|
1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Draptchinskaia N, Gustavsson P, Andersson
B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J,
Matsson H, et al: The gene encoding ribosomal protein S19 is
mutated in Diamond-Blackfan anaemia. Nat Genet. 21:169–175. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vlachos A, Rosenberg PS, Atsidaftos E,
Alter BP and Lipton JM: Incidence of neoplasia in Diamond Blackfan
anemia: A report from the Diamond Blackfan Anemia Registry. Blood.
119:3815–3819. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
De Keersmaecker K, Atak ZK, Li N, Vicente
C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E,
Porcu M, et al: Exome sequencing identifies mutation in CNOT3 and
ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic
leukemia. Nat Genet. 45:186–190. 2013. View Article : Google Scholar
|
|
5
|
Lawrence MS, Stojanov P, Mermel CH,
Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander
ES and Getz G: Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nieminen TT, O'Donohue MF, Wu Y, Lohi H,
Scherer SW, Paterson AD, Ellonen P, Abdel-Rahman WM, Valo S,
Mecklin JP, et al: Germline mutation of RPS20, encoding a ribosomal
protein, causes predisposition to hereditary nonpolyposis
colorectal carcinoma without DNA mismatch repair deficiency.
Gastroenterology. 147:595–598.e5. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Novetsky AP, Zighelboim I, Thompson DM Jr,
Powell MA, Mutch DG and Goodfellow PJ: Frequent mutations in the
RPL22 gene and its clinical and functional implications. Gynecol
Oncol. 128:470–474. 2013. View Article : Google Scholar
|
|
8
|
Sharma S and Lafontaine DL: ‘View From A
Bridge’: A new perspective on eukaryotic rRNA base modification.
Trends Biochem Sci. 40:560–575. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Boisvert FM, van Koningsbruggen S,
Navascués J and Lamond AI: The multifunctional nucleolus. Nat Rev
Mol Cell Biol. 8:574–585. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ferreira-Cerca S, Pöll G, Gleizes PE,
Tschochner H and Milkereit P: Roles of eukaryotic ribosomal
proteins in maturation and transport of pre-18S rRNA and ribosome
function. Mol Cell. 20:263–275. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ferreira-Cerca S, Pöll G, Kühn H, Neueder
A, Jakob S, Tschochner H and Milkereit P: Analysis of the in vivo
assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell.
28:446–457. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Robledo S, Idol RA, Crimmins DL, Ladenson
JH, Mason PJ and Bessler M: The role of human ribosomal proteins in
the maturation of rRNA and ribosome production. RNA. 14:1918–1929.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kenmochi N, Kawaguchi T, Rozen S, Davis E,
Goodman N, Hudson TJ, Tanaka T and Page DC: A map of 75 human
ribosomal protein genes. Genome Res. 8:509–523. 1998.PubMed/NCBI
|
|
14
|
Ban N, Beckmann R, Cate JH, Dinman JD,
Dragon F, Ellis SR, Lafontaine DL, Lindahl L, Liljas A, Lipton JM,
et al: A new system for naming ribosomal proteins. Curr Opin Struct
Biol. 24:165–169. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Slavov N, Semrau S, Airoldi E, Budnik B
and van Oudenaarden A: Differential stoichiometry among core
ribosomal proteins. Cell Rep. 13:865–873. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gilbert WV: Functional specialization of
ribosomes? Trends Biochem Sci. 36:127–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
O'Leary MN, Schreiber KH, Zhang Y, Duc AC,
Rao S, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, et
al: The ribosomal protein Rpl22 controls ribosome composition by
directly repressing expression of its own paralog, Rpl22l1. PLoS
Genet. 9. pp. e10037082013, View Article : Google Scholar
|
|
18
|
Xirodimas DP, Sundqvist A, Nakamura A,
Shen L, Botting C and Hay RT: Ribosomal proteins are targets for
the NEDD8 pathway. EMBO Rep. 9:280–286. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ishii K, Washio T, Uechi T, Yoshihama M,
Kenmochi N and Tomita M: Characteristics and clustering of human
ribosomal protein genes. BMC Genomics. 7:372006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Branca RM, Orre LM, Johansson HJ, Granholm
V, Huss M, Pérez-Bercoff Å, Forshed J, Käll L and Lehtiö J: HiRIEF
LC-MS enables deep proteome coverage and unbiased proteogenomics.
Nat Meth. 11:59–62. 2014. View Article : Google Scholar
|
|
21
|
Lafontaine DL: Noncoding RNAs in
eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol.
22:11–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
van Heesch S, van Iterson M, Jacobi J,
Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E and
Simonis M: Extensive localization of long noncoding RNAs to the
cytosol and mono- and polyribosomal complexes. Genome Biol.
15:R62014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lafontaine DL: A ‘garbage can’ for
ribosomes: How eukaryotes degrade their ribosomes. Trends Biochem
Sci. 35:267–277. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Perry RP: Balanced production of ribosomal
proteins. Gene. 401:1–3. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lam YW, Lamond AI, Mann M and Andersen JS:
Analysis of nucleolar protein dynamics reveals the nuclear
degradation of ribosomal proteins. Curr Biol. 17:749–760. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Warner JR: In the absence of ribosomal RNA
synthesis, the ribosomal proteins of HeLa cells are synthesized
normally and degraded rapidly. J Mol Biol. 115:315–333. 1977.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lindström MS and Nistér M: Silencing of
ribosomal protein S9 elicits a multitude of cellular responses
inhibiting the growth of cancer cells subsequent to p53 activation.
PLoS One. 5:e95782010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Badhai J, Fröjmark AS, Razzaghian HR,
Davey E, Schuster J and Dahl N: Posttranscriptional down-regulation
of small ribosomal subunit proteins correlates with reduction of
18S rRNA in RPS19 deficiency. FEBS Lett. 583:2049–2053. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Payne EM, Virgilio M, Narla A, Sun H,
Levine M, Paw BH, Berliner N, Look AT, Ebert BL and Khanna-Gupta A:
L-Leucine improves the anemia and developmental defects associated
with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR
pathway. Blood. 120:2214–2224. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lambertsson A: The minute genes in
Drosophila and their molecular functions. Adv Genet. 38:69–134.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Stewart MJ and Denell R: Mutations in the
Drosophila gene encoding ribosomal protein S6 cause tissue
overgrowth. Mol Cell Biol. 13:2524–2535. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Watson KL, Konrad KD, Woods DF and Bryant
PJ: Drosophila homolog of the human S6 ribosomal protein is
required for tumor suppression in the hematopoietic system. Proc
Natl Acad Sci USA. 89:11302–11306. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lin JI, Mitchell NC, Kalcina M,
Tchoubrieva E, Stewart MJ, Marygold SJ, Walker CD, Thomas G,
Leevers SJ, Pearson RB, et al: Drosophila ribosomal protein mutants
control tissue growth non-autonomously via effects on the
prothoracic gland and ecdysone. PLoS Genet. 7:e10024082011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Amsterdam A, Sadler KC, Lai K, Farrington
S, Bronson RT, Lees JA and Hopkins N: Many ribosomal protein genes
are cancer genes in zebrafish. PLoS Biol. 2:E1392004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lai K, Amsterdam A, Farrington S, Bronson
RT, Hopkins N and Lees JA: Many ribosomal protein mutations are
associated with growth impairment and tumor predisposition in
zebrafish. Dev Dyn. 238:76–85. 2009. View Article : Google Scholar :
|
|
36
|
MacInnes AW, Amsterdam A, Whittaker CA,
Hopkins N and Lees JA: Loss of p53 synthesis in zebrafish tumors
with ribosomal protein gene mutations. Proc Natl Acad Sci USA.
105:10408–10413. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stadanlick JE, Zhang Z, Lee SY, Hemann M,
Biery M, Carleton MO, Zambetti GP, Anderson SJ, Oravecz T and Wiest
DL: Developmental arrest of T cells in Rpl22-deficient mice is
dependent upon multiple p53 effectors. J Immunol. 187:664–675.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Morgado-Palacin L, Varetti G, Llanos S,
Gómez-López G, Martinez D and Serrano M: Partial Loss of Rpl11 in
Adult mice recapitulates diamond-blackfan anemia and promotes
lymphomagenesis. Cell Rep. 13:712–722. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kazerounian S, Ciarlini PD, Yuan D,
Ghazvinian R, Alberich-Jorda M, Joshi M, Zhang H, Beggs AH and
Gazda HT: Development of soft tissue sarcomas in ribosomal proteins
L5 and S24 heterozygous mice. J Cancer. 7:32–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
McCann KL and Baserga SJ: Genetics.
Mysterious ribosomopathies. Science. 341:849–850. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Narla A and Ebert BL: Ribosomopathies:
Human disorders of ribosome dysfunction. Blood. 115:3196–3205.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Freed EF, Bleichert F, Dutca LM and
Baserga SJ: When ribosomes go bad: Diseases of ribosome biogenesis.
Mol Biosyst. 6:481–493. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Choesmel V, Fribourg S, Aguissa-Touré AH,
Pinaud N, Legrand P, Gazda HT and Gleizes PE: Mutation of ribosomal
protein RPS24 in Diamond-Blackfan anemia results in a ribosome
biogenesis disorder. Hum Mol Genet. 17:1253–1263. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cmejla R, Cmejlova J, Handrkova H, Petrak
J, Petrtylova K, Mihal V, Stary J, Cerna Z, Jabali Y and
Pospisilova D: Identification of mutations in the ribosomal protein
L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients
with Diamond-Blackfan anemia. Hum Mutat. 30:321–327. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Farrar JE, Nater M, Caywood E, McDevitt
MA, Kowalski J, Takemoto CM, Talbot CC Jr, Meltzer P, Esposito D,
Beggs AH, et al: Abnormalities of the large ribosomal subunit
protein, Rpl35a, in Diamond-Blackfan anemia. Blood. 112:1582–1592.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Flygare J and Karlsson S: Diamond-Blackfan
anemia: Erythropoiesis lost in translation. Blood. 109:3152–3154.
2007. View Article : Google Scholar
|
|
47
|
Ebert BL, Pretz J, Bosco J, Chang CY,
Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, et al:
Identification of RPS14 as a 5q- syndrome gene by RNA interference
screen. Nature. 451:335–339. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Alter BP, Giri N, Savage SA, Peters JA,
Loud JT, Leathwood L, Carr AG, Greene MH and Rosenberg PS:
Malignancies and survival patterns in the National Cancer Institute
inherited bone marrow failure syndromes cohort study. Br J
Haematol. 150:179–188. 2010.PubMed/NCBI
|
|
49
|
Majeed F, Jadko S, Freedman MH and Dror Y:
Mutation analysis of SBDS in pediatric acute myeloblastic leukemia.
Pediatr Blood Cancer. 45:920–924. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Maserati E, Pressato B, Valli R, Minelli
A, Sainati L, Patitucci F, Marletta C, Mastronuzzi A, Poli F, Lo
Curto F, et al: The route to development of myelodysplastic
syndrome/acute myeloid leukaemia in Shwachman-Diamond syndrome: The
role of ageing, karyotype instability, and acquired chromosome
anomalies. Br J Haematol. 145:190–197. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Heiss NS, Knight SW, Vulliamy TJ, Klauck
SM, Wiemann S, Mason PJ, Poustka A and Dokal I: X-linked
dyskeratosis congenita is caused by mutations in a highly conserved
gene with putative nucleolar functions. Nat Genet. 19:32–38. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ge J, Rudnick DA, He J, Crimmins DL,
Ladenson JH, Bessler M and Mason PJ: Dyskerin ablation in mouse
liver inhibits rRNA processing and cell division. Mol Cell Biol.
30:413–422. 2010. View Article : Google Scholar :
|
|
53
|
Jack K, Bellodi C, Landry DM, Niederer RO,
Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM,
Thompson SR, et al: rRNA pseudouridylation defects affect ribosomal
ligand binding and translational fidelity from yeast to human
cells. Mol Cell. 44:660–666. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Alter BP, Giri N, Savage SA and Rosenberg
PS: Cancer in dyskeratosis congenita. Blood. 113:6549–6557. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Donadieu J, Leblanc T, Bader Meunier B,
Barkaoui M, Fenneteau O, Bertrand Y, Maier-Redelsperger M, Micheau
M, Stephan JL, Phillipe N, et al; French Severe Chronic Neutropenia
Study Group; Experience of the French Severe Chronic Neutropenia
Study Group. Analysis of risk factors for myelodysplasias,
leukemias and death from infection among patients with congenital
neutropenia. Haematologica. 90:45–53. 2005.PubMed/NCBI
|
|
56
|
Danilova N and Gazda HT: Ribosomopathies:
How a common root can cause a tree of pathologies. Dis Model Mech.
8:1013–1026. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ljungström V, Cortese D, Young E, Pandzic
T, Mansouri L, Plevova K, Ntoufa S, Baliakas P, Clifford R, Sutton
LA, et al: Whole-exome sequencing in relapsing chronic lymphocytic
leukemia: Clinical impact of recurrent RPS15 mutations. Blood. Dec
16–2015.(Epub ahead of print).
|
|
58
|
Landau DA, Tausch E, Taylor-Weiner AN,
Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M,
Böttcher S, et al: Mutations driving CLL and their evolution in
progression and relapse. Nature. 526:525–530. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tzoneva G, Perez-Garcia A, Carpenter Z,
Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe
JM, Tallman MS, et al: Activating mutations in the NT5C2
nucleotidase gene drive chemotherapy resistance in relapsed ALL.
Nat Med. 19:368–371. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rao S, Lee SY, Gutierrez A, Perrigoue J,
Thapa RJ, Tu Z, Jeffers JR, Rhodes M, Anderson S, Oravecz T, et al:
Inactivation of ribosomal protein L22 promotes transformation by
induction of the stemness factor, Lin28B. Blood. 120:3764–3773.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ferreira AM, Tuominen I, van Dijk-Bos K,
Sanjabi B, van der Sluis T, van der Zee AG, Hollema H, Zazula M,
Sijmons RH, Aaltonen LA, et al: High frequency of RPL22 mutations
in microsatellite-unstable colorectal and endometrial tumours. Hum
Mutat. 35:1442–1445. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nagarajan N, Bertrand D, Hillmer AM, Zang
ZJ, Yao F, Jacques PÉ, Teo AS, Cutcutache I, Zhang Z, Lee WH, et
al: Whole-genome reconstruction and mutational signatures in
gastric cancer. Genome Biol. 13:R1152012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang M, Sun H, Wang H, Zhang S, Yu X and
Zhang L: Down-regulation of ribosomal protein L22 in non-small cell
lung cancer. Med Oncol. 30:6462013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee W, Teckie S, Wiesner T, Ran L, Prieto
Granada CN, Lin M, Zhu S, Cao Z, Liang Y, Sboner A, et al: PRC2 is
recurrently inactivated through EED or SUZ12 loss in malignant
peripheral nerve sheath tumors. Nat Genet. 46:1227–1232. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dave B, Granados-Principal S, Zhu R, Benz
S, Rabizadeh S, Soon-Shiong P, Yu KD, Shao Z, Li X, Gilcrease M, et
al: Targeting RPL39 and MLF2 reduces tumor initiation and
metastasis in breast cancer by inhibiting nitric oxide synthase
signaling. Proc Natl Acad Sci USA. 111:8838–8843. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nakagawa H, Wardell CP, Furuta M,
Taniguchi H and Fujimoto A: Cancer whole-genome sequencing: Present
and future. Oncogene. 34:5943–5950. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Boria I, Quarello P, Avondo F, Garelli E,
Aspesi A, Carando A, Campagnoli MF, Dianzani I and Ramenghi U: A
new database for ribosomal protein genes which are mutated in
Diamond-Blackfan Anemia. Hum Mutat. 29:E263–E270. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang W, Nag S, Zhang X, Wang MH, Wang H,
Zhou J and Zhang R: Ribosomal proteins and human diseases:
pathogenesis, molecular mechanisms, and therapeutic implications.
Med Res Rev. 35:225–285. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kowalczyk P, Woszczyński M and Ostrowski
J: Increased expression of ribosomal protein S2 in liver tumors,
post-hepactomized livers, and proliferating hepatocytes in vitro.
Acta Biochim Pol. 49:615–624. 2002.
|
|
70
|
Wang H, Zhao LN, Li KZ, Ling R, Li XJ and
Wang L: Overexpression of ribosomal protein L15 is associated with
cell proliferation in gastric cancer. BMC Cancer. 6:912006.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vaarala MH, Porvari KS, Kyllönen AP,
Mustonen MV, Lukkarinen O and Vihko PT: Several genes encoding
ribosomal proteins are over-expressed in prostate-cancer cell
lines: Confirmation of L7a and L37 over-expression in
prostate-cancer tissue samples. Int J Cancer. 78:27–32. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bee A, Ke Y, Forootan S, Lin K, Beesley C,
Forrest SE and Foster CS: Ribosomal protein l19 is a prognostic
marker for human prostate cancer. Clin Cancer Res. 12:2061–2065.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sim EU, Ang CH, Ng CC, Lee CW and
Narayanan K: Differential expression of a subset of ribosomal
protein genes in cell lines derived from human nasopharyngeal
epithelium. J Hum Genet. 55:118–120. 2010. View Article : Google Scholar
|
|
74
|
Yong WH, Shabihkhani M, Telesca D, Yang S,
Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, et al:
Ribosomal proteins RPS11 and RPS20, two stress-response markers of
glioblastoma stem cells, are novel predictors of poor prognosis in
glioblastoma patients. PLoS One. 10:e01413342015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua
R, Ren LL, Li CT, Sun YW, Chen HY, et al: Downregulation of RPL15
may predict poor survival and associate with tumor progression in
pancreatic ductal adenocarcinoma. Oncotarget. 6:37028–37042.
2015.PubMed/NCBI
|
|
76
|
Kobayashi T, Sasaki Y, Oshima Y, Yamamoto
H, Mita H, Suzuki H, Toyota M, Tokino T, Itoh F, Imai K, et al:
Activation of the ribosomal protein L13 gene in human
gastrointestinal cancer. Int J Mol Med. 18:161–170. 2006.PubMed/NCBI
|
|
77
|
Song MJ, Jung CK, Park CH, Hur W, Choi JE,
Bae SH, Choi JY, Choi SW, Han NI and Yoon SK: RPL36 as a prognostic
marker in hepatocellular carcinoma. Pathol Int. 61:638–644. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
de Las Heras-Rubio A, Perucho L, Paciucci
R, Vilardell J and LLeonart ME: Ribosomal proteins as novel players
in tumorigenesis. Cancer Metastasis Rev. 33:115–141.
2014.PubMed/NCBI
|
|
79
|
De Keersmaecker K, Sulima SO and Dinman
JD: Ribosomopathies and the paradox of cellular hypo- to
hyperproliferation. Blood. 125:1377–1382. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ruggero D and Pandolfi PP: Does the
ribosome translate cancer? Nat Rev Cancer. 3:179–192. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Warner JR and McIntosh KB: How common are
extraribosomal functions of ribosomal proteins? Mol Cell. 34:3–11.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Barkić M, Crnomarković S, Grabusić K,
Bogetić I, Panić L, Tamarut S, Cokarić M, Jerić I, Vidak S and
Volarević S: The p53 tumor suppressor causes congenital
malformations in Rpl24-deficient mice and promotes their survival.
Mol Cell Biol. 29:2489–2504. 2009. View Article : Google Scholar
|
|
83
|
Kondrashov N, Pusic A, Stumpf CR, Shimizu
K, Hsieh AC, Xue S, Ishijima J, Shiroishi T and Barna M:
Ribosome-mediated specificity in Hox mRNA translation and
vertebrate tissue patterning. Cell. 145:383–397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Holmberg Olausson K, Nistér M and
Lindström MS: p53-dependent and -independent nucleolar stress
responses. Cells. 1:774–798. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
James A, Wang Y, Raje H, Rosby R and
DiMario P: Nucleolar stress with and without p53. Nucleus.
5:402–426. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Panić L, Tamarut S, Sticker-Jantscheff M,
Barkić M, Solter D, Uzelac M, Grabusić K and Volarević S: Ribosomal
protein S6 gene haploinsufficiency is associated with activation of
a p53-dependent checkpoint during gastrulation. Mol Cell Biol.
26:8880–8891. 2006. View Article : Google Scholar
|
|
87
|
McGowan KA, Li JZ, Park CY, Beaudry V,
Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM, et
al: Ribosomal mutations cause p53-mediated dark skin and
pleiotropic effects. Nat Genet. 40:963–970. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Anderson SJ, Lauritsen JP, Hartman MG,
Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz
T and Wiest DL: Ablation of ribosomal protein L22 selectively
impairs alphabeta T cell development by activation of a
p53-dependent checkpoint. Immunity. 26:759–772. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Barlow JL, Drynan LF, Hewett DR, Holmes
LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ,
Wong SH, et al: A p53-dependent mechanism underlies macrocytic
anemia in a mouse model of human 5q- syndrome. Nat Med. 16:59–66.
2010. View Article : Google Scholar :
|
|
90
|
Terzian T and Box N: Genetics of ribosomal
proteins: ‘curiouser and curiouser’. PLoS Genet. 9:e10033002013.
View Article : Google Scholar
|
|
91
|
Fumagalli S, Di Cara A, Neb-Gulati A, Natt
F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP and
Thomas G: Absence of nucleolar disruption after impairment of 40S
ribosome biogenesis reveals an rpL11-translation-dependent
mechanism of p53 induction. Nat Cell Biol. 11:501–508. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Volarevic S, Stewart MJ, Ledermann B,
Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC and
Thomas G: Proliferation, but not growth, blocked by conditional
deletion of 40S ribosomal protein S6. Science. 288:2045–2047. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jaako P, Flygare J, Olsson K, Quere R,
Ehinger M, Henson A, Ellis S, Schambach A, Baum C, Richter J, et
al: Mice with ribosomal protein S19 deficiency develop bone marrow
failure and symptoms like patients with Diamond-Blackfan anemia.
Blood. 118:6087–6096. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fumagalli S, Ivanenkov VV, Teng T and
Thomas G: Supra-induction of p53 by disruption of 40S and 60S
ribosome biogenesis leads to the activation of a novel G2/M
checkpoint. Genes Dev. 26:1028–1040. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Teng T, Mercer CA, Hexley P, Thomas G and
Fumagalli S: Loss of tumor suppressor RPL5/RPL11 does not induce
cell cycle arrest but impedes proliferation due to reduced ribosome
content and translation capacity. Mol Cell Biol. 33:4660–4671.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Donati G, Peddigari S, Mercer CA and
Thomas G: 5S ribosomal RNA is an essential component of a nascent
ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.
Cell Rep. 4:87–98. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sloan KE, Bohnsack MT and Watkins NJ: The
5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar
stress. Cell Rep. 5:237–247. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Macias E, Jin A, Deisenroth C, Bhat K, Mao
H, Lindström MS and Zhang Y: An ARF-independent c-MYC-activated
tumor suppression pathway mediated by ribosomal protein-Mdm2
Interaction. Cancer Cell. 18:231–243. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Deisenroth C and Zhang Y: Ribosome
biogenesis surveillance: Probing the ribosomal protein-Mdm2-p53
pathway. Oncogene. 29:4253–4260. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Miliani de Marval PL and Zhang Y: The
RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget. 2:234–238. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang Y and Lu H: Signaling to p53:
Ribosomal proteins find their way. Cancer Cell. 16:369–377. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nishimura K, Kumazawa T, Kuroda T,
Katagiri N, Tsuchiya M, Goto N, Furumai R, Murayama A, Yanagisawa J
and Kimura K: Perturbation of ribosome biogenesis drives cells into
senescence through 5S RNP-mediated p53 activation. Cell Rep.
10:1310–1323. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liu Y, He Y, Jin A, Tikunov AP, Zhou L,
Tollini LA, Leslie P, Kim TH, Li LO, Coleman RA, et al: Ribosomal
protein-Mdm2-p53 pathway coordinates nutrient stress with lipid
metabolism by regulating MCD and promoting fatty acid oxidation.
Proc Natl Acad Sci USA. 111:E2414–E2422. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Meng X, Carlson NR, Dong J and Zhang Y:
Oncogenic c-Myc-induced lymphomagenesis is inhibited
non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways.
Oncogene. 34:5709–5717. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Jaako P, Debnath S, Olsson K, Zhang Y,
Flygare J, Lindström MS, Bryder D and Karlsson S: Disruption of the
5S RNP-Mdm2 interaction significantly improves the erythroid defect
in a mouse model for Diamond-Blackfan anemia. Leukemia.
29:2221–2229. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lindström MS, Deisenroth C and Zhang Y:
Putting a finger on growth surveillance: Insight into MDM2 zinc
finger-ribosomal protein interactions. Cell Cycle. 6:434–437. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lindström MS, Jin A, Deisenroth C, White
Wolf G and Zhang Y: Cancer-associated mutations in the MDM2 zinc
finger domain disrupt ribosomal protein interaction and attenuate
MDM2-induced p53 degradation. Mol Cell Biol. 27:1056–1068. 2007.
View Article : Google Scholar :
|
|
108
|
Zhang Q, Xiao H, Chai SC, Hoang QQ and Lu
H: Hydrophilic residues are crucial for ribosomal protein L11
(RPL11) interaction with zinc finger domain of MDM2 and p53 protein
activation. J Biol Chem. 286:38264–38274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Danilova N, Sakamoto KM and Lin S:
Ribosomal protein S19 deficiency in zebrafish leads to
developmental abnormalities and defective erythropoiesis through
activation of p53 protein family. Blood. 112:5228–5237. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Torihara H, Uechi T, Chakraborty A, Shinya
M, Sakai N and Kenmochi N: Erythropoiesis failure due to RPS19
deficiency is independent of an activated Tp53 response in a
zebrafish model of Diamond-Blackfan anaemia. Br J Haematol.
152:648–654. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Uechi T, Nakajima Y, Chakraborty A,
Torihara H, Higa S and Kenmochi N: Deficiency of ribosomal protein
S19 during early embryogenesis leads to reduction of erythrocytes
in a zebrafish model of Diamond-Blackfan anemia. Hum Mol Genet.
17:3204–3211. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Uechi T, Nakajima Y, Nakao A, Torihara H,
Chakraborty A, Inoue K and Kenmochi N: Ribosomal protein gene
knockdown causes developmental defects in zebrafish. PLoS One.
1:e372006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yadav GV, Chakraborty A, Uechi T and
Kenmochi N: Ribosomal protein deficiency causes Tp53-independent
erythropoiesis failure in zebrafish. Int J Biochem Cell Biol.
49:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jädersten M, Saft L, Smith A,
Kulasekararaj A, Pomplun S, Göhring G, Hedlund A, Hast R,
Schlegelberger B, Porwit A, et al: TP53 mutations in low-risk
myelodysplastic syndromes with del(5q) predict disease progression.
J Clin Oncol. 29:1971–1979. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Saft L, Karimi M, Ghaderi M, Matolcsy A,
Mufti GJ, Kulasekararaj A, Göhring G, Giagounidis A, Selleslag D,
Muus P, et al: p53 protein expression independently predicts
outcome in patients with lower-risk myelodysplastic syndromes with
del(5q). Haematologica. 99:1041–1049. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Antunes AT, Goos YJ, Pereboom TC, Hermkens
D, Wlodarski MW, Da Costa L and MacInnes AW: Ribosomal Protein
mutations result in constitutive p53 protein degradation through
impairment of the AKT pathway. PLoS Genet. 11:e10053262015.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Heijnen HF, van Wijk R, Pereboom TC, Goos
YJ, Seinen CW, van Oirschot BA, van Dooren R, Gastou M, Giles RH,
van Solinge W, et al: Ribosomal protein mutations induce autophagy
through S6 kinase inhibition of the insulin pathway. PLoS Genet.
10:e10043712014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zheng J, Lang Y, Zhang Q, Cui D, Sun H,
Jiang L, Chen Z, Zhang R, Gao Y, Tian W, et al: Structure of human
MDM2 complexed with RPL11 reveals the molecular basis of p53
activation. Genes Dev. 29:1524–1534. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ma H and Pederson T: The nucleolus stress
response is coupled to an ATR-Chk1-mediated G2 arrest. Mol Biol
Cell. 24:1334–1342. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Danilova N, Bibikova E, Covey TM,
Nathanson D, Dimitrova E, Konto Y, Lindgren A, Glader B, Radu CG,
Sakamoto KM, et al: The role of the DNA damage response in
zebrafish and cellular models of Diamond Blackfan anemia. Dis Model
Mech. 7:895–905. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Padeken J and Heun P: Nucleolus and
nuclear periphery: Velcro for heterochromatin. Curr Opin Cell Biol.
28:54–60. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
O'Donohue MF, Choesmel V, Faubladier M,
Fichant G and Gleizes PE: Functional dichotomy of ribosomal
proteins during the synthesis of mammalian 40S ribosomal subunits.
J Cell Biol. 190:853–866. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Peng JC and Karpen GH: H3K9 methylation
and RNA interference regulate nucleolar organization and repeated
DNA stability. Nat Cell Biol. 9:25–35. 2007. View Article : Google Scholar
|
|
124
|
Boglev Y, Badrock AP, Trotter AJ, Du Q,
Richardson EJ, Parslow AC, Markmiller SJ, Hall NE, de Jong-Curtain
TA, Ng AY, et al: Autophagy induction is a Tor- and
Tp53-independent cell survival response in a zebrafish model of
disrupted ribosome biogenesis. PLoS Genet. 9:e10032792013.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Donati G, Brighenti E, Vici M, Mazzini G,
Treré D, Montanaro L and Derenzini M: Selective inhibition of rRNA
transcription downregulates E2F-1: A new p53-independent mechanism
linking cell growth to cell proliferation. J Cell Sci.
124:3017–3028. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Donati G, Montanaro L and Derenzini M:
Ribosome biogenesis and control of cell proliferation: p53 is not
alone. Cancer Res. 72:1602–1607. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Orsolic I, Jurada D, Pullen N, Oren M,
Eliopoulos AG and Volarevic S: The relationship between the
nucleolus and cancer: Current evidence and emerging paradigms.
Semin Cancer Biol. Dec 23–2015.(Epub ahead of print). View Article : Google Scholar
|
|
128
|
Marcel V, Ghayad SE, Belin S, Therizols G,
Morel AP, Solano-Gonzàlez E, Vendrell JA, Hacot S, Mertani HC,
Albaret MA, et al: p53 acts as a safeguard of translational control
by regulating fibrillarin and rRNA methylation in cancer. Cancer
Cell. 24:318–330. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Sulima SO, Patchett S, Advani VM, De
Keersmaecker K, Johnson AW and Dinman JD: Bypass of the pre-60S
ribosomal quality control as a pathway to oncogenesis. Proc Natl
Acad Sci USA. 111:5640–5645. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ludwig LS, Gazda HT, Eng JC, Eichhorn SW,
Thiru P, Ghazvinian R, George TI, Gotlib JR, Beggs AH, Sieff CA, et
al: Altered translation of GATA1 in Diamond-Blackfan anemia. Nat
Med. 20:748–753. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Sankaran VG, Ghazvinian R, Do R, Thiru P,
Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, et
al: Exome sequencing identifies GATA1 mutations resulting in
Diamond-Blackfan anemia. J Clin Invest. 122:2439–2443. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Amanatiadou EP, Papadopoulos GL,
Strouboulis J and Vizirianakis IS: GATA1 and PU.1 bind to ribosomal
protein genes in erythroid cells: Implications for ribosomopathies.
PLoS One. 10:e01400772015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Loreni F, Mancino M and Biffo S:
Translation factors and ribosomal proteins control tumor onset and
progression: How? Oncogene. 33:2145–2156. 2014. View Article : Google Scholar
|
|
134
|
Ingolia NT: Ribosome profiling: New views
of translation, from single codons to genome scale. Nat Rev Genet.
15:205–213. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bhavsar RB, Makley LN and Tsonis PA: The
other lives of ribosomal proteins. Hum Genomics. 4:327–344. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Lindström MS: Emerging functions of
ribosomal proteins in gene-specific transcription and translation.
Biochem Biophys Res Commun. 379:167–170. 2009. View Article : Google Scholar
|
|
137
|
Wool IG: Extraribosomal functions of
ribosomal proteins. Trends Biochem Sci. 21:164–165. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Naora H, Takai I, Adachi M and Naora H:
Altered cellular responses by varying expression of a ribosomal
protein gene: Sequential coordination of enhancement and
suppression of ribosomal protein S3a gene expression induces
apoptosis. J Cell Biol. 141:741–753. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Guo X, Shi Y, Gou Y, Li J, Han S, Zhang Y,
Huo J, Ning X, Sun L, Chen Y, et al: Human ribosomal protein S13
promotes gastric cancer growth through down-regulating p27(Kip1). J
Cell Mol Med. 15:296–306. 2011. View Article : Google Scholar
|
|
140
|
Shi Y, Zhai H, Wang X, Han Z, Liu C, Lan
M, Du J, Guo C, Zhang Y, Wu K, et al: Ribosomal proteins S13 and
L23 promote multidrug resistance in gastric cancer cells by
suppressing drug-induced apoptosis. Exp Cell Res. 296:337–346.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Dai MS and Lu H: Inhibition of
MDM2-mediated p53 ubiquitination and degradation by ribosomal
protein L5. J Biol Chem. 279:44475–44482. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Daftuar L, Zhu Y, Jacq X and Prives C:
Ribosomal proteins RPL37, RPS15 and RPS20 regulate the
Mdm2-p53-MdmX network. PLoS One. 8:e686672013. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wang S, Huang J, He J, Wang A, Xu S, Huang
SF and Xiao S: RPL41, a small ribosomal peptide deregulated in
tumors, is essential for mitosis and centrosome integrity.
Neoplasia. 12:284–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Krüger T, Zentgraf H and Scheer U:
Intranucleolar sites of ribosome biogenesis defined by the
localization of early binding ribosomal proteins. J Cell Biol.
177:573–578. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Chan YL, Diaz JJ, Denoroy L, Madjar JJ and
Wool IG: The primary structure of rat ribosomal protein L10:
Relationship to a Jun-binding protein and to a putative Wilms'
tumor suppressor. Biochem Biophys Res Commun. 225:952–956. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Houmani JL, Davis CI and Ruf IK:
Growth-promoting properties of Epstein-Barr virus EBER-1 RNA
correlate with ribosomal protein L22 binding. J Virol.
83:9844–9853. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Ni JQ, Liu LP, Hess D, Rietdorf J and Sun
FL: Drosophila ribosomal proteins are associated with linker
histone H1 and suppress gene transcription. Genes Dev.
20:1959–1973. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Fahl SP, Harris B, Coffey F and Wiest DL:
Rpl22 Loss impairs the development of B lymphocytes by activating a
p53-dependent checkpoint. J Immunol. 194:200–209. 2015. View Article : Google Scholar :
|
|
149
|
Rashkovan M, Vadnais C, Ross J, Gigoux M,
Suh WK, Gu W, Kosan C and Möröy T: Miz-1 regulates translation of
Trp53 via ribosomal protein L22 in cells undergoing V(D)J
recombination. Proc Natl Acad Sci USA. 111:E5411–E5419. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Montanaro L, Treré D and Derenzini M:
Nucleolus, ribosomes, and cancer. Am J Pathol. 173:301–310. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Treré D, Ceccarelli C, Montanaro L, Tosti
E and Derenzini M: Nucleolar size and activity are related to pRb
and p53 status in human breast cancer. J Histochem Cytochem.
52:1601–1607. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Montanaro L, Treré D and Derenzini M: The
emerging role of RNA polymerase I transcription machinery in human
malignancy: A clinical perspective. Onco Targets Ther. 6:909–916.
2013.PubMed/NCBI
|
|
153
|
Drygin D, O'Brien SE, Hannan RD, McArthur
GA and Von Hoff DD: Targeting the nucleolus for cancer-specific
activation of p53. Drug Discov Today. 19:259–265. 2014. View Article : Google Scholar
|
|
154
|
Drygin D, Siddiqui-Jain A, O'Brien S,
Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten
JP, et al: Anticancer activity of CX-3543: A direct inhibitor of
rRNA biogenesis. Cancer Res. 69:7653–7661. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Drygin D, Lin A, Bliesath J, Ho CB,
O'Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK,
Siddiqui-Jain A, et al: Targeting RNA polymerase I with an oral
small molecule CX-5461 inhibits ribosomal RNA synthesis and solid
tumor growth. Cancer Res. 71:1418–1430. 2011. View Article : Google Scholar
|
|
156
|
Bywater MJ, Poortinga G, Sanij E, Hein N,
Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, et al:
Inhibition of RNA polymerase I as a therapeutic strategy to promote
cancer-specific activation of p53. Cancer Cell. 22:51–65. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Peltonen K, Colis L, Liu H, Trivedi R,
Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ and Laiho M: A
targeting modality for destruction of RNA polymerase I that
possesses anticancer activity. Cancer Cell. 25:77–90. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Colis L, Peltonen K, Sirajuddin P, Liu H,
Sanders S, Ernst G, Barrow JC and Laiho M: DNA intercalator BMH-21
inhibits RNA polymerase I independent of DNA damage response.
Oncotarget. 5:4361–4369. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Morgado-Palacin L, Llanos S,
Urbano-Cuadrado M, Blanco-Aparicio C, Megias D, Pastor J and
Serrano M: Non-genotoxic activation of p53 through the
RPL11-dependent ribosomal stress pathway. Carcinogenesis.
35:2822–2830. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Wang M, Hu Y and Stearns ME: RPS2: a novel
therapeutic target in prostate cancer. J Exp Clin Cancer Res.
28:62009. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Bee A, Brewer D, Beesley C, Dodson A,
Forootan S, Dickinson T, Gerard P, Lane B, Yao S, Cooper CS, et al:
siRNA knockdown of ribosomal protein gene RPL19 abrogates the
aggressive phenotype of human prostate cancer. PLoS One.
6:e226722011. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Marcel V, Catez F and Diaz JJ: Ribosomes:
The future of targeted therapies? Oncotarget. 4:1554–1555. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Wu G, Broniscer A, McEachron TA, Lu C,
Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, et al;
St. Jude Children's Research Hospital-Washington University
Pediatric Cancer Genome Project. Somatic histone H3 alterations in
pediatric diffuse intrinsic pontine gliomas and non-brainstem
glioblastomas. Nat Genet. 44:251–253. 2012. View Article : Google Scholar : PubMed/NCBI
|