|
1
|
Nilbert M, Planck M, Fernebro E, Borg A
and Johnson A: Microsatellite instability is rare in rectal
carcinomas and signifies hereditary cancer. Eur J Cancer.
35:942–945. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sinicrope FA, Rego RL, Foster N, Sargent
DJ, Windschitl HE, Burgart LJ, Witzig TE and Thibodeau SN:
Microsatellite instability accounts for tumor site-related
differences in clinicopathologic variables and prognosis in human
colon cancers. Am J Gastroenterol. 101:2818–2825. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jass JR: Classification of colorectal
cancer based on correlation of clinical, morphological and
molecular features. Histopathology. 50:113–130. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Thibodeau SN, French AJ, Cunningham JM,
Tester D, Burgart LJ, Roche PC, McDonnell SK, Schaid DJ, Vockley
CW, Michels VV, et al: Microsatellite instability in colorectal
cancer: Different mutator phenotypes and the principal involvement
of hMLH1. Cancer Res. 58:1713–1718. 1998.PubMed/NCBI
|
|
6
|
Cunningham JM, Christensen ER, Tester DJ,
Kim CY, Roche PC, Burgart LJ and Thibodeau SN: Hypermethylation of
the hMLH1 promoter in colon cancer with microsatellite instability.
Cancer Res. 58:3455–3460. 1998.PubMed/NCBI
|
|
7
|
Cunningham JM, Kim CY, Christensen ER,
Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ,
Walsh Vockley C, et al: The frequency of hereditary defective
mismatch repair in a prospective series of unselected colorectal
carcinomas. Am J Hum Genet. 69:780–790. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kane MF, Loda M, Gaida GM, Lipman J,
Mishra R, Goldman H, Jessup JM and Kolodner R: Methylation of the
hMLH1 promoter correlates with lack of expression of hMLH1 in
sporadic colon tumors and mismatch repair-defective human tumor
cell lines. Cancer Res. 57:808–811. 1997.PubMed/NCBI
|
|
9
|
Poynter JN, Siegmund KD, Weisenberger DJ,
Long TI, Thibodeau SN, Lindor N, Young J, Jenkins MA, Hopper JL,
Baron JA, et al: Molecular characterization of MSI-H colorectal
cancer by MLHI promoter methylation, immunohistochemistry, and
mismatch repair germline mutation screening. Cancer Epidemiol
Biomarkers Prev. 17:3208–3215. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lynch HT, Shaw MW, Magnuson CW, Larsen AL
and Krush AJ: Hereditary factors in cancer. Study of two large
midwestern kindreds. Arch Intern Med. 117:206–212. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jasperson KW, Tuohy TM, Neklason DW and
Burt RW: Hereditary and familial colon cancer. Gastroenterology.
138:2044–2058. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Plazzer JP, Sijmons RH, Woods MO,
Peltomäki P, Thompson B, Den Dunnen JT and Macrae F: The InSiGHT
database: Utilizing 100 years of insights into Lynch syndrome. Fam
Cancer. 12:175–180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hitchins MP and Ward RL: Constitutional
(germline) MLH1 epimutation as an aetiological mechanism for
hereditary non-polyposis colorectal cancer. J Med Genet.
46:793–802. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gazzoli I, Loda M, Garber J, Syngal S and
Kolodner RD: A hereditary nonpolyposis colorectal carcinoma case
associated with hypermethylation of the MLH1 gene in normal tissue
and loss of heterozygosity of the unmethylated allele in the
resulting microsatellite instability-high tumor. Cancer Res.
62:3925–3928. 2002.PubMed/NCBI
|
|
15
|
Crucianelli F, Tricarico R, Turchetti D,
Gorelli G, Gensini F, Sestini R, Giunti L, Pedroni M, Ponz de Leon
M, Civitelli S, et al: MLH1 constitutional and somatic methylation
in patients with MLH1 negative tumors fulfilling the revised
Bethesda criteria. Epigenetics. 9:1431–1438. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ward RL, Dobbins T, Lindor NM, Rapkins RW
and Hitchins MP: Identification of constitutional MLH1 epimutations
and promoter variants in colorectal cancer patients from the Colon
Cancer Family Registry. Genet Med. 15:25–35. 2013. View Article : Google Scholar
|
|
17
|
Pineda M, Mur P, Iniesta MD, Borràs E,
Campos O, Vargas G, Iglesias S, Fernández A, Gruber SB, Lázaro C,
et al: MLH1 methylation screening is effective in identifying
epimutation carriers. Eur J Hum Genet. 20:1256–1264. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ligtenberg MJ, Kuiper RP, Chan TL,
Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E,
Hendriks-Cornelissen SJ, et al: Heritable somatic methylation and
inactivation of MSH2 in families with Lynch syndrome due to
deletion of the 3′ exons of TACSTD1. Nat Genet. 41:112–117. 2009.
View Article : Google Scholar
|
|
19
|
Kloor M, Voigt AY, Schackert HK,
Schirmacher P, von Knebel Doeberitz M and Bläker H: Analysis of
EPCAM protein expression in diagnostics of Lynch syndrome. J Clin
Oncol. 29:223–227. 2011. View Article : Google Scholar
|
|
20
|
Huth C, Kloor M, Voigt AY, Bozukova G,
Evers C, Gaspar H, Tariverdian M, Schirmacher P, von Knebel
Doeberitz M and Bläker H: The molecular basis of EPCAM expression
loss in Lynch syndrome-associated tumors. Mod Pathol. 25:911–916.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Musulen E, Blanco I, Carrato C,
Fernandez-Figueras MT, Pineda M, Capella G and Ariza A: Usefulness
of epithelial cell adhesion molecule expression in the algorithmic
approach to Lynch syndrome identification. Hum Pathol. 44:412–416.
2013. View Article : Google Scholar
|
|
22
|
Vasen HF, Mecklin JP, Khan PM and Lynch
HT: The International Collaborative Group on Hereditary
Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum.
34:424–425. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Vasen HF, Watson P, Mecklin JP and Lynch
HT: New clinical criteria for hereditary nonpolyposis colorectal
cancer (HNPCC, Lynch syndrome) proposed by the International
Collaborative group on HNPCC. Gastroenterology. 116:1453–1456.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rodriguez-Bigas MA, Boland CR, Hamilton
SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin
L, et al: A National Cancer Institute Workshop on Hereditary
Nonpolyposis Colorectal Cancer Syndrome: Meeting highlights and
Bethesda guidelines. J Natl Cancer Inst. 89:1758–1762. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Umar A, Boland CR, Terdiman JP, Syngal S,
de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ,
Hamelin R, et al: Revised Bethesda Guidelines for hereditary
nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite
instability. J Natl Cancer Inst. 96:261–268. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Boland CR and Shike M: Report from the
Jerusalem workshop on Lynch syndrome-hereditary nonpolyposis
colorectal cancer. Gastroenterology. 138:2197 e2191–2197. 2010.
View Article : Google Scholar
|
|
27
|
Yan HL, Hao LQ, Jin HY, Xing QH, Xue G,
Mei Q, He J, He L and Sun SH: Clinical features and mismatch repair
genes analyses of Chinese suspected hereditary non-polyposis
colorectal cancer: A cost-effective screening strategy proposal.
Cancer Sci. 99:770–780. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Graham DY: Helicobacter pylori update:
gastric cancer, reliable therapy, and possible benefits.
Gastroenterology. 148:719–731 e713. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ringelhan M, O'Connor T, Protzer U and
Heikenwalder M: The direct and indirect roles of HBV in liver
cancer: Prospective markers for HCC screening and potential
therapeutic targets. J Pathol. 235:355–367. 2015. View Article : Google Scholar
|
|
30
|
Wang XL, Yuan Y, Zhang SZ, Cai SR, Huang
YQ, Jiang Q and Zheng S: Clinical and genetic characteristics of
Chinese hereditary nonpolyposis colorectal cancer families. World J
Gastroenterol. 12:4074–4077. 2006.PubMed/NCBI
|
|
31
|
Chew MH, Koh PK, Ng KH, Lim JF, Ho KS, Ooi
BS, Tang CL and Eu KW: Phenotypic characteristics of hereditary
non-polyposis colorectal cancer by the Amsterdam criteria: An Asian
perspective. ANZ J Surg. 78:556–560. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu F, Yang L, Zhou X, Sheng W, Cai S, Liu
L, Nan P and Xu Y: Clinicopathological and genetic features of
Chinese hereditary nonpolyposis colorectal cancer (HNPCC). Med
Oncol. 31:2232014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chew MH, Koh PK, Tan M, Lim KH, Carol L
and Tang CL: Mismatch repair deficiency screening via
immunohistochemical staining in young Asians with colorectal
cancers. World J Surg. 37:2468–2475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ladabaum U, Wang G, Terdiman J, Blanco A,
Kuppermann M, Boland CR, Ford J, Elkin E and Phillips KA:
Strategies to identify the Lynch syndrome among patients with
colorectal cancer: A cost-effectiveness analysis. Ann Intern Med.
155:69–79. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mvundura M, Grosse SD, Hampel H and
Palomaki GE: The cost-effectiveness of genetic testing strategies
for Lynch syndrome among newly diagnosed patients with colorectal
cancer. Genet Med. 12:93–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Snowsill T, Huxley N, Hoyle M,
Jones-Hughes T, Coelho H, Cooper C, Frayling I and Hyde C: A
systematic review and economic evaluation of diagnostic strategies
for Lynch syndrome. Health Technol Assess. 18:1–406. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schofield L, Grieu F, Amanuel B, Carrello
A, Spagnolo D, Kiraly C, Pachter N, Goldblatt J, Platell C, Levitt
M, et al: Population-based screening for Lynch syndrome in Western
Australia. Int J Cancer. 135:1085–1091. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Snowsill T, Huxley N, Hoyle M,
Jones-Hughes T, Coelho H, Cooper C, Frayling I and Hyde C: A
model-based assessment of the cost-utility of strategies to
identify Lynch syndrome in early-onset colorectal cancer patients.
BMC Cancer. 15:3132015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sie AS, Mensenkamp AR, Adang EM,
Ligtenberg MJ and Hoogerbrugge N: Fourfold increased detection of
Lynch syndrome by raising age limit for tumour genetic testing from
50 to 70 years is cost-effective. Ann Oncol. 25:2001–2007. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bellcross CA, Bedrosian SR, Daniels E,
Duquette D, Hampel H, Jasperson K, Joseph DA, Kaye C, Lubin I,
Meyer LJ, et al: Implementing screening for Lynch syndrome among
patients with newly diagnosed colorectal cancer: summary of a
public health/clinical collaborative meeting. Genet Med.
14:152–162. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Data briefing: Reflex testing for Lynch
syndrome in people diagnosed with bowel cancer under the age of 50.
http://www.bowelcanceruk.org.uk/media/426888/lynch_syndrome_briefing_final.pdf.
Accessed April 15, 2015
|
|
42
|
Tomiak E, Samson A, Spector N, Mackey M,
Gilpin C, Smith E, Jonker D, Allanson J and Asmis T: Reflex testing
for Lynch syndrome: If we build it, will they come? Lessons learned
from the uptake of clinical genetics services by individuals with
newly diagnosed colorectal cancer (CRC). Fam Cancer. 13:75–82.
2014. View Article : Google Scholar :
|
|
43
|
Beamer LC, Grant ML, Espenschied CR,
Blazer KR, Hampel HL, Weitzel JN and MacDonald DJ: Reflex
immunohistochemistry and microsatellite instability testing of
colorectal tumors for Lynch syndrome among US cancer programs and
follow-up of abnormal results. J Clin Oncol. 30:1058–1063. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Schofield L, Grieu F, Goldblatt J, Amanuel
B and Iacopetta B: A state-wide population-based program for
detection of Lynch syndrome based upon immunohistochemical and
molecular testing of colorectal tumours. Fam Cancer. 11:1–6. 2012.
View Article : Google Scholar
|
|
45
|
Mensenkamp AR, Vogelaar IP, van
Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ,
Kwint MP, Hoogerbrugge N, Nagtegaal ID and Ligtenberg MJ: Somatic
mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair
deficiency in Lynch syndrome-like tumors. Gastroenterology.
146:643–646 e648. 2014. View Article : Google Scholar
|
|
46
|
Fadhil W and Ilyas M: Immunostaining for
mismatch repair (MMR) protein expression in colorectal cancer is
better and easier to interpret when performed on diagnostic
biopsies. Histopathology. 60:653–655. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bao F, Panarelli NC, Rennert H, Sherr DL
and Yantiss RK: Neoadjuvant therapy induces loss of MSH6 expression
in colorectal carcinoma. Am J Surg Pathol. 34:1798–1804. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Genuardi M, Carrara S, Anti M, Ponz de
Leòn M and Viel A: Assessment of pathogenicity criteria for
constitutional missense mutations of the hereditary nonpolyposis
colorectal cancer genes MLH1 and MSH2. Eur J Hum Genet. 7:778–782.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cravo M, Afonso AJ, Lage P, Albuquerque C,
Maia L, Lacerda C, Fidalgo P, Chaves P, Cruz C and Nobre-Leitão C:
Pathogenicity of missense and splice site mutations in hMSH2 and
hMLH1 mismatch repair genes: Implications for genetic testing. Gut.
50:405–412. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bouzourene H, Hutter P, Losi L, Martin P
and Benhattar J: Selection of patients with germline MLH1 mutated
Lynch syndrome by determination of MLH1 methylation and BRAF
mutation. Fam Cancer. 9:167–172. 2010. View Article : Google Scholar
|
|
51
|
McGivern A, Wynter CV, Whitehall VL,
Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA,
Leggett BA, et al: Promoter hypermethylation frequency and BRAF
mutations distinguish hereditary non-polyposis colon cancer from
sporadic MSI-H colon cancer. Fam Cancer. 3:101–107. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Capper D, Voigt A, Bozukova G, Ahadova A,
Kickingereder P, von Deimling A, von Knebel Doeberitz M and Kloor
M: BRAF V600E-specific immunohistochemistry for the exclusion of
Lynch syndrome in MSI-H colorectal cancer. Int J Cancer.
133:1624–1630. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Loughrey MB, Waring PM, Tan A, Trivett M,
Kovalenko S, Beshay V, Young MA, McArthur G, Boussioutas A and
Dobrovic A: Incorporation of somatic BRAF mutation testing into an
algorithm for the investigation of hereditary non-polyposis
colorectal cancer. Fam Cancer. 6:301–310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Capper D, Preusser M, Habel A, Sahm F,
Ackermann U, Schindler G, Pusch S, Mechtersheimer G, Zentgraf H and
von Deimling A: Assessment of BRAF V600E mutation status by
immunohistochemistry with a mutation-specific monoclonal antibody.
Acta Neuropathol. 122:11–19. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Colomba E, Hélias-Rodzewicz Z, Von
Deimling A, Marin C, Terrones N, Pechaud D, Surel S, Côté JF,
Peschaud F, Capper D, et al: Detection of BRAF p.V600E mutations in
melanomas: Comparison of four methods argues for sequential use of
immunohistochemistry and pyrosequencing. J Mol Diagn. 15:94–100.
2013. View Article : Google Scholar
|
|
56
|
Ihle MA, Fassunke J, König K, Grünewald I,
Schlaak M, Kreuzberg N, Tietze L, Schildhaus HU, Büttner R and
Merkelbach-Bruse S: Comparison of high resolution melting analysis,
pyrosequencing, next generation sequencing and immunohistochemistry
to conventional Sanger sequencing for the detection of p.V600E and
non-p.V600E BRAF mutations. BMC Cancer. 14:132014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Adackapara CA, Sholl LM, Barletta JA and
Hornick JL: Immunohistochemistry using the BRAF V600E
mutation-specific monoclonal antibody VE1 is not a useful surrogate
for genotyping in colorectal adenocarcinoma. Histopathology.
63:187–193. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Loes IM, Immervoll H, Angelsen JH, Horn A,
Geisler J, Busch C, Lønning PE and Knappskog S: Performance
comparison of three BRAF V600E detection methods in malignant
melanoma and colorectal cancer specimens. Tumour Biol.
36:1003–1013. 2015. View Article : Google Scholar :
|
|
59
|
Xicola RM, Llor X, Pons E, Castells A,
Alenda C, Piñol V, Andreu M, Castellví-Bel S, Payá A, Jover R, et
al; Gastrointestinal Oncology Group of the Spanish
Gastroenterological Association. Performance of different
microsatellite marker panels for detection of mismatch
repair-deficient colorectal tumors. J Natl Cancer Inst. 99:244–252.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bapat B, Lindor NM, Baron J, Siegmund K,
Li L, Zheng Y, Haile R, Gallinger S, Jass JR, Young JP, et al: The
association of tumor microsatellite instability phenotype with
family history of colorectal cancer. Cancer Epidemiol Biomarkers
Prev. 18:967–975. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Graham T, Halford S, Page KM and Tomlinson
IP: Most low-level microsatellite instability in colorectal cancers
can be explained without an elevated slippage rate. J Pathol.
215:204–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Halford S, Sasieni P, Rowan A, Wasan H,
Bodmer W, Talbot I, Hawkins N, Ward R and Tomlinson I: Low-level
microsatellite instability occurs in most colorectal cancers and is
a nonrandomly distributed quantitative trait. Cancer Res. 62:53–57.
2002.PubMed/NCBI
|
|
63
|
Tomlinson I, Halford S, Aaltonen L,
Hawkins N and Ward R: Does MSI-low exist? J Pathol. 197:6–13. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cicek MS, Lindor NM, Gallinger S, Bapat B,
Hopper JL, Jenkins MA, Young J, Buchanan D, Walsh MD, Le Marchand
L, et al: Quality assessment and correlation of microsatellite
instability and immunohistochemical markers among population- and
clinic-based colorectal tumors results from the Colon Cancer Family
Registry. J Mol Diagn. 13:271–281. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pritchard CC, Smith C, Salipante SJ, Lee
MK, Thornton AM, Nord AS, Gulden C, Kupfer SS, Swisher EM, Bennett
RL, et al: ColoSeq provides comprehensive lynch and polyposis
syndrome mutational analysis using massively parallel sequencing. J
Mol Diagn. 14:357–366. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ribic CM, Sargent DJ, Moore MJ, Thibodeau
SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R,
Shepherd LE, et al: Tumor microsatellite-instability status as a
predictor of benefit from fluorouracil-based adjuvant chemotherapy
for colon cancer. N Engl J Med. 349:247–257. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Guastadisegni C, Colafranceschi M, Ottini
L and Dogliotti E: Microsatellite instability as a marker of
prognosis and response to therapy: A meta-analysis of colorectal
cancer survival data. Eur J Cancer. 46:2788–2798. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sargent DJ, Marsoni S, Monges G, Thibodeau
SN, Labianca R, Hamilton SR, French AJ, Kabat B, Foster NR, Torri
V, et al: Defective mismatch repair as a predictive marker for lack
of efficacy of fluorouracil-based adjuvant therapy in colon cancer.
J Clin Oncol. 28:3219–3226. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hutchins G, Southward K, Handley K, Magill
L, Beaumont C, Stahlschmidt J, Richman S, Chambers P, Seymour M,
Kerr D, et al: Value of mismatch repair, KRAS, and BRAF mutations
in predicting recurrence and benefits from chemotherapy in
colorectal cancer. J Clin Oncol. 29:1261–1270. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Malesci A, Laghi L, Bianchi P, Delconte G,
Randolph A, Torri V, Carnaghi C, Doci R, Rosati R, Montorsi M, et
al: Reduced likelihood of metastases in patients with
microsatellite-unstable colorectal cancer. Clin Cancer Res.
13:3831–3839. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Braun MS, Richman SD, Quirke P, Daly C,
Adlard JW, Elliott F, Barrett JH, Selby P, Meade AM, Stephens RJ,
et al: Predictive biomarkers of chemotherapy efficacy in colorectal
cancer: Results from the UK MRC FOCUS trial. J Clin Oncol.
26:2690–2698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Koopman M, Kortman GA, Mekenkamp L,
Ligtenberg MJ, Hoogerbrugge N, Antonini NF, Punt CJ and van Krieken
JH: Deficient mismatch repair system in patients with sporadic
advanced colorectal cancer. Br J Cancer. 100:266–273. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Müller CI, Schulmann K, Reinacher-Schick
A, Andre N, Arnold D, Tannapfel A, Arkenau H, Hahn SA, Schmoll SH,
Porschen R, et al; AIO Colorectal Study Group. Predictive and
prognostic value of microsatellite instability in patients with
advanced colorectal cancer treated with a fluoropyrimidine and
oxaliplatin containing first-line chemotherapy. A report of the AIO
Colorectal Study Group. Int J Colorectal Dis. 23:1033–1039. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tikidzhieva A, Benner A, Michel S,
Formentini A, Link KH, Dippold W, von Knebel Doeberitz M, Kornmann
M and Kloor M: Microsatellite instability and Beta2-microglobulin
mutations as prognostic markers in colon cancer: Results of the
FOGT-4 trial. Br J Cancer. 106:1239–1245. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Venderbosch S, Nagtegaal ID, Maughan TS,
Smith CG, Cheadle JP, Fisher D, Kaplan R, Quirke P, Seymour MT,
Richman SD, et al: Mismatch repair status and BRAF mutation status
in metastatic colorectal cancer patients: A pooled analysis of the
CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res.
20:5322–5330. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Elsaleh H, Joseph D, Grieu F, Zeps N, Spry
N and Iacopetta B: Association of tumour site and sex with survival
benefit from adjuvant chemotherapy in colorectal cancer. Lancet.
355:1745–1750. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Elsaleh H, Shannon B and Iacopetta B:
Microsatellite instability as a molecular marker for very good
survival in colorectal cancer patients receiving adjuvant
chemotherapy. Gastroenterology. 120:1309–1310. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Des Guetz G, Schischmanoff O, Nicolas P,
Perret GY, Morere JF and Uzzan B: Does microsatellite instability
predict the efficacy of adjuvant chemotherapy in colorectal cancer?
A systematic review with meta-analysis. Eur J Cancer. 45:1890–1896.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hong SP, Min BS, Kim TI, Cheon JH, Kim NK,
Kim H and Kim WH: The differential impact of microsatellite
instability as a marker of prognosis and tumour response between
colon cancer and rectal cancer. Eur J Cancer. 48:1235–1243. 2012.
View Article : Google Scholar
|
|
80
|
André T, Boni C, Navarro M, Tabernero J,
Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F,
et al: Improved overall survival with oxaliplatin, fluorouracil,
and leucovorin as adjuvant treatment in stage II or III colon
cancer in the MOSAIC trial. J Clin Oncol. 27:3109–3116. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zaanan A, Cuilliere-Dartigues P, Guilloux
A, Parc Y, Louvet C, de Gramont A, Tiret E, Dumont S, Gayet B,
Validire P, et al: Impact of p53 expression and microsatellite
instability on stage III colon cancer disease-free survival in
patients treated by 5-fluorouracil and leucovorin with or without
oxaliplatin. Ann Oncol. 21:772–780. 2010. View Article : Google Scholar
|
|
82
|
Kim ST, Lee J, Park SH, Park JO, Lim HY,
Kang WK, Kim JY, Kim YH, Chang DK, Rhee PL, et al: Clinical impact
of microsatellite instability in colon cancer following adjuvant
FOLFOX therapy. Cancer Chemother Pharmacol. 66:659–667. 2010.
View Article : Google Scholar
|
|
83
|
Kim ST, Lee J, Park SH, Park JO, Lim HY,
Kang WK, Kim JY, Kim YH, Chang DK, Rhee PL, et al: The effect of
DNA mismatch repair (MMR) status on oxaliplatin-based first-line
chemotherapy as in recurrent or metastatic colon cancer. Med Oncol.
27:1277–1285. 2010. View Article : Google Scholar
|
|
84
|
Bertagnolli MM, Niedzwiecki D, Compton CC,
Hahn HP, Hall M, Damas B, Jewell SD, Mayer RJ, Goldberg RM, Saltz
LB, et al: Microsatellite instability predicts improved response to
adjuvant therapy with irinotecan, fluorouracil, and leucovorin in
stage III colon cancer: Cancer and Leukemia Group B Protocol 89803.
J Clin Oncol. 27:1814–1821. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Roth AD, Tejpar S, Delorenzi M, Yan P,
Fiocca R, Klingbiel D, Dietrich D, Biesmans B, Bodoky G, Barone C,
et al: Prognostic role of KRAS and BRAF in stage II and III
resected colon cancer: Results of the translational study on the
PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 28:466–474.
2010. View Article : Google Scholar
|
|
86
|
Kim JE, Hong YS, Ryu MH, Lee JL, Chang HM,
Lim SB, Kim JH, Jang SJ, Kim MJ, Yu CS, et al: Association between
deficient mismatch repair system and efficacy to
irinotecan-containing chemotherapy in metastatic colon cancer.
Cancer Sci. 102:1706–1711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Matthews KS, Estes JM, Conner MG, Manne U,
Whitworth JM, Huh WK, Alvarez RD, Straughn JM Jr, Barnes MN and
Rocconi RP: Lynch syndrome in women less than 50 years of age with
endometrial cancer. Obstet Gynecol. 111:1161–1166. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kato M, Takano M, Miyamoto M, Sasaki N,
Goto T, Tsuda H and Furuya K: DNA mismatch repair-related protein
loss as a prognostic factor in endometrial cancers. J Gynecol
Oncol. 26:40–45. 2015. View Article : Google Scholar :
|
|
89
|
Terada KY, Black M, Terada LH, Davis J and
Shimizu DM: Survival of endometrial cancer patients with lymphatic
invasion and deficient mismatch repair expression. Gynecol Oncol.
129:188–192. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Resnick KE, Frankel WL, Morrison CD,
Fowler JM, Copeland LJ, Stephens J, Kim KH and Cohn DE: Mismatch
repair status and outcomes after adjuvant therapy in patients with
surgically staged endometrial cancer. Gynecol Oncol. 117:234–238.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ruiz I, Martín-Arruti M, Lopez-Lopez E and
Garcia-Orad A: Lack of association between deficient mismatch
repair expression and outcome in endometrial carcinomas of the
endometrioid type. Gynecol Oncol. 134:20–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Nelson GS, Pink A, Lee S, Han G, Morris D,
Ogilvie T, Duggan MA and Köbel M: MMR deficiency is common in
high-grade endometrioid carcinomas and is associated with an
unfavorable outcome. Gynecol Oncol. 131:309–314. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Cohn DE, Frankel WL, Resnick KE, Zanagnolo
VL, Copeland LJ, Hampel H, Kelbick N, Morrison CD and Fowler JM:
Improved survival with an intact DNA mismatch repair system in
endometrial cancer. Obstet Gynecol. 108:1208–1215. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Diaz-Padilla I, Romero N, Amir E,
Matias-Guiu X, Vilar E, Muggia F and Garcia-Donas J: Mismatch
repair status and clinical outcome in endometrial cancer: A
systematic review and meta-analysis. Crit Rev Oncol Hematol.
88:154–167. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
CRUK. Ovarian cancer incidence statistics.
http://www.cancer-researchuk.org/cancer-info/cancerstats/types/ovary/incidence/.
Accessed April 15, 2015
|
|
96
|
Surveillance, Epidemiology, and End
Results Program - National Cancer Institute. SEER Stat Fact Sheets:
Ovary Cancer. http://seer.cancer.gov/statfacts/html/ovary.html.
Accessed April 15, 2015
|
|
97
|
Bonadona V, Bonaïti B, Olschwang S,
Grandjouan S, Huiart L, Longy M, Guimbaud R, Buecher B, Bignon YJ,
Caron O, et al; French Cancer Genetics Network. Cancer risks
associated with germline mutations in MLH1, MSH2, and MSH6 genes in
Lynch syndrome. JAMA. 305:2304–2310. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Engel C, Loeffler M, Steinke V, Rahner N,
Holinski-Feder E, Dietmaier W, Schackert HK, Goergens H, von Knebel
Doeberitz M, Goecke TO, et al: Risks of less common cancers in
proven mutation carriers with Lynch syndrome. J Clin Oncol.
30:4409–4415. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Watson P, Vasen HF, Mecklin JP, Bernstein
I, Aarnio M, Järvinen HJ, Myrhøj T, Sunde L, Wijnen JT and Lynch
HT: The risk of extra-colonic, extra-endometrial cancer in the
Lynch syndrome. Int J Cancer. 123:444–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Xiao X, Melton DW and Gourley C: Mismatch
repair deficiency in ovarian cancer - molecular characteristics and
clinical implications. Gynecol Oncol. 132:506–512. 2014. View Article : Google Scholar
|
|
101
|
Catasús L, Bussaglia E, Rodrguez I,
Gallardo A, Pons C, Irving JA and Prat J: Molecular genetic
alterations in endometrioid carcinomas of the ovary: Similar
frequency of beta-catenin abnormalities but lower rate of
microsatellite instability and PTEN alterations than in uterine
endometrioid carcinomas. Hum Pathol. 35:1360–1368. 2004. View Article : Google Scholar
|
|
102
|
Gras E, Catasus L, Argüelles R,
Moreno-Bueno G, Palacios J, Gamallo C, Matias-Guiu X and Prat J:
Microsatellite instability, MLH-1 promoter hypermethylation, and
frameshift mutations at coding mononucleotide repeat
microsatellites in ovarian tumors. Cancer. 92:2829–2836. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jensen KC, Mariappan MR, Putcha GV, Husain
A, Chun N, Ford JM, Schrijver I and Longacre TA: Microsatellite
instability and mismatch repair protein defects in ovarian
epithelial neoplasms in patients 50 years of age and younger. Am J
Surg Pathol. 32:1029–1037. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Murphy MA and Wentzensen N: Frequency of
mismatch repair deficiency in ovarian cancer: A systematic review
This article is a US Government work and, as such, is in the public
domain of the United States of America. Int J Cancer.
129:1914–1922. 2011. View Article : Google Scholar :
|
|
105
|
Pal T, Permuth-Wey J, Kumar A and Sellers
TA: Systematic review and meta-analysis of ovarian cancers:
Estimation of microsatellite-high frequency and characterization of
mismatch repair deficient tumor histology. Clin Cancer Res.
14:6847–6854. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Scartozzi M, De Nictolis M, Galizia E,
Carassai P, Bianchi F, Berardi R, Gesuita R, Piga A, Cellerino R
and Porfiri E: Loss of hMLH1 expression correlates with improved
survival in stage III–IV ovarian cancer patients. Eur J Cancer.
39:1144–1149. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhai QJ, Rosen DG, Lu K and Liu J: Loss of
DNA mismatch repair protein hMSH6 in ovarian cancer is
histotype-specific. Int J Clin Exp Pathol. 1:502–509.
2008.PubMed/NCBI
|
|
108
|
Begum FD, Høgdall CK, Kjaer SK, Blaakaer
J, Christensen L, Ryan A, Jacobs IJ and Høgdall EV: Distribution of
microsatellite instability in Danish ovarian tumor patients and the
prognostic value in ovarian cancer patients. Oncol Res. 17:43–49.
2008.PubMed/NCBI
|
|
109
|
Ercoli A, Ferrandina G, Raspaglio G,
Marone M, Maggiano N, Del Mastro P, Benedetti Panici P, Mancuso S
and Scambia G: hMSH2 and GTBP expression in advanced stage
epithelial ovarian cancer. Br J Cancer. 80:1665–1671. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Marcelis CL, van der Putten HW, Tops C,
Lutgens LC and Moog U: Chemotherapy resistant ovarian cancer in
carriers of an hMSH2 mutation? Fam Cancer. 1:107–109. 2001.
View Article : Google Scholar
|
|
111
|
CRUK. Skin cancer incidence statistics.
http://www.cancer-researchuk.org/cancer-info/cancerstats/types/skin/incidence/.
Accessed April 15, 2015
|
|
112
|
Birindelli S, Tragni G, Bartoli C, Ranzani
GN, Rilke F, Pierotti MA and Pilotti S: Detection of microsatellite
alterations in the spectrum of melanocytic nevi in patients with or
without individual or family history of melanoma. Int J Cancer.
86:255–261. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Peris K, Keller G, Chimenti S, Amantea A,
Kerl H and Höfler H: Microsatellite instability and loss of
heterozygosity in melanoma. J Invest Dermatol. 105:625–628. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Quinn AG, Healy E, Rehman I, Sikkink S and
Rees JL: Microsatellite instability in human non-melanoma and
melanoma skin cancer. J Invest Dermatol. 104:309–312. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Richetta A, Silipo V, Calvieri S, Frati L,
Ottini L, Cama A and Mariani-Costantini R: Microsatellite
instability in primary and metastatic melanoma. J Invest Dermatol.
109:119–120. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Talwalkar VR, Scheiner M, Hedges LK,
Butler MG and Schwartz HS: Microsatellite instability in malignant
melanoma. Cancer Genet Cytogenet. 104:111–114. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Alvino E, Marra G, Pagani E, Falcinelli S,
Pepponi R, Perrera C, Haider R, Castiglia D, Ferranti G, Bonmassar
E, et al: High-frequency microsatellite instability is associated
with defective DNA mismatch repair in human melanoma. J Invest
Dermatol. 118:79–86. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hussein MR: Genetic pathways to melanoma
tumorigenesis. J Clin Pathol. 57:797–801. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Hussein MR, Sun M, Tuthill RJ, Roggero E,
Monti JA, Sudilovsky EC, Wood GS and Sudilovsky O: Comprehensive
analysis of 112 melanocytic skin lesions demonstrates
microsatellite instability in melanomas and dysplastic nevi, but
not in benign nevi. J Cutan Pathol. 28:343–350. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Palmieri G, Ascierto PA, Cossu A,
Colombino M, Casula M, Botti G, Lissia A, Tanda F and Castello G:
Assessment of genetic instability in melanocytic skin lesions
through microsatellite analysis of benign naevi, dysplastic naevi,
and primary melanomas and their metastases. Melanoma Res.
13:167–170. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Palmieri G, Cossu A, Ascierto PA, Botti G,
Strazzullo M, Lissia A, Colombino M, Casula M, Floris C, Tanda F,
et al; Melanoma Cooperative Group. Definition of the role of
chromosome 9p21 in sporadic melanoma through genetic analysis of
primary tumours and their metastases. Br J Cancer. 83:1707–1714.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Richetta A, Ottini L, Falchetti M,
Innocenzi D, Bottoni U, Faiola R, Mariani-Costantini R and Calvieri
S: Instability at sequence repeats in melanocytic tumours. Melanoma
Res. 11:283–289. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tomlinson IP, Beck NE and Bodmer WF:
Allele loss on chromosome 11q and microsatellite instability in
malignant melanoma. Eur J Cancer. 32A:1797–1802. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Castiglia D, Bernardini S, Alvino E,
Pagani E, De Luca N, Falcinelli S, Pacchiarotti A, Bonmassar E,
Zambruno G and D'Atri S: Concomitant activation of Wnt pathway and
loss of mismatch repair function in human melanoma. Genes
Chromosomes Cancer. 47:614–624. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Korabiowska M, Cordon-Cardo C, Jaenckel F,
Stachura J, Fischer G and Brinck U: Application of in situ
hybridization probes for MLH-1 and MSH-2 in tissue microarrays of
paraffin-embedded malignant melanomas: Correlation with
immunohistochemistry and tumor stage. Hum Pathol. 35:1543–1548.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Alvino E, Passarelli F, Cannavò E, Fortes
C, Mastroeni S, Caporali S, Jiricny J, Cappellini GC, Scoppola A,
Marchetti P, et al: High expression of the mismatch repair protein
MSH6 is associated with poor patient survival in melanoma. Am J
Clin Pathol. 142:121–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
CRUK. Stomach cancer statistics.
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/stomach/.
Accessed April 15, 2015
|
|
128
|
Beghelli S, de Manzoni G, Barbi S,
Tomezzoli A, Roviello F, Di Gregorio C, Vindigni C, Bortesi L,
Parisi A, Saragoni L, et al: Microsatellite instability in gastric
cancer is associated with better prognosis in only stage II
cancers. Surgery. 139:347–356. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Fang WL, Chang SC, Lan YT, Huang KH, Chen
JH, Lo SS, Hsieh MC, Li AF, Wu CW and Chiou SH: Microsatellite
instability is associated with a better prognosis for gastric
cancer patients after curative surgery. World J Surg. 36:2131–2138.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lee HS, Choi SI, Lee HK, Kim HS, Yang HK,
Kang GH, Kim YI, Lee BL and Kim WH: Distinct clinical features and
outcomes of gastric cancers with microsatellite instability. Mod
Pathol. 15:632–640. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Schneider BG, Bravo JC, Roa JC, Roa I, Kim
MC, Lee KM, Plaisance KT Jr, McBride CM and Mera R: Microsatellite
instability, prognosis and metastasis in gastric cancers from a
low-risk population. Int J Cancer. 89:444–452. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Falchetti M, Saieva C, Lupi R, Masala G,
Rizzolo P, Zanna I, Ceccarelli K, Sera F, Mariani-Costantini R,
Nesi G, et al: Gastric cancer with high-level microsatellite
instability: Target gene mutations, clinicopathologic features, and
long-term survival. Hum Pathol. 39:925–932. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Perez RO, Jacob CE, D'Ottaviano FL,
Alvarenga C, Ribeiro AS, Ribeiro U Jr, Bresciani CJ, Zilberstein B,
Krieger JE, Habr-Gama A, et al: Microsatellite instability in
solitary and sporadic gastric cancer. Rev Hosp Clin Fac Med Sao
Paulo. 59:279–285. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
An C, Choi IS, Yao JC, Worah S, Xie K,
Mansfield PF, Ajani JA, Rashid A, Hamilton SR and Wu TT: Prognostic
significance of CpG island methylator phenotype and microsatellite
instability in gastric carcinoma. Clin Cancer Res. 11:656–663.
2005.PubMed/NCBI
|
|
135
|
An JY, Kim H, Cheong JH, Hyung WJ, Kim H
and Noh SH: Microsatellite instability in sporadic gastric cancer:
Its prognostic role and guidance for 5-FU based chemotherapy after
R0 resection. Int J Cancer. 131:505–511. 2012. View Article : Google Scholar
|
|
136
|
Oki E, Kakeji Y, Zhao Y, Yoshida R, Ando
K, Masuda T, Ohgaki K, Morita M and Maehara Y: Chemosensitivity and
survival in gastric cancer patients with microsatellite
instability. Ann Surg Oncol. 16:2510–2515. 2009. View Article : Google Scholar : PubMed/NCBI
|