostate
cancer chemoprevention by vitamin D. Anticancer Res. 26:2567–2572.
2006.PubMed/NCBI
|
|
74
|
Zehnder D, Bland R, Williams MC, McNinch
RW, Howie AJ, Stewart PM and Hewison M: Extrarenal expression of
25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol
Metab. 86:888–894. 2001.PubMed/NCBI
|
|
75
|
Cross HS, Bareis P, Hofer H, Bischof MG,
Bajna E, Kriwanek S, Bonner E and Peterlik M: 25-Hydroxyvitamin
D3-1alpha-hydroxylase and vitamin D receptor gene
expression in human colonic mucosa is elevated during early
cancerogenesis. Steroids. 66:287–292. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bareis P, Bises G, Bischof MG, Cross HS
and Peterlik M: 25-hydroxy-vitamin d metabolism in human colon
cancer cells during tumor progression. Biochem Biophys Res Commun.
285:1012–1017. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bises G, Kállay E, Weiland T, Wrba F,
Wenzl E, Bonner E, Kriwanek S, Obrist P and Cross HS:
25-hydroxyvitamin D3-1alpha-hydroxylase expression in
normal and malignant human colon. J Histochem Cytochem. 52:985–989.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Brożyna AA, Jóźwicki W, Jochymski C and
Slominski AT: Decreased expression of CYP27B1 correlates with the
increased aggressiveness of ovarian carcinomas. Oncol Rep.
33:599–606. 2015.
|
|
79
|
Brożyna AA, Jóźwicki W, Janjetovic Z and
Slominski AT: Expression of the vitamin D-activating enzyme
1α-hydroxylase (CYP27B1) decreases during melanoma progression. Hum
Pathol. 44:374–387. 2013. View Article : Google Scholar
|
|
80
|
Brown AJ and Slatopolsky E: Vitamin D
analogs: Therapeutic applications and mechanisms for selectivity.
Mol Aspects Med. 29:433–452. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kim TK, Wang J, Janjetovic Z, Chen J,
Tuckey RC, Nguyen MN, Tang EK, Miller D, Li W and Slominski AT:
Correlation between secosteroid-induced vitamin D receptor activity
in melanoma cells and computer-modeled receptor binding strength.
Mol Cell Endocrinol. 361:143–152. 2012. View Article : Google Scholar : PubMed/NCBI
|