|
1
|
DeSantis CE, Lin CC, Mariotto AB, Siegel
RL, Stein KD, Kramer JL, Alteri R, Robbins AS and Jemal A: Cancer
treatment and survivorship statistics, 2014. CA Cancer J Clin.
64:252–271. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Frisch SM and Francis H: Disruption of
epithelial cell-matrix interactions induces apoptosis. J Cell Biol.
124:619–626. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wei L and Shi YB: Matrix metalloproteinase
stromelysin-3 in development and pathogenesis. Histol Histopathol.
20:177–185. 2005.
|
|
4
|
Wieczorek E, Jablonska E, Wasowicz W and
Reszka E: Matrix metalloproteinases and genetic mouse models in
cancer research: a mini-review. Tumour Biol. 36:163–175. 2015.
View Article : Google Scholar :
|
|
5
|
Geho DH, Bandle RW, Clair T and Liotta LA:
Physiological mechanisms of tumor-cell invasion and migration.
Physiology (Bethesda). 20:194–200. 2005. View Article : Google Scholar
|
|
6
|
Motrescu ER and Rio MC: Cancer cells,
adipocytes and matrix metalloproteinase 11: A vicious tumor
progression cycle. Biol Chem. 389:1037–1041. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vazquez-Ortiz G, Pina-Sanchez P, Vazquez
K, Duenas A, Taja L, Mendoza P, Garcia JA and Salcedo M:
Overexpression of cathepsin F, matrix metalloproteinases 11 and 12
in cervical cancer. BMC Cancer. 5:682005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bartolomé RA, Ferreiro S, Miquilena-Colina
ME, Martínez-Prats L, Soto-Montenegro ML, García-Bernal D, Vaquero
JJ, Agami R, Delgado R, Desco M, et al: The chemokine receptor
CXCR4 and the metalloproteinase MT1-MMP are mutually required
during melanoma metastasis to lungs. Am J Pathol. 174:602–612.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen Y, Chen Y, Huang L and Yu J:
Evaluation of heparanase and matrix metalloproteinase-9 in patients
with cutaneous malignant melanoma. J Dermatol. 39:339–343. 2012.
View Article : Google Scholar
|
|
10
|
Egeblad M and Werb Z: New functions for
the matrix metalloproteinases in cancer progression. Nat Rev
Cancer. 2:161–174. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Folgueras AR, Pendás AM, Sánchez LM and
López-Otín C: Matrix metalloproteinases in cancer: From new
functions to improved inhibition strategies. Int J Dev Biol.
48:411–424. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Basset P, Bellocq JP, Wolf C, Stoll I,
Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC and Chambon
P: A novel metalloproteinase gene specifically expressed in stromal
cells of breast carcinomas. Nature. 348:699–704. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pei D and Weiss SJ: Furin-dependent
intracellular activation of the human stromelysin-3 zymogen.
Nature. 375:244–247. 1995. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Deng H, Guo RF, Li WM, Zhao M and Lu YY:
Matrix metalloproteinase 11 depletion inhibits cell proliferation
in gastric cancer cells. Biochem Biophys Res Commun. 326:274–281.
2005. View Article : Google Scholar
|
|
15
|
Andarawewa KL, Motrescu ER, Chenard MP,
Gansmuller A, Stoll I, Tomasetto C and Rio MC: Stromelysin-3 is a
potent negative regulator of adipogenesis participating to cancer
cell-adipocyte interaction/crosstalk at the tumor invasive front.
Cancer Res. 65:10862–10871. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Motrescu ER, Blaise S, Etique N, Messaddeq
N, Chenard MP, Stoll I, Tomasetto C and Rio MC: Matrix
metalloproteinase-11/ stromelysin-3 exhibits collagenolytic
function against collagen VI under normal and malignant conditions.
Oncogene. 27:6347–6355. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Soni S, Mathur M, Shukla NK, Deo SV and
Ralhan R: Stromelysin-3 expression is an early event in human oral
tumorigenesis. Int J Cancer. 107:309–316. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Arora S, Kaur J, Sharma C, Mathur M,
Bahadur S, Shukla NK, Deo SV and Ralhan R: Stromelysin 3, Ets-1,
and vascular endothelial growth factor expression in oral
precancerous and cancerous lesions: correlation with microvessel
density, progression, and prognosis. Clin Cancer Res. 11:2272–2284.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Denys H, De Wever O, Nusgens B, Kong Y,
Sciot R, Le AT, Van Dam K, Jadidizadeh A, Tejpar S, Mareel M, et
al: Invasion and MMP expression profile in desmoid tumours. Br J
Cancer. 90:1443–1449. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kettunen E, Anttila S, Seppänen JK,
Karjalainen A, Edgren H, Lindström I, Salovaara R, Nissén AM, Salo
J, Mattson K, et al: Differentially expressed genes in nonsmall
cell lung cancer: Expression profiling of cancer-related genes in
squamous cell lung cancer. Cancer Genet Cytogenet. 149:98–106.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hourihan RN, O'Sullivan GC and Morgan JG:
Transcriptional gene expression profiles of oesophageal
adenocarcinoma and normal oesophageal tissues. Anticancer Res.
23(1A): 161–165. 2003.PubMed/NCBI
|
|
22
|
von Marschall Z, Riecken EO and Rosewicz
S: Stromelysin 3 is over expressed in human pancreatic carcinoma
and regulated by retinoic acid in pancreatic carcinoma cell lines.
Gut. 43:692–698. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Perret AG, Duthel R, Fotso MJ, Brunon J
and Mosnier JF: Stromelysin-3 is expressed by aggressive
meningiomas. Cancer. 94:765–772. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mueller J, Brebeck B, Schmalfeldt B, Kuhn
W, Graeff H and Höfler H: Stromelysin-3 expression in invasive
ovarian carcinomas and tumours of low malignant potential. Virchows
Arch. 437:618–624. 2000. View Article : Google Scholar
|
|
25
|
Wlodarczyk J, Stolte M and Mueller J:
E-cadherin, beta-catenin and stromelysin-3 expression in de novo
carcinoma of the colorectum. Pol J Pathol. 52:119–124. 2001.
|
|
26
|
Wolf C, Rouyer N, Lutz Y, Adida C, Loriot
M, Bellocq JP, Chambon P and Basset P: Stromelysin 3 belongs to a
subgroup of proteinases expressed in breast carcinoma fibroblastic
cells and possibly implicated in tumor progression. Proc Natl Acad
Sci USA. 90:1843–1847. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Basset P, Okada A, Chenard MP, Kannan R,
Stoll I, Anglard P, Bellocq JP and Rio MC: Matrix
metalloproteinases as stromal effectors of human carcinoma
progression: therapeutic implications. Matrix Biol. 15:535–541.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Laurell H, Bouisson M, Berthelemy P,
Rochaix P, Dejean S, Besse P, Susini C, Pradayrol L, Vaysse N and
Buscail L: Identification of biomarkers of human pancreatic
adenocarcinomas by expression profiling and validation with gene
expression analysis in endoscopic ultrasound-guided fine needle
aspiration samples. World J Gastroenterol. 12:3344–3351. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Barrasa JI, Olmo N, Santiago-Gómez A,
Lecona E, Anglard P, Turnay J and Lizarbe MA: Histone deacetylase
inhibitors upregulate MMP11 gene expression through Sp1/Smad
complexes in human colon adenocarcinoma cells. Biochim Biophys
Acta. 1823:570–581. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Genestie C, Zafrani B, Asselain B,
Fourquet A, Rozan S, Validire P, Vincent-Salomon A and Sastre-Garau
X: Comparison of the prognostic value of Scarff-Bloom-Richardson
and Nottingham histological grades in a series of 825 cases of
breast cancer: Major importance of the mitotic count as a component
of both grading systems. Anticancer Res. 18:571–576.
1998.PubMed/NCBI
|
|
31
|
Min KW, Kim DH, Do SI, Pyo JS, Kim K, Chae
SW, Sohn JH, Oh YH, Kim HJ, Choi SH, et al: Diagnostic and
prognostic relevance of MMP-11 expression in the stromal
fibroblast-like cells adjacent to invasive ductal carcinoma of the
breast. Ann Surg Oncol. 20(Suppl 3): S433–S442. 2013. View Article : Google Scholar
|
|
32
|
DeSantis C, Ma J, Bryan L and Jemal A:
Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014.
View Article : Google Scholar
|
|
33
|
Fu J, Khaybullin R, Zhang Y, Xia A and Qi
X: Gene expression profiling leads to discovery of correlation of
matrix metalloproteinase 11 and heparanase 2 in breast cancer
progression. BMC Cancer. 15:4732015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Roscilli G, Cappelletti M, De Vitis C,
Ciliberto G, Di Napoli A, Ruco L, Mancini R and Aurisicchio L:
Circulating MMP11 and specific antibody immune response in breast
and prostate cancer patients. J Transl Med. 12:542014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lustosa SA, Saconato H, Atallah AN, Lopes
Filho Gde J and Matos D: Impact of extended lymphadenectomy on
morbidity, mortality, recurrence and 5-year survival after
gastrectomy for cancer. Meta-analysis of randomized clinical
trials. Acta Cir Bras. 23:520–530. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao ZS, Chu YQ, Ye ZY, Wang YY and Tao
HQ: Overexpression of matrix metalloproteinase 11 in human gastric
carcinoma and its clinicopathologic significance. Hum Pathol.
41:686–696. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yan D, Dai H and Liu JW: Serum levels of
MMP-11 correlate with clinical outcome in Chinese patients with
advanced gastric adenocarcinoma. BMC Cancer. 11:1512011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Asano T, Tada M, Cheng S, Takemoto N,
Kuramae T, Abe M, Takahashi O, Miyamoto M, Hamada J, Moriuchi T, et
al: Prognostic values of matrix metalloproteinase family expression
in human colorectal carcinoma. J Surg Res. 146:32–42. 2008.
View Article : Google Scholar
|
|
39
|
Skoglund J, Emterling A, Arbman G, Anglard
P and Sun XF: Clinicopathological significance of stromelysin-3
expression in colorectal cancer. Oncology. 67:67–72. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bakkevold KE, Arnesjø B and Kambestad B:
Carcinoma of the pancreas and papilla of Vater: Presenting
symptoms, signs, and diagnosis related to stage and tumour site. A
prospective multi-centre trial in 472 patients Norwegian Pancreatic
Cancer Trial. Scand J Gastroenterol. 27:317–325. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rouyer N, Wolf C, Chenard MP, Rio MC,
Chambon P, Bellocq JP and Basset P: Stromelysin-3 gene expression
in human cancer: An overview. Invasion Metastasis. 14:269–275.
1995.
|
|
42
|
Andarawewa KL, Boulay A, Masson R,
Mathelin C, Stoll I, Tomasetto C, Chenard MP, Gintz M, Bellocq JP
and Rio MC: Dual stromelysin-3 function during natural mouse
mammary tumor virus-ras tumor progression. Cancer Res.
63:5844–5849. 2003.PubMed/NCBI
|
|
43
|
Noël A, Boulay A, Kebers F, Kannan R,
Hajitou A, Calberg-Bacq CM, Basset P, Rio MC and Foidart JM:
Demonstration in vivo that stromelysin-3 functions through its
proteolytic activity. Oncogene. 19:1605–1612. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Masson R, Lefebvre O, Noël A, Fahime ME,
Chenard MP, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart JM,
et al: In vivo evidence that the stromelysin-3 metalloproteinase
contributes in a paracrine manner to epithelial cell malignancy. J
Cell Biol. 140:1535–1541. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kwon YJ, Hurst DR, Steg AD, Yuan K, Vaidya
KS, Welch DR and Frost AR: Gli1 enhances migration and invasion via
up-regulation of MMP-11 and promotes metastasis in ERα negative
breast cancer cell lines. Clin Exp Metastasis. 28:437–449. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fromigue O, Louis K, Wu E, Belhacène N,
Loubat A, Shipp M, Auberger P and Mari B: Active stromelysin-3
(MMP-11) increases MCF-7 survival in three-dimensional Matrigel
culture via activation of p42/p44 MAP-kinase. Int J Cancer.
106:355–363. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Boulay A, Masson R, Chenard MP, El Fahime
M, Cassard L, Bellocq JP, Sautès-Fridman C, Basset P and Rio MC:
High cancer cell death in syngeneic tumors developed in host mice
deficient for the stromelysin-3 matrix metalloproteinase. Cancer
Res. 61:2189–2193. 2001.PubMed/NCBI
|
|
48
|
Krüger A, Soeltl R, Sopov I, Kopitz C,
Arlt M, Magdolen V, Harbeck N, Gänsbacher B and Schmitt M:
Hydroxamate-type matrix metalloproteinase inhibitor batimastat
promotes liver metastasis. Cancer Res. 61:1272–1275.
2001.PubMed/NCBI
|
|
49
|
Zucker S, Cao J and Chen WT: Critical
appraisal of the use of matrix metalloproteinase inhibitors in
cancer treatment. Oncogene. 19:6642–6650. 2000. View Article : Google Scholar
|
|
50
|
Coussens LM, Fingleton B and Matrisian LM:
Matrix metalloproteinase inhibitors and cancer: Trials and
tribulations. Science. 295:2387–2392. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Overall CM and López-Otín C: Strategies
for MMP inhibition in cancer: Innovations for the post-trial era.
Nat Rev Cancer. 2:657–672. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kanharat N and Tuamsuk P: Correlation
between microvascular density and matrix metalloproteinase 11
expression in prostate cancer tissues: A preliminary study in
Thailand. Asian Pac J Cancer Prev. 16:6639–6643. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rio MC: From a unique cell to metastasis
is a long way to go: Clues to stromelysin-3 participation.
Biochimie. 87:299–306. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Brasse D, Mathelin C, Leroux K, Chenard
MP, Blaise S, Stoll I, Tomasetto C and Rio MC: Matrix
metalloproteinase 11/ stromelysin-3 exerts both activator and
repressor functions during the hematogenous metastatic process in
mice. Int J Cancer. 127:1347–1355. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kasper G, Reule M, Tschirschmann M,
Dankert N, Stout-Weider K, Lauster R, Schrock E, Mennerich D, Duda
GN and Lehmann KE: Stromelysin-3 over-expression enhances
tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines:
Involvement of the IGF-1 signalling pathway. BMC Cancer. 7:122007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jones L, Ghaneh P, Humphreys M and
Neoptolemos JP: The matrix metalloproteinases and their inhibitors
in the treatment of pancreatic cancer. Ann NY Acad Sci.
880:288–307. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Johansson N, Ahonen M and Kähäri VM:
Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci.
57:5–15. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Selvey S, Haupt LM, Thompson EW, Matthaei
KI, Irving MG and Griffiths LR: Stimulation of MMP-11
(stromelysin-3) expression in mouse fibroblasts by cytokines,
collagen and co-culture with human breast cancer cell lines. BMC
Cancer. 4:402004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Itoh H, Kishore AH, Lindqvist A, Rogers DE
and Word RA: Transforming growth factor β1 (TGFβ1) and progesterone
regulate matrix metalloproteinases (MMP) in human endometrial
stromal cells. J Clin Endocrinol Metab. 97:E888–E897. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Buache E, Thai R, Wendling C, Alpy F, Page
A, Chenard MP, Dive V, Ruff M, Dejaegere A, Tomasetto C, et al:
Functional relationship between matrix metalloproteinase-11 and
matrix metalloproteinase-14. Cancer Med. 3:1197–1210. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wu D, Li M, Wang L, Zhou Y, Zhou J, Pan H
and Qu P: microRNA-145 inhibits cell proliferation, migration and
invasion by targeting matrix metallopeptidase-11 in renal cell
carcinoma. Mol Med Rep. 10:393–398. 2014.PubMed/NCBI
|
|
62
|
Jiang Y, Wang L, Gong W, Wei D, Le X, Yao
J, Ajani J, Abbruzzese JL, Huang S and Xie K: A high expression
level of insulin-like growth factor I receptor is associated with
increased expression of transcription factor Sp1 and regional lymph
node metastasis of human gastric cancer. Clin Exp Metastasis.
21:755–764. 2004. View Article : Google Scholar
|
|
63
|
Min Y, Adachi Y, Yamamoto H, Imsumran A,
Arimura Y, Endo T, Hinoda Y, Lee CT, Nadaf S, Carbone DP, et al:
Insulin-like growth factor I receptor blockade enhances
chemotherapy and radiation responses and inhibits tumour growth in
human gastric cancer xenografts. Gut. 54:591–600. 2005. View Article : Google Scholar
|
|
64
|
Sharma R, Chattopadhyay TK, Mathur M and
Ralhan R: Prognostic significance of stromelysin-3 and tissue
inhibitor of matrix metalloproteinase-2 in esophageal cancer.
Oncology. 67:300–309. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mañes S, Mira E, Barbacid MM, Ciprés A,
Fernández-Resa P, Buesa JM, Mérida I, Aracil M, Márquez G and
Martínez-A C: Identification of insulin-like growth factor-binding
protein-1 as a potential physiological substrate for human
stromelysin-3. J Biol Chem. 272:25706–25712. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liang Q, Xiong H, Gao G, Xiong K, Wang X,
Zhao Z, Zhang H and Li Y: Inhibition of basigin expression in
glioblastoma cell line via antisense RNA reduces tumor cell
invasion and angiogenesis. Cancer Biol Ther. 4:759–762. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang Y, Nakada MT, Rafferty P, Laraio J,
McCabe FL, Millar H, Cunningham M, Snyder LA, Bugelski P and Yan L:
Regulation of vascular endothelial growth factor expression by
EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res.
4:371–377. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tian X, Ye C, Yang Y, Guan X, Dong B, Zhao
M and Hao C: Expression of CD147 and matrix metalloproteinase-11 in
colorectal cancer and their relationship to clinicopathological
features. J Transl Med. 13:3372015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jia L, Cao J, Wei W, Wang S, Zuo Y and
Zhang J: CD147 depletion down-regulates matrix
metalloproteinase-11, vascular endothelial growth factor-A
expression and the lymphatic metastasis potential of murine
hepatocarcinoma Hca-F cells. Int J Biochem Cell Biol. 39:2135–2142.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jia L, Zhou H, Wang S, Cao J, Wei W and
Zhang J: Deglycosylation of CD147 down-regulates matrix
metalloproteinase-11 expression and the adhesive capability of
murine hepatocarcinoma cell HcaF in vitro. IUBMB Life. 58:209–216.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Honkavuori M, Talvensaari-Mattila A, Soini
Y, Turpeenniemi-Hujanen T and Santala M: MMP-2 expression
associates with CA 125 and clinical course in endometrial
carcinoma. Gynecol Oncol. 104:217–221. 2007. View Article : Google Scholar
|
|
72
|
Ogawa M, Ikeuchi K, Watanabe M, Etoh K,
Kobayashi T, Takao Y, Anazawa S and Yamazaki Y: Expression of
matrix metalloproteinase 7, laminin and type IV collagen-associated
liver metastasis in human colorectal cancer: Immunohistochemical
approach. Hepatogastroenterology. 52:875–880. 2005.PubMed/NCBI
|
|
73
|
Zheng H, Takahashi H, Murai Y, Cui Z,
Nomoto K, Niwa H, Tsuneyama K and Takano Y: Expressions of MMP-2,
MMP-9 and VEGF are closely linked to growth, invasion, metastasis
and angiogenesis of gastric carcinoma. Anticancer Res.
26:3579–3583. 2006.PubMed/NCBI
|
|
74
|
Wu CY, Wu MS, Chiang EP, Chen YJ, Chen CJ,
Chi NH, Shih YT, Chen GH and Lin JT: Plasma matrix
metalloproteinase-9 level is better than serum matrix
metalloproteinase-9 level to predict gastric cancer evolution. Clin
Cancer Res. 13:2054–2060. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mylona E, Nomikos A, Magkou C, Kamberou M,
Papassideri I, Keramopoulos A and Nakopoulou L: The
clinicopathological and prognostic significance of membrane type 1
matrix metalloproteinase (MT1-MMP) and MMP-9 according to their
localization in invasive breast carcinoma. Histopathology.
50:338–347. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang YH, Deng H, Li WM, Zhang QY, Hu XT,
Xiao B, Zhu HH, Geng PL and Lu YY: Identification of matrix
metalloproteinase 11 as a predictive tumor marker in serum based on
gene expression profiling. Clin Cancer Res. 14:74–81. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cheng CW, Yu JC, Wang HW, Huang CS, Shieh
JC, Fu YP, Chang CW, Wu PE and Shen CY: The clinical implications
of MMP-11 and CK-20 expression in human breast cancer. Clin Chim
Acta. 411:234–241. 2010. View Article : Google Scholar
|
|
78
|
Jones LE, Humphreys MJ, Campbell F,
Neoptolemos JP and Boyd MT: Comprehensive analysis of matrix
metalloproteinase and tissue inhibitor expression in pancreatic
cancer: increased expression of matrix metalloproteinase-7 predicts
poor survival. Clin Cancer Res. 10:2832–2845. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Thewes M, Pohlmann G, Atkinson M, Mueller
J, Pütz B and Höfler H: Stromelysin-3 (ST-3) mRNA expression in
colorectal carcinomas. Localization and clinicopathologic
correlations. Diagn Mol Pathol. 5:284–290. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ito Y, Yoshida H, Kakudo K, Nakamura Y,
Kuma K and Miyauchi A: Inverse relationships between the expression
of MMP-7 and MMP-11 and predictors of poor prognosis of papillary
thyroid carcinoma. Pathology. 38:421–425. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mellick AS, Blackmore D, Weinstein SR and
Griffiths LR: An assessment of MMP and TIMP gene expression in cell
lines and stroma - tumour differences in microdissected breast
cancer biopsies. Tumour Biol. 24:258–270. 2003. View Article : Google Scholar
|
|
82
|
Têtu B, Trudel D and Wang CS: Proteases by
reactive stromal cells in cancer: An attractive therapeutic target.
Bull Cancer. 93:944–948. 2006.In French.
|
|
83
|
Hsin CH, Chen MK, Tang CH, Lin HP, Chou
MY, Lin CW and Yang SF: High level of plasma matrix
metalloproteinase-11 is associated with clinicopathological
characteristics in patients with oral squamous cell carcinoma. PLoS
One. 9:e1131292014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chang WJ, Du Y, Zhao X, Ma LY and Cao GW:
Inflammation-related factors predicting prognosis of gastric
cancer. World J Gastroenterol. 20:4586–4596. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pedersen G, Saermark T, Kirkegaard T and
Brynskov J: Spontaneous and cytokine induced expression and
activity of matrix metalloproteinases in human colonic epithelium.
Clin Exp Immunol. 155:257–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xu CJ and Xu F: MMP-11 and VEGF-C
expression correlate with clinical features of colorectal
adenocarcinoma. Int J Clin Exp Med. 7:2883–2888. 2014.PubMed/NCBI
|
|
87
|
Eiró N, Fernandez-Garcia B, Vázquez J, Del
Casar JM, González LO and Vizoso FJ: A phenotype from tumor stroma
based on the expression of metalloproteases and their inhibitors,
associated with prognosis in breast cancer. Oncoimmunology.
4:e9922222015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mari BP, Anderson IC, Mari SE, Ning Y,
Lutz Y, Kobzik L and Shipp MA: Stromelysin-3 is induced in
tumor/stroma cocultures and inactivated via a tumor-specific and
basic fibroblast growth factor-dependent mechanism. J Biol Chem.
273:618–626. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Peruzzi D, Mori F, Conforti A, Lazzaro D,
De Rinaldis E, Ciliberto G, La Monica N and Aurisicchio L: MMP11: a
novel target antigen for cancer immunotherapy. Clin Cancer Res.
15:4104–4113. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hofmeister V, Schrama D and Becker JC:
Anti-cancer therapies targeting the tumor stroma. Cancer Immunol
Immunother. 57:1–17. 2008. View Article : Google Scholar
|
|
91
|
Yi T, Wei YQ, Tian L, Zhao X, Li J, Deng
HX, Wen YJ, Zou CH, Tan GH, Kan B, et al: Humoral and cellular
immunity induced by tumor cell vaccine based on the chicken
xenogeneic homologous matrix metalloproteinase-2. Cancer Gene Ther.
14:158–164. 2007. View Article : Google Scholar
|
|
92
|
Yokoyama Y, Grünebach F, Schmidt SM,
Lazzaro D, De Rinaldis E, Ciliberto G, La Monica N and Aurisicchio
L: Matrilysin (MMP-7) is a novel broadly expressed tumor antigen
recognized by antigen-specific T cells. Clin Cancer Res.
14:5503–5511. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Groves MD, Puduvalli VK, Hess KR, Jaeckle
KA, Peterson P, Yung WK and Levin VA: Phase II trial of
temozolomide plus the matrix metalloproteinase inhibitor,
marimastat, in recurrent and progressive glioblastoma multiforme. J
Clin Oncol. 20:1383–1388. 2002. View Article : Google Scholar : PubMed/NCBI
|