Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
July-2017 Volume 51 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2017 Volume 51 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review)

  • Authors:
    • Xiaofei Zhang
    • Qian Cheng
    • Huijing Yin
    • Gong Yang
  • View Affiliations / Copyright

    Affiliations: Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China, Department of Orthopedics, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
  • Pages: 18-24
    |
    Published online on: May 31, 2017
       https://doi.org/10.3892/ijo.2017.4025
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cellular autophagy and epithelial-mesenchymal transition (EMT) are key events mostly resulted from the interplay of tumor suppressors and oncogenes during cancer progression. The master tumor suppressor p53 may control tumor cell autophagy and EMT through the transcriptional induction of multiple target genes, while the activated oncogene RAS may also play a critical role in regulating mitogenic signaling to tumor cell autophagy and EMT. Although the fundamental functions of p53 and RAS are well understood, the interactive effects of p53 and RAS on autophagy and EMT are still unclear. In this review, we highlight the recent advances in the regulation of autophagy and EMT by p53 and RAS, aiming to explore novel therapeutic targets and biomarkers in cancer treatment and prevention.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Stępiński D: Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol. 146:119–139. 2016. View Article : Google Scholar

2 

Merino D and Malkin D: p53 and hereditary cancer. Subcell Biochem. 85:1–16. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Muller PA and Vousden KH: p53 mutations in cancer. Nat Cell Biol. 15:2–8. 2013. View Article : Google Scholar

4 

Freed-Pastor WA and Prives C: Mutant p53: One name, many proteins. Genes Dev. 26:1268–1286. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Silva JL, De Moura Gallo CV, Costa DC and Rangel LP: Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci. 39:260–267. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Fang B: RAS signaling and anti-RAS therapy: Lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim Biophys Sin (Shanghai). 48:27–38. 2016.

7 

Kimmelman AC: Metabolic dependencies in RAS-driven cancers. Clin Cancer Res. 21:1828–1834. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Stites EC and Ravichandran KS: A systems perspective of ras signaling in cancer. Clin Cancer Res. 15(5): 1510–1513. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Vandal G, Geiling B and Dankort D: Ras effector mutant expression suggest a negative regulator inhibits lung tumor formation. PLoS One. 9:e847452014. View Article : Google Scholar : PubMed/NCBI

10 

Xia M and Land H: Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol. 14:215–223. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C and Jacks T: Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature. 462:104–107. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR and Gudkov AV: A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 20:236–252. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Song H, Hollstein M and Xu Y: p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 9:573–580. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Lorin S, Hamaï A, Mehrpour M and Codogno P: Autophagy regulation and its role in cancer. Semin Cancer Biol. 23:361–379. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Kumar A, Singh UK and Chaudhary A: Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem. 7:1535–1542. 2015. View Article : Google Scholar : PubMed/NCBI

17 

White E and DiPaola RS: The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–53016. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Tang J, Di J, Cao H, Bai J and Zheng J: p53-mediated autophagic regulation: A prospective strategy for cancer therapy. Cancer Lett. 363:101–107. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al: Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 10:676–687. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Schmukler E, Kloog Y and Pinkas-Kramarski R: Ras and autophagy in cancer development and therapy. Oncotarget. 5:577–586. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Lock R, Kenific CM, Leidal AM, Salas E and Debnath J: Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4:466–479. 2014. View Article : Google Scholar : PubMed/NCBI

22 

White E: Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 12:401–410. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Budanov AV: Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal. 15:1679–1690. 2011. View Article : Google Scholar :

24 

Huang J and Manning BD: The TSC1–TSC2 complex: A molecular switchboard controlling cell growth. Biochem J. 412:179–190. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Kong B, Wu W, Cheng T, Schlitter AM, Qian C, Bruns P, Jian Z, Jäger C, Regel I, Raulefs S, et al: A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling. Gut. 65:647–657. 2016. View Article : Google Scholar

27 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Mizushima N, Yoshimori T and Ohsumi Y: The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Eby KG, Rosenbluth JM, Mays DJ, Marshall CB, Barton CE, Sinha S, Johnson KN, Tang L and Pietenpol JA: ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy. Mol Cancer. 9:952010. View Article : Google Scholar : PubMed/NCBI

31 

Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, Sidow A and Attardi LD: Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27:1016–1031. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Gao W, Shen Z, Shang L and Wang X: Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ. 18:1598–1607. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, et al: Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27:1447–1461. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Kim MJ, Woo SJ, Yoon CH, Lee JS, An S, Choi YH, Hwang SG, Yoon G and Lee SJ: Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem. 286:12924–12932. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Kinsey C, Balakrishnan V, O'Dell MR, Huang JL, Newman L, Whitney-Miller CL, Hezel AF and Land H: Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression. Cell Rep. 7:1143–1155. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Desai S, Liu Z, Yao J, Patel N, Chen J, Wu Y, Ahn EE, Fodstad O and Tan M: Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem. 288:9165–9176. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Vydra N, Toma A and Widlak W: Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets. 14:144–155. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H, Bronson RT, Whitesell L and Lindquist S: Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest. 122:3742–3754. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Li Q and Martinez JD: P53 is transported into the nucleus via an Hsf1-dependent nuclear localization mechanism. Mol Carcinog. 50:143–152. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Hu YL, Jahangiri A, De Lay M and Aghi MK: Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy. 8:979–981. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Chen C, Pore N, Behrooz A, Ismail-Beigi F and Maity A: Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 276:9519–9525. 2001. View Article : Google Scholar

44 

Nieminen AL, Qanungo S, Schneider EA, Jiang BH and Agani FH: Mdm2 and HIF-1alpha interaction in tumor cells during hypoxia. J Cell Physiol. 204:364–369. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Robertson ED, Semenchenko K and Wasylyk B: Crosstalk between Mdm2, p53 and HIF1-α: Distinct responses to oxygen stress and implications for tumour hypoxia. Subcell Biochem. 85:199–214. 2014. View Article : Google Scholar

46 

Hay ED: An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 154:8–20. 1995. View Article : Google Scholar

47 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 16:488–494. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS and Kalluri R: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 527:525–530. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM and Downward J: Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 29:4658–4670. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI

53 

Zhang J, Lei Y, Gao X, Liang Q, Li L, Feng J, Hou P, Han L, Zhang Y, Huang B, et al: p53 Attenuates the oncogenic Ras-induced epithelial-mesenchymal transition in human mammary epithelial cells. Biochem Biophys Res Commun. 434:606–613. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Wang Z, Wade P, Mandell KJ, Akyildiz A, Parkos CA, Mrsny RJ and Nusrat A: Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene. 26:1222–1230. 2007. View Article : Google Scholar

55 

Saegusa M, Hashimura M, Kuwata T and Okayasu I: Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am J Pathol. 174:2107–2115. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, et al: p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 11:694–704. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Wang Y, Bu F, Royer C, Serres S, Larkin JR, Soto MS, Sibson NR, Salter V, Fritzsche F, Turnquist C, et al: ASPP2 controls epithelial plasticity and inhibits metastasis through β-catenin-dependent regulation of ZEB1. Nat Cell Biol. 16:1092–1104. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS, et al: p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 208:875–883. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, et al: p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 13:317–323. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, et al: Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 14:79–89. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Jiang Y, Xie X, Li Z, Wang Z, Zhang Y, Ling ZQ, Pan Y, Wang Z and Chen Y: Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition. Cancer Res. 71:2959–2968. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, et al: Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23:2140–2151. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Roger L, Jullien L, Gire V and Roux P: Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells. J Cell Sci. 123:1295–1305. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Ohashi S, Natsuizaka M, Wong GS, Michaylira CZ, Grugan KD, Stairs DB, Kalabis J, Vega ME, Kalman RA, Nakagawa M, et al: Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res. 70:4174–4184. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Jiang Z, Deng T, Jones R, Li H, Herschkowitz JI, Liu JC, Weigman VJ, Tsao MS, Lane TF, Perou CM, et al: Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Invest. 120:3296–3309. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, Pratilas CA, Abele C, Hernandez JM, Ohara M, et al: The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol. 17:81–94. 2015. View Article : Google Scholar

67 

Gao T, Li JZ, Lu Y, Zhang CY, Li Q, Mao J and Li LH: The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother. 80:393–405. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T and Konishi I: Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. 163:1437–1447. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, et al: Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer. 13:1082013. View Article : Google Scholar

70 

Cui Y, Li YY, Li J, Zhang HY, Wang F, Bai X and Li SS: STAT3 regulates hypoxia-induced epithelial mesenchymal transition in oesophageal squamous cell cancer. Oncol Rep. 36:108–116. 2016.PubMed/NCBI

71 

Tsai YP and Wu KJ: Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci. 19:1022012. View Article : Google Scholar : PubMed/NCBI

72 

Tsai JH and Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Gugnoni M, Sancisi V, Manzotti G, Gandolfi G and Ciarrocchi A: Autophagy and epithelial-mesenchymal transition: An intricate interplay in cancer. Cell Death Dis. 7:e25202016. View Article : Google Scholar : PubMed/NCBI

74 

Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, Zhang B, Yang B, Li B, Yang H, et al: Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 6:39839–39854. 2015.PubMed/NCBI

75 

Qiang L and He YY: Autophagy deficiency stabilizes TWIST1 to promote epithelial-mesenchymal transition. Autophagy. 10:1864–1865. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Catalano M, D'Alessandro G, Lepore F, Corazzari M, Caldarola S, Valacca C, Faienza F, Esposito V, Limatola C, Cecconi F, et al: Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol Oncol. 9:1612–1625. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Lv Q, Hua F and Hu ZW: DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy. 8:1675–1676. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y, Song Z, Zheng Q and Xiong J: Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis. 34:1343–1351. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Wei SC and Yang J: Forcing through tumor metastasis: The interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26:111–120. 2016. View Article : Google Scholar :

80 

Tojkander S, Gateva G and Lappalainen P: Actin stress fibers-assembly, dynamics and biological roles. J Cell Sci. 125:1855–1864. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Ni HM, Williams JA and Ding WX: Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4:6–13. 2015. View Article : Google Scholar :

82 

Youle RJ and van der Bliek AM: Mitochondrial fission, fusion, and stress. Science. 337:1062–1065. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW and Tu Y: Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 32:4814–4824. 2013. View Article : Google Scholar

84 

Ketschek A and Gallo G: Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci. 30:12185–12197. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Parada LF, Land H, Weinberg RA, Wolf D and Rotter V: Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature. 312:649–651. 1984. View Article : Google Scholar : PubMed/NCBI

86 

Jenkins JR, Rudge K and Currie GA: Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature. 312:651–654. 1984. View Article : Google Scholar : PubMed/NCBI

87 

Eliyahu D, Raz A, Gruss P, Givol D and Oren M: Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature. 312:646–649. 1984. View Article : Google Scholar : PubMed/NCBI

88 

DuPage M, Dooley AL and Jacks T: Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 4:1064–1072. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S and Tuveson DA: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 7:469–483. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Tsumura H, Yoshida T, Saito H, Imanaka-Yoshida K and Suzuki N: Cooperation of oncogenic K-ras and p53 deficiency in pleomorphic rhabdomyosarcoma development in adult mice. Oncogene. 25:7673–7679. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Zheng S, El-Naggar AK, Kim ES, Kurie JM and Lozano G: A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene. 26:6896–6904. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Muñoz DM, Tung T, Agnihotri S, Singh S, Guha A, Zadeh G and Hawkins C: Loss of p53 cooperates with K-ras activation to induce glioma formation in a region-independent manner. Glia. 61:1862–1872. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Solomon H, Brosh R, Buganim Y and Rotter V: Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: Cooperative events in tumorigenesis. Discov Med. 9:448–454. 2010.PubMed/NCBI

94 

Jackson JG and Lozano G: The mutant p53 mouse as a preclinical model. Oncogene. 32:4325–4330. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Bertheau P, Turpin E, Rickman DS, Espié M, de Reyniès A, Feugeas JP, Plassa LF, Soliman H, Varna M, de Roquancourt A, et al: Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 4:e902007. View Article : Google Scholar : PubMed/NCBI

96 

Cassinelli G, Zuco V, Gatti L, Lanzi C, Zaffaroni N, Colombo D and Perego P: Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells. Curr Med Chem. 20:1923–1945. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Gurpinar E and Vousden KH: Hitting cancers' weak spots: Vulnerabilities imposed by p53 mutation. Trends Cell Biol. 25:486–495. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Bournet B, Buscail C, Muscari F, Cordelier P and Buscail L: Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur J Cancer. 54:75–83. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang X, Cheng Q, Yin H and Yang G: Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). Int J Oncol 51: 18-24, 2017.
APA
Zhang, X., Cheng, Q., Yin, H., & Yang, G. (2017). Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). International Journal of Oncology, 51, 18-24. https://doi.org/10.3892/ijo.2017.4025
MLA
Zhang, X., Cheng, Q., Yin, H., Yang, G."Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review)". International Journal of Oncology 51.1 (2017): 18-24.
Chicago
Zhang, X., Cheng, Q., Yin, H., Yang, G."Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review)". International Journal of Oncology 51, no. 1 (2017): 18-24. https://doi.org/10.3892/ijo.2017.4025
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Cheng Q, Yin H and Yang G: Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). Int J Oncol 51: 18-24, 2017.
APA
Zhang, X., Cheng, Q., Yin, H., & Yang, G. (2017). Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). International Journal of Oncology, 51, 18-24. https://doi.org/10.3892/ijo.2017.4025
MLA
Zhang, X., Cheng, Q., Yin, H., Yang, G."Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review)". International Journal of Oncology 51.1 (2017): 18-24.
Chicago
Zhang, X., Cheng, Q., Yin, H., Yang, G."Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review)". International Journal of Oncology 51, no. 1 (2017): 18-24. https://doi.org/10.3892/ijo.2017.4025
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team