|
1
|
Casrouge A, Beaudoing E, Dalle S,
Pannetier C, Kanellopoulos J and Kourilsky P: Size estimate of the
alpha beta TCR repertoire of naive mouse splenocytes. J Immunol.
164:5782–5787. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Davis MM and Bjorkman PJ: T-cell antigen
receptor genes and T-cell recognition. Nature. 334:395–402. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jorgensen JL, Reay PA, Ehrich EW and Davis
MM: Molecular components of T-cell recognition. Annu Rev Immunol.
10:835–873. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Treiner E, Duban L, Bahram S,
Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S and
Lantz O: Selection of evolutionarily conserved mucosal-associated
invariant T cells by MR1. Nature. 422:164–169. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Le Bourhis L, Martin E, Péguillet I,
Guihot A, Froux N, Coré M, Lévy E, Dusseaux M, Meyssonnier V,
Premel V, et al: Antimicrobial activity of mucosal-associated
invariant T cells. Nat Immunol. 11:701–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Van Rhijn I, Kasmar A, de Jong A, Gras S,
Bhati M, Doorenspleet ME, de Vries N, Godfrey DI, Altman JD, de
Jager W, et al: A conserved human T cell population targets
mycobacterial antigens presented by CD1b. Nat Immunol. 14:706–713.
2013. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Beckman EM, Porcelli SA, Morita CT, Behar
SM, Furlong ST and Brenner MB: Recognition of a lipid antigen by
CD1-restricted αβ+ T cells. Nature. 372:691–694. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Latha TS, Reddy MC, Durbaka PV, Rachamallu
A, Pallu R and Lomada D: γδ T Cell-mediated immune responses in
disease and therapy. Front Immunol. 5:5712014. View Article : Google Scholar
|
|
9
|
Caccia N, Bruns GA, Kirsch IR, Hollis GF,
Bertness V and Mak TW: T cell receptor alpha chain genes are
located on chromosome 14 at 14q11-14q12 in humans. J Exp Med.
161:1255–1260. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sewell AK: Why must T cells be
cross-reactive? Nat Rev Immunol. 12:669–677. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Arstila TP, Casrouge A, Baron V, Even J,
Kanellopoulos J and Kourilsky P: A direct estimate of the human
alphabeta T cell receptor diversity. Science. 286:958–961. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bentley GA, Boulot G, Karjalainen K and
Mariuzza RA: Crystal structure of the beta chain of a T cell
antigen receptor. Science. 267:1984–1987. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fields BA, Ober B, Malchiodi EL, Lebedeva
MI, Braden BC, Ysern X, Kim JK, Shao X, Ward ES and Mariuzza RA:
Crystal structure of the V α domain of a T cell antigen receptor.
Science. 270:1821–1824. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pannetier C, Cochet M, Darche S, Casrouge
A, Zöller M and Kourilsky P: The sizes of the CDR3 hypervariable
regions of the murine T-cell receptor beta chains vary as a
function of the recombined germ-line segments. Proc Natl Acad Sci
USA. 90:4319–4323. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Rock EP, Sibbald PR, Davis MM and Chien
YH: CDR3 length in antigen-specific immune receptors. J Exp Med.
179:323–328. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Turner SJ, Doherty PC, McCluskey J and
Rossjohn J: Structural determinants of T-cell receptor bias in
immunity. Nat Rev Immunol. 6:883–894. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Woodsworth DJ, Castellarin M and Holt RA:
Sequence analysis of T-cell repertoires in health and disease.
Genome Med. 5:982013. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Imai N, Ikeda H, Tawara I and Shiku H:
Tumor progression inhibits the induction of multifunctionality in
adoptively transferred tumor-specific CD8+ T cells. Eur
J Immunol. 39:241–253. 2009. View Article : Google Scholar
|
|
19
|
Rezvany MR, Jeddi-Tehrani M, Osterborg A,
Kimby E, Wigzell H and Mellstedt H: Oligoclonal TCRBV gene usage in
B-cell chronic lymphocytic leukemia: Major perturbations are
preferentially seen within the CD4 T-cell subset. Blood.
94:1063–1069. 1999.PubMed/NCBI
|
|
20
|
Lake DF, Salgaller ML, van der Bruggen P,
Bernstein RM and Marchalonis JJ: Construction and binding analysis
of recombinant single-chain TCR derived from tumor-infiltrating
lymphocytes and a cytotoxic T lymphocyte clone directed against
MAGE-1. Int Immunol. 11:745–751. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Farina C, van der Bruggen P, Boël P,
Parmiani G, Sensi M and Moretta L: Conserved TCR usage by HLA-Cw*
1601-restricted T cell clones recognizing melanoma antigens. Int
Immunol. 8:1463–1466. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Boon T, Gajewski TF and Coulie PG: From
defined human tumor antigens to effective immunization? Immunol
Today. 16:334–336. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Salvi S, Segalla F, Rao S, Arienti F,
Sartori M, Bratina G, Caronni E, Anichini A, Clemente C, Parmiani
G, et al: Overexpression of the T-cell receptor beta-chain variable
region TCRBV14 in HLA-A2-matched primary human melanomas. Cancer
Res. 55:3374–3379. 1995.PubMed/NCBI
|
|
24
|
Puisieux I, Even J, Pannetier C, Jotereau
F, Favrot M and Kourilsky P: Oligoclonality of tumor-infiltrating
lymphocytes from human melanomas. J Immunol. 153:2807–2818.
1994.PubMed/NCBI
|
|
25
|
Farace F, Orlanducci F, Dietrich PY,
Gaudin C, Angevin E, Courtier MH, Bayle C, Hercend T and Triebel F:
T cell repertoire in patients with B chronic lymphocytic leukemia.
Evidence for multiple in vivo T cell clonal expansions. J Immunol.
153:4281–4290. 1994.PubMed/NCBI
|
|
26
|
Brown RD, Yuen E, Nelson M, Gibson J and
Joshua D: The prognostic significance of T cell receptor beta gene
rearrangements and idiotype-reactive T cells in multiple myeloma.
Leukemia. 11:1312–1317. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rezvany MR, Jeddi-Tehrani M, Wigzell H,
Österborg A and Mellstedt H: Leukemia-associated monoclonal and
oligoclonal TCR-BV use in patients with B-cell chronic lymphocytic
leukemia. Blood. 101:1063–1070. 2003. View Article : Google Scholar
|
|
28
|
Li H, Ma X, Moskovits T, Inghirami G and
Tsiagbe VK: Identification of oligoclonal CD4 T cells in diffuse
large B cell lymphomas. Clin Immunol. 107:160–169. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tan H, Ye J, Luo X, Chen S, Yin Q, Yang L
and Li Y: Clonal expanded TRA and TRB subfamily T cells in
peripheral blood from patients with diffuse large B-cell lymphoma.
Hematology. 15:81–87. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou J, Ma R, Luo R, Sun Y, He X, Sun W,
Tang W and Yao X: Primary exploration of CDR3 spectratyping and
molecular features of TCR β chain in the peripheral blood and
tissue of patients with colorectal carcinoma. Cancer Epidemiol.
34:733–740. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Baier PK, Wimmenauer S, Hirsch T, von
Specht BU, von Kleist S, Keller H and Farthmann EH: Analysis of the
T cell receptor variability of tumor-infiltrating lymphocytes in
colorectal carcinomas. Tumor Biol. 19:205–212. 1998. View Article : Google Scholar
|
|
32
|
McHeyzer-Williams LJ, Panus JF, Mikszta JA
and McHeyzer-Williams MG: Evolution of antigen-specific T cell
receptors in vivo: Preimmune and antigen-driven selection of
preferred complementarity-determining region 3 (CDR3) motifs. J Exp
Med. 189:1823–1838. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Busch DH and Pamer EG: T cell affinity
maturation by selective expansion during infection. J Exp Med.
189:701–710. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhong W and Reinherz EL: In vivo selection
of a TCR Vbeta repertoire directed against an immunodominant
influenza virus CTL epitope. Int Immunol. 16:1549–1559. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Argaet VP, Schmidt CW, Burrows SR, Silins
SL, Kurilla MG, Doolan DL, Suhrbier A, Moss DJ, Kieff E, Sculley
TB, et al: Dominant selection of an invariant T cell antigen
receptor in response to persistent infection by Epstein-Barr virus.
J Exp Med. 180:2335–2340. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pantaleo G, Demarest JF, Soudeyns H,
Graziosi C, Denis F, Adelsberger JW, Borrow P, Saag MS, Shaw GM,
Sekaly RP, et al: Major expansion of CD8+ T cells with a
predominant V β usage during the primary immune response to HIV.
Nature. 370:463–467. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Price DA, West SM, Betts MR, Ruff LE,
Brenchley JM, Ambrozak DR, Edghill-Smith Y, Kuroda MJ, Bogdan D,
Kunstman K, et al: T cell receptor recognition motifs govern immune
escape patterns in acute SIV infection. Immunity. 21:793–803. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Trautmann L, Rimbert M, Echasserieau K,
Saulquin X, Neveu B, Dechanet J, Cerundolo V and Bonneville M:
Selection of T cell clones expressing high-affinity public TCRs
within Human cytomegalovirus-specific CD8 T cell responses. J
Immunol. 175:6123–6132. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gillespie GMA, Stewart-Jones G, Rengasamy
J, Beattie T, Bwayo JJ, Plummer FA, Kaul R, McMichael AJ,
Easterbrook P, Dong T, et al: Strong TCR conservation and altered T
cell cross-reactivity characterize a B*57-restricted immune
response in HIV-1 infection. J Immunol. 177:3893–3902. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Price DA, Brenchley JM, Ruff LE, Betts MR,
Hill BJ, Roederer M, Koup RA, Migueles SA, Gostick E, Wooldridge L,
et al: Avidity for antigen shapes clonal dominance in
CD8+ T cell populations specific for persistent DNA
viruses. J Exp Med. 202:1349–1361. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Miconnet I, Marrau A, Farina A, Taffé P,
Vigano S, Harari A and Pantaleo G: Large TCR diversity of
virus-specific CD8 T cells provides the mechanistic basis for
massive TCR renewal after antigen exposure. J Immunol.
186:7039–7049. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gras S, Kjer-Nielsen L, Burrows SR,
McCluskey J and Rossjohn J: T-cell receptor bias and immunity. Curr
Opin Immunol. 20:119–125. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Callan MF, Annels N, Steven N, Tan L,
Wilson J, McMichael AJ and Rickinson AB: T cell selection during
the evolution of CD8+ T cell memory in vivo. Eur J
Immunol. 28:4382–4390. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Miles JJ, Borg NA, Brennan RM, Tynan FE,
Kjer-Nielsen L, Silins SL, Bell MJ, Burrows JM, McCluskey J,
Rossjohn J, et al: TCR α genes direct MHC restriction in the potent
human T cell response to a class I-bound viral epitope. J Immunol.
177:6804–6814. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tynan FE, Burrows SR, Buckle AM, Clements
CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL,
et al: T cell receptor recognition of a ‘super-bulged’ major
histocompatibility complex class I-bound peptide. Nat Immunol.
6:1114–1122. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dolton G, Tungatt K, Lloyd A, Bianchi V,
Theaker SM, Trimby A, Holland CJ, Donia M, Godkin AJ, Cole DK, et
al: More tricks with tetramers: A practical guide to staining T
cells with peptide-MHC multimers. Immunology. 146:11–22. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wilson JD, Ogg GS, Allen RL, Goulder PJ,
Kelleher A, Sewell AK, O'Callaghan CA, Rowland-Jones SL, Callan MF
and McMichael AJ: Oligoclonal expansions of CD8+ T cells
in chronic HIV infection are antigen specific. J Exp Med.
188:785–790. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Moss PA, Moots RJ, Rosenberg WM,
Rowland-Jones SJ, Bodmer HC, McMichael AJ and Bell JI: Extensive
conservation of alpha and beta chains of the human T-cell antigen
receptor recognizing HLA-A2 and influenza A matrix peptide. Proc
Natl Acad Sci USA. 88:8987–8990. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Boehme CC, Nicol MP, Nabeta P, Michael JS,
Gotuzzo E, Tahirli R, Gler MT, Blakemore R, Worodria W, Gray C, et
al: Feasibility, diagnostic accuracy, and effectiveness of
decentralised use of the Xpert MTB/RIF test for diagnosis of
tuberculosis and multidrug resistance: A multicentre implementation
study. Lancet. 377:1495–1505. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Geiger R, Duhen T, Lanzavecchia A and
Sallusto F: Human naive and memory CD4+ T cell
repertoires specific for naturally processed antigens analyzed
using libraries of amplified T cells. J Exp Med. 206:1525–1534.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tully G, Kortsik C, Höhn H, Zehbe I,
Hitzler WE, Neukirch C, Freitag K, Kayser K and Maeurer MJ: Highly
focused T cell responses in latent human pulmonary Mycobacterium
tuberculosis infection. J Immunol. 174:2174–2184. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jacobsen M, Detjen AK, Mueller H,
Gutschmidt A, Leitner S, Wahn U, Magdorf K and Kaufmann SHE: Clonal
expansion of CD8+ effector T cells in childhood
tuberculosis. J Immunol. 179:1331–1339. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Flynn JL and Chan J: Immunology of
tuberculosis. Annu Rev Immunol. 19:93–129. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Luo W, Zhang XB, Huang YT, Hao PP, Jiang
ZM, Wen Q, Zhou MQ, Jin Q and Ma L: Development of genetically
engineered CD4+ and CD8+ T cells expressing
TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med Berl.
89:903–913. 2011. View Article : Google Scholar
|
|
55
|
Luo W, Su J, Zhang XB, Yang Z, Zhou MQ,
Jiang ZM, Hao PP, Liu SD, Wen Q, Jin Q, et al: Limited T cell
receptor repertoire diversity in tuberculosis patients correlates
with clinical severity. PLoS One. 7:e481172012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Boubou MI, Collette A, Voegtlé D, Mazier
D, Cazenave PA and Pied S: T cell response in malaria pathogenesis:
Selective increase in T cells carrying the TCR Vβ8 during
experimental cerebral malaria. Int Immunol. 11:1553–1562. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li Y: Research and application of T-cell
receptor. People's Medical Publishing House; Beijing: pp. 1322009,
(in Chinese).
|
|
58
|
Murata H, Matsumura R, Koyama A, Sugiyama
T, Sueishi M, Shibuya K, Tsutsumi A and Sumida T: T cell receptor
repertoire of T cells in the kidneys of patients with lupus
nephritis. Arthritis Rheum. 46:2141–2147. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Furukawa F, Tokura Y, Matsushita K,
Iwasaki-Inuzuka K, Onagi-Suzuki K, Yagi H, Wakita H and Takigawa M:
Selective expansions of T cells expressing Vβ8 and Vβ13 in skin
lesions of patients with chronic cutaneous lupus erythematosus. J
Dermatol. 23:670–676. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mato T, Masuko K, Misaki Y, Hirose N, Ito
K, Takemoto Y, Izawa K, Yamamori S, Kato T, Nishioka K, et al:
Correlation of clonal T cell expansion with disease activity in
systemic lupus erythematosus. Int Immunol. 9:547–554. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Desai-Mehta A, Mao C, Rajagopalan S,
Robinson T and Datta SK: Structure and specificity of T cell
receptors expressed by potentially pathogenic anti-DNA
autoantibody-inducing T cells in human lupus. J Clin Invest.
95:531–541. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Luo W, Ma L, Wen Q, Wang N, Zhou MQ and
Wang XN: Analysis of the interindividual conservation of T cell
receptor α- and β-chain variable regions gene in the peripheral
blood of patients with systemic lupus erythematosus. Clin Exp
Immunol. 154:316–324. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Codina-Busqueta E, Scholz E, Muñoz-Torres
PM, Roura-Mir C, Costa M, Xufré C, Planas R, Vives-Pi M,
Jaraquemada D and Martí M: TCR bias of in vivo expanded T cells in
pancreatic islets and spleen at the onset in human type 1 diabetes.
J Immunol. 186:3787–3797. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhou J, Kong C, Jia Y, Wang L, Jin C and
Wang X: The skewness of alpha beta T cell receptors in peripheral
blood of the patients with type 1 diabetes. Exp Clin Endocrinol
Diabetes. 124:1–4. 2016.
|
|
65
|
Kim JY, Balamurugan A, Azari K, Hofmann C,
Ng HL, Reed EF, McDiarmid S and Yang OO: Clonal CD8+ T
cell persistence and variable gene usage bias in a human
transplanted hand. PLoS One. 10:e01362352015. View Article : Google Scholar
|
|
66
|
Luo W, Liao WJ, Huang YT, Shi M, Zhang Y,
Wen Q, Zhou MQ and Ma L: Normalization of T cell receptor
repertoire diversity in patients with advanced colorectal cancer
who responded to chemotherapy. Cancer Sci. 102:706–712. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Luo W, Liao WJ, Ma L, Huang YT, Shi M, Wen
Q and Wang XN: Dynamic monitoring the TCR CDR3 spectratypes in
patients with metastatic CRC treated with a combination of
bevacizumab, irinotecan, fluorouracil, and leucovorin. Cancer
Immunol Immunother. 59:247–256. 2010. View Article : Google Scholar
|
|
68
|
Yu AL, Gilman AL, Ozkaynak MF, London WB,
Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay
KK, et al; Children's Oncology Group. Anti-GD2 antibody with
GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J
Med. 363:1324–1334. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hank JA, Robinson RR, Surfus J, Mueller
BM, Reisfeld RA, Cheung NK and Sondel PM: Augmentation of antibody
dependent cell mediated cytotoxicity following in vivo therapy with
recombinant interleukin 2. Cancer Res. 50:5234–5239.
1990.PubMed/NCBI
|
|
70
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wolchok JD, Kluger H, Callahan MK, Postow
MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K,
et al: Nivolumab plus ipilimumab in advanced melanoma. N Engl J
Med. 369:122–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bowman L, Grossmann M, Rill D, Brown M,
Zhong WY, Alexander B, Leimig T, Coustan-Smith E, Campana D,
Jenkins J, et al: IL-2 adenovector-transduced autologous tumor
cells induce antitumor immune responses in patients with
neuroblastoma. Blood. 92:1941–1949. 1998.PubMed/NCBI
|
|
74
|
Brenner MK, Heslop H, Krance R, Horowitz
M, Strother D, Nuchtern J, Grilley B, Martingano E and Cooper K:
Phase I study of chemokine and cytokine gene-modified autologous
neuroblastoma cells for treatment of relapsed/refractory
neuroblastoma using an adenoviral vector. Hum Gene Ther.
11:1477–1488. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pule MA, Savoldo B, Myers GD, Rossig C,
Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Z, et al:
Virus-specific T cells engineered to coexpress tumor-specific
receptors: Persistence and antitumor activity in individuals with
neuroblastoma. Nat Med. 14:1264–1270. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Louis CU, Savoldo B, Dotti G, Pule M, Yvon
E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, et al: Antitumor
activity and long-term fate of chimeric antigen receptor-positive T
cells in patients with neuroblastoma. Blood. 118:6050–6056. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Park JR, Digiusto DL, Slovak M, Wright C,
Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang WC, Ostberg
JR, et al: Adoptive transfer of chimeric antigen receptor
re-directed cytolytic T lymphocyte clones in patients with
neuroblastoma. Mol Ther. 15:825–833. 2007.PubMed/NCBI
|
|
78
|
Cheung NKV, Cheung IY, Kushner BH,
Ostrovnaya I, Chamberlain E, Kramer K and Modak S: Murine anti-GD2
monoclonal antibody 3F8 combined with granulocyte-macrophage
colony-stimulating factor and 13-cis-retinoic acid in high-risk
patients with stage 4 neuroblastoma in first remission. J Clin
Oncol. 30:3264–3270. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mackall CL, Fleisher TA, Brown MR, Magrath
IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL and Gress
RE: Lymphocyte depletion during treatment with intensive
chemotherapy for cancer. Blood. 84:2221–2228. 1994.PubMed/NCBI
|
|
80
|
June CH, Riddell SR and Schumacher TN:
Adoptive cellular therapy: A race to the finish line. Sci Transl
Med. 7:280ps72015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang M, Ma Z, Selliah N, Weiss G, Genin
A, Finkel TH and Cron RQ: The impact of Nucleofection®
on the activation state of primary human CD4 T cells. J Immunol
Methods. 408:123–131. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Clay TM, Custer MC, Sachs J, Hwu P,
Rosenberg SA and Nishimura MI: Efficient transfer of a tumor
antigen-reactive TCR to human peripheral blood lymphocytes confers
anti-tumor reactivity. J Immunol. 163:507–513. 1999.PubMed/NCBI
|
|
83
|
Duval L, Schmidt H, Kaltoft K, Fode K,
Jensen JJ, Sorensen SM, Nishimura MI and von der Maase H: Adoptive
transfer of allogeneic cytotoxic T lymphocytes equipped with a
HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in
metastatic melanoma. Clin Cancer Res. 12:1229–1236. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tang H, Qiao J and Fu YX: Immunotherapy
and tumor microenvironment. Cancer Lett. 370:85–90. 2016.
View Article : Google Scholar
|
|
85
|
Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA
and Morgan RA: Enhanced antitumor activity of murine-human hybrid
T-cell receptor (TCR) in human lymphocytes is associated with
improved pairing and TCR/CD3 stability. Cancer Res. 66:8878–8886.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kuball J, Dossett ML, Wolfl M, Ho WY, Voss
RH, Fowler C and Greenberg PD: Facilitating matched pairing and
expression of TCR chains introduced into human T cells. Blood.
109:2331–2338. 2007. View Article : Google Scholar
|
|
87
|
Bendle GM, Linnemann C, Hooijkaas AI, Bies
L, de Witte MA, Jorritsma A, Kaiser ADM, Pouw N, Debets R, Kieback
E, et al: Lethal graft-versus-host disease in mouse models of T
cell receptor gene therapy. Nat Med. 16:565–570. 1p5702010.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lan P, Wang L, Diouf B, Eguchi H, Su H,
Bronson R, Sachs DH, Sykes M and Yang YG: Induction of human T-cell
tolerance to porcine xenoantigens through mixed hematopoietic
chimerism. Blood. 103:3964–3969. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lan P, Tonomura N, Shimizu A, Wang S and
Yang YG: Reconstitution of a functional human immune system in
immunodeficient mice through combined human fetal thymus/liver and
CD34+ cell transplantation. Blood. 108:487–492. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tonomura N, Habiro K, Shimizu A, Sykes M
and Yang YG: Antigen-specific human T-cell responses and T
cell-dependent production of human antibodies in a humanized mouse
model. Blood. 111:4293–4296. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hu Z, Xia J, Fan W, Wargo J and Yang YG:
Human melanoma immunotherapy using tumor antigen-specific T cells
generated in humanized mice. Oncotarget. Jan 27–2016.(Epub ahead of
print).
|
|
92
|
Harris DT, Kranz DM and Adoptive T: Cell
therapies: A comparison of T cell receptors and chimeric antigen
receptors. Trends Pharmacol Sci. 37:220–230. 2015. View Article : Google Scholar
|
|
93
|
Heczey A and Louis CU: Advances in
chimeric antigen receptor immunotherapy for neuroblastoma. Discov
Med. 16:287–294. 2013.PubMed/NCBI
|
|
94
|
Maus MV, Grupp SA, Porter DL and June CH:
Antibody-modified T cells: CARs take the front seat for hematologic
malignancies. Blood. 123:2625–2635. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Alrifai D, Sarker D and Maher J: Prospects
for adoptive immunotherapy of pancreatic cancer using chimeric
antigen receptor-engineered T-cells. Immunopharm Immunot. 38:50–60.
2016. View Article : Google Scholar
|
|
96
|
Parkhurst MR, Yang JC, Langan RC, Dudley
ME, Nathan DAN, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry
RM, et al: T cells targeting carcinoembryonic antigen can mediate
regression of metastatic colorectal cancer but induce severe
transient colitis. Mol Ther. 19:620–626. 2011. View Article : Google Scholar :
|
|
97
|
Kaldor JM, Day NE, Pettersson F, Clarke
EA, Pedersen D, Mehnert W, Bell J, Høst H, Prior P, Karjalainen S,
et al: Leukemia following chemotherapy for ovarian cancer. N Engl J
Med. 322:1–6. 1990. View Article : Google Scholar : PubMed/NCBI
|