|
1
|
Marei H and Malliri A: Rac1 in human
diseases: The therapeutic potential of targeting Rac1 signaling
regulatory mechanisms. Small GTPases. Jul 21–2016.Epub ahead of
print. PubMed/NCBI
|
|
2
|
Feltri ML, Suter U and Relvas JB: The
function of RhoGTPases in axon ensheathment and myelination. Glia.
56:1508–1517. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wuichet K and Søgaard-Andersen L:
Evolution and diversity of the Ras superfamily of small GTPases in
prokaryotes. Genome Biol Evol. 7:57–70. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ramos S, Khademi F, Somesh BP and Rivero
F: Genomic organization and expression profile of the small GTPases
of the RhoBTB family in human and mouse. Gene. 298:147–157. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Leung KF, Baron R, Ali BR, Magee AI and
Seabra MC: Rab GTPases containing a CAAX motif are processed
post-geranylgeranylation by proteolysis and methylation. J Biol
Chem. 282:1487–1497. 2007. View Article : Google Scholar
|
|
6
|
Aicart-Ramos C, Valero RA and
Rodriguez-Crespo I: Protein palmitoylation and subcellular
trafficking. Biochim Biophys Acta. 1808:2981–2994. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shinde SR and Maddika S: Post
translational modifications of Rab GTPases. Small GTPases. Feb
28–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ulu A and Frost JA: Regulation of RhoA
activation and cytoskeletal organization by acetylation. Small
GTPases. 7:76–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Martin E, Ouellette MH and Jenna S:
Rac1/RhoA antagonism defines cell-to-cell heterogeneity during
epidermal morphogenesis in nematodes. J Cell Biol. 215:483–498.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sahai E and Marshall CJ: RHO-GTPases and
cancer. Nat Rev Cancer. 2:133–142. 2002. View Article : Google Scholar
|
|
11
|
Takai Y, Sasaki T and Matozaki T: Small
GTP-binding proteins. Physiol Rev. 81:153–208. 2001.PubMed/NCBI
|
|
12
|
Kjøller L and Hall A: Signaling to Rho
GTPases. Exp Cell Res. 253:166–179. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Symons M: The Rac and Rho pathways as a
source of drug targets for Ras-mediated malignancies. Curr Opin
Biotechnol. 6:668–674. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Griner EM, Caino MC, Sosa MS,
Colón-González F, Chalmers MJ, Mischak H and Kazanietz MG: A novel
crosstalk in diacylglycerol signaling: The Rac-GAP β2-chimaerin is
negatively regulated by protein kinase Cdelta-mediated
phosphorylation. J Biol Chem. 285:16931–16941. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bustos RI, Forget MA, Settleman JE and
Hansen SH: Coordination of Rho and Rac GTPase function via p190B
RhoGAP. Curr Biol. 18:1606–1611. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rosenfeldt H, Castellone MD, Randazzo PA
and Gutkind JS: Rac inhibits thrombin-induced Rho activation:
Evidence of a Pak-dependent GTPase crosstalk. J Mol Signal. 1:8.
2006. View Article : Google Scholar
|
|
17
|
Jaffe AB and Hall A: Rho GTPases:
Biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kyrkou A, Soufi M, Bahtz R, Ferguson C,
Bai M, Parton RG, Hoffmann I, Zerial M, Fotsis T and Murphy C: RhoD
participates in the regulation of cell-cycle progression and
centrosome duplication. Oncogene. 32:1831–1842. 2013. View Article : Google Scholar
|
|
19
|
Wei L, Surma M, Shi S, Lambert-Cheatham N
and Shi J: Novel insights into the roles of Rho kinase in cancer.
Arch Immunol Ther Exp (Warsz). 64:259–278. 2016. View Article : Google Scholar
|
|
20
|
Bartolini F, Moseley JB, Schmoranzer J,
Cassimeris L, Goode BL and Gundersen GG: The formin mDia2
stabilizes microtubules independently of its actin nucleation
activity. J Cell Biol. 181:523–536. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Reicher B, Joseph N, David A, Pauker MH,
Perl O and Barda-Saad M: Ubiquitylation-dependent negative
regulation of WASp is essential for actin cytoskeleton dynamics.
Mol Cell Biol. 32:3153–3163. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ohashi K, Nagata K, Maekawa M, Ishizaki T,
Narumiya S and Mizuno K: Rho-associated kinase ROCK activates
LIM-kinase 1 by phosphorylation at threonine 508 within the
activation loop. J Biol Chem. 275:3577–3582. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lian G and Sheen VL: Cytoskeletal proteins
in cortical development and disease: Actin associated proteins in
periventricular heterotopia. Front Cell Neurosci. 9:992015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Malarkannan S, Awasthi A, Rajasekaran K,
Kumar P, Schuldt KM, Bartoszek A, Manoharan N, Goldner NK, Umhoefer
CM and Thakar MS: IQGAP1: A regulator of intracellular spacetime
relativity. J Immunol. 188:2057–2063. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Belletti B and Baldassarre G: Stathmin: A
protein with many tasks. New biomarker and potential target in
cancer. Expert Opin Ther Targets. 15:1249–1266. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bishop AL and Hall A: Rho GTPases and
their effector proteins. Biochem J. 348:241–255. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Miyano K and Sumimoto H: Assessment of the
role for Rho family GTPases in NADPH oxidase activation. Methods
Mol Biol. 827:195–212. 2012. View Article : Google Scholar
|
|
28
|
David M, Petit D and Bertoglio J: Cell
cycle regulation of Rho signaling pathways. Cell Cycle.
11:3003–3010. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dupont S, Morsut L, Aragona M, Enzo E,
Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M,
Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature.
474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Porter AP, Papaioannou A and Malliri A:
Deregulation of Rho GTPases in cancer. Small GTPases. 7:123–138.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hodis E, Watson IR, Kryukov GV, Arold ST,
Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C,
et al: A landscape of driver mutations in melanoma. Cell.
150:251–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Krauthammer M, Kong Y, Ha BH, Evans P,
Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, et
al: Exome sequencing identifies recurrent somatic RAC1 mutations in
melanoma. Nat Genet. 44:1006–1014. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rossman KL, Der CJ and Sondek J: GEF means
go: Turning on RHO GTPases with guanine nucleotide-exchange
factors. Nat Rev Mol Cell Biol. 6:167–180. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fields AP and Justilien V: The guanine
nucleotide exchange factor (GEF) Ect2 is an oncogene in human
cancer. Adv Enzyme Regul. 50:190–200. 2010. View Article : Google Scholar :
|
|
35
|
Vigil D, Cherfils J, Rossman KL and Der
CJ: Ras superfamily GEFs and GAPs: Validated and tractable targets
for cancer therapy? Nat Rev Cancer. 10:842–857. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jarzynka MJ, Hu B, Hui KM, Bar-Joseph I,
Gu W, Hirose T, Haney LB, Ravichandran KS, Nishikawa R and Cheng
SY: ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange
factor, promote human glioma cell invasion. Cancer Res.
67:7203–7211. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wertheimer E, Gutierrez-Uzquiza A,
Rosemblit C, Lopez-Haber C, Sosa MS and Kazanietz MG: Rac signaling
in breast cancer: A tale of GEFs and GAPs. Cell Signal. 24:353–362.
2012. View Article : Google Scholar :
|
|
38
|
Khosravi-Far R, Solski PA, Clark GJ, Kinch
MS and Der CJ: Activation of Rac1, RhoA, and mitogen-activated
protein kinases is required for Ras transformation. Mol Cell Biol.
15:6443–6453. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Qiu RG, Chen J, McCormick F and Symons M:
A role for Rho in Ras transformation. Proc Natl Acad Sci USA.
92:11781–11785. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sahai E and Marshall CJ: Differing modes
of tumour cell invasion have distinct requirements for Rho/ROCK
signalling and extracellular proteolysis. Nat Cell Biol. 5:711–719.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wolf K, Mazo I, Leung H, Engelke K, von
Andrian UH, Deryugina EI, Strongin AY, Bröcker EB and Friedl P:
Compensation mechanism in tumor cell migration:
Mesenchymal-amoeboid transition after blocking of pericellular
proteolysis. J Cell Biol. 160:267–277. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi
K and Takahashi Y: Mesenchymal-epithelial transition during somitic
segmentation is regulated by differential roles of Cdc42 and Rac1.
Dev Cell. 7:425–438. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lv Z, Hu M, Zhen J, Lin J, Wang Q and Wang
R: Rac1/AK1 signaling promotes epithelial-mesenchymal transition of
podocytes in vitro via triggering β-catenin transcriptional
activity under high glucose conditions. Int J Biochem Cell Biol.
45:255–264. 2013. View Article : Google Scholar
|
|
44
|
Fritz G, Just I and Kaina B: Rho GTPases
are over-expressed in human tumors. Int J Cancer. 81:682–687. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Engers R, Ziegler S, Mueller M, Walter A,
Willers R and Gabbert HE: Prognostic relevance of increased Rac
GTPase expression in prostate carcinomas. Endocr Relat Cancer.
14:245–256. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin Y and Zheng Y: Approaches of targeting
Rho GTPases in cancer drug discovery. Expert Opin Drug Discov.
10:991–1010. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gómez del Pulgar T, Benitah SA, Valerón
PF, Espina C and Lacal JC: Rho GTPase expression in tumourigenesis:
Evidence for a significant link. BioEssays. 27:602–613. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu Y, Song N, Ren K, Meng S, Xie Y, Long
Q, Chen X and Zhao X: Expression loss and revivification of RhoB
gene in ovary carcinoma carcinogenesis and development. PLoS One.
8:e784172013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Karlsson R, Pedersen ED, Wang Z and
Brakebusch C: Rho GTPase function in tumorigenesis. Biochim Biophys
Acta. 1796:91–98. 2009.PubMed/NCBI
|
|
50
|
Royer C and Lu X: Epithelial cell
polarity: A major gatekeeper against cancer? Cell Death Differ.
18:1470–1477. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Joyce JA and Pollard JW:
Microenvironmental regulation of metastasis. Nat Rev Cancer.
9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Parri M and Chiarugi P: Rac and Rho
GTPases in cancer cell motility control. Cell Commun Signal. 8:23.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mackay AR, Gomez DE, Nason AM and
Thorgeirsson UP: Studies on the effects of laminin, E-8 fragment of
laminin and synthetic laminin peptides PA22-2 and YIGSR on matrix
metalloproteinases and tissue inhibitor of metalloproteinase
expression. Lab Invest. 70:800–806. 1994.PubMed/NCBI
|
|
54
|
Zavarella S, Nakada M, Belverud S,
Coniglio SJ, Chan A, Mittler MA, Schneider SJ and Symons M: Role of
Rac1-regulated signaling in medulloblastoma invasion. Laboratory
investigation. J Neurosurg Pediatr. 4:97–104. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Salhia B, Tran NL, Chan A, Wolf A, Nakada
M, Rutka F, Ennis M, McDonough WS, Berens ME, Symons M, et al: The
guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate
the invasive behavior of glioblastoma. Am J Pathol. 173:1828–1838.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chan AY, Coniglio SJ, Chuang YY,
Michaelson D, Knaus UG, Philips MR and Symons M: Roles of the Rac1
and Rac3 GTPases in human tumor cell invasion. Oncogene.
24:7821–7829. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
de Lorenzo MS, Ripoll GV, Yoshiji H,
Yamazaki M, Thorgeirsson UP, Alonso DF and Gomez DE: Altered tumor
angiogenesis and metastasis of B16 melanoma in transgenic mice
overexpressing tissue inhibitor of metalloproteinases-1. In Vivo.
17:45–50. 2003.PubMed/NCBI
|
|
58
|
Bryan BA and D'Amore PA: What tangled webs
they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci.
64:2053–2065. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Habets GG, van der Kammen RA, Stam JC,
Michiels F and Collard JG: Sequence of the human invasion-inducing
TIAM1 gene, its conservation in evolution and its expression in
tumor cell lines of different tissue origin. Oncogene.
10:1371–1376. 1995.PubMed/NCBI
|
|
60
|
van Leeuwen FN, van der Kammen RA, Habets
GG and Collard JG: Oncogenic activity of Tiam1 and Rac1 in NIH3T3
cells. Oncogene. 11:2215–2221. 1995.PubMed/NCBI
|
|
61
|
Li Z, Liu Q, Piao J, Hua F, Wang J, Jin G,
Lin Z and Zhang Y: Clinicopathological implications of Tiam1
overexpression in invasive ductal carcinoma of the breast. BMC
Cancer. 16:6812016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Razidlo GL, Magnine C, Sletten AC, Hurley
RM, Almada LL, Fernandez-Zapico ME, Ji B and McNiven MA: Targeting
pancreatic cancer metastasis by inhibition of Vav1, a driver of
tumor cell invasion. Cancer Res. 75:2907–2915. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang C, Liu Y, Leskow FC, Weaver VM and
Kazanietz MG: Rac-GAP-dependent inhibition of breast cancer cell
proliferation by {beta}2-chimerin. J Biol Chem. 280:24363–24370.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Menna PL, Skilton G, Leskow FC, Alonso DF,
Gomez DE and Kazanietz MG: Inhibition of aggressiveness of
metastatic mouse mammary carcinoma cells by the beta2-chimaerin GAP
domain. Cancer Res. 63:2284–2291. 2003.PubMed/NCBI
|
|
65
|
Gomez DE, Armando RG and Alonso DF: AZT as
a telomerase inhibitor. Front Oncol. 2:1132012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Armando RG, Gomez DM and Gomez DE: AZT
exerts its antitumoral effect by telomeric and non-telomeric
effects in a mammary adenocarcinoma model. Oncol Rep. 36:2731–2736.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Qu Y, Mao M, Li X, Zhang L, Huang X, Yang
C, Zhao F, Xiong Y and Mu D: Enhanced migration and CXCR4
over-expression in fibroblasts with telomerase reconstitution. Mol
Cell Biochem. 313:45–52. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yeh YM, Pan YT and Wang TC: Cdc42/Rac1
participates in the control of telomerase activity in human
nasopharyngeal cancer cells. Cancer Lett. 218:207–213. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gomez DLM, Armando RG, Cerrudo CS,
Ghiringhelli PD and Gomez DE: Telomerase as a cancer target.
Development of new molecules. Curr Top Med Chem. 16:2432–2440.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fernández Larrosa PN, Ruíz Grecco M,
Mengual Gómez D, Alvarado CV, Panelo LC, Rubio MF, Alonso DF, Gómez
DE and Costas MA: RAC3 more than a nuclear receptor coactivator: A
key inhibitor of senescence that is downregulated in aging. Cell
Death Dis. 6:e19022015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen PC, Peng JR, Huang L, Li WX, Wang WZ,
Cui ZQ, Han H, Gong L, Xiang DP, Qiao SS, et al: Overexpression of
human telomerase reverse transcriptase promotes the motility and
invasiveness of HepG2 cells in vitro. Oncol Rep. 30:1157–1164.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gómez DL, Farina HG and Gómez DE:
Telomerase regulation: A key to inhibition? (Review). Int J Oncol.
43:1351–1356. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cassimeris L: The oncoprotein 18/stathmin
family of microtubule destabilizers. Curr Opin Cell Biol. 14:18–24.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tyler JJ, Allwood EG and Ayscough KR: WASP
family proteins, more than Arp2/3 activators. Biochem Soc Trans.
44:1339–1345. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Choi S and Anderson RA: IQGAP1 is a
phosphoinositide effector and kinase scaffold. Adv Biol Regul.
60:29–35. 2016. View Article : Google Scholar :
|
|
76
|
Dummler B, Ohshiro K, Kumar R and Field J:
Pak protein kinases and their role in cancer. Cancer Metastasis
Rev. 28:51–63. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Parsons M and Adams JC: Rac regulates the
interaction of fascin with protein kinase C in cell migration. J
Cell Sci. 121:2805–2813. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wei L, Surma M, Shi S, Lambert-Cheatham N
and Shi J: Novel insights into the roles of Rho kinase in cancer.
Arch Immunol Ther Exp (Warsz). 64:259–278. 2016. View Article : Google Scholar
|
|
79
|
Rattan S and Singh J: RhoA/ROCK pathway is
the major molecular determinant of basal tone in intact human
internal anal sphincter. Am J Physiol Gastrointest Liver Physiol.
302:G664–G675. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Dawson JC, Bruche S, Spence HJ, Braga VM
and Machesky LM: Mtss1 promotes cell-cell junction assembly and
stability through the small GTPase Rac1. PLoS One. 7:e311412012.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zandvakili I, Lin Y, Morris JC and Zheng
Y: Rho GTPases: Anti-or pro-neoplastic targets. Oncogene.
36:3213–3222. 2017. View Article : Google Scholar
|
|
82
|
Cooper DN, Krawczak M, Polychronakos C,
Tyler-Smith C and Kehrer-Sawatzki H: Where genotype is not
predictive of phenotype: Towards an understanding of the molecular
basis of reduced penetrance in human inherited disease. Hum Genet.
132:1077–1130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gao Y, Dickerson JB, Guo F, Zheng J and
Zheng Y: Rational design and characterization of a Rac
GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA.
101:7618–7623. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bid HK, Roberts RD, Manchanda PK and
Houghton PJ: RAC1: An emerging therapeutic option for targeting
cancer angiogenesis and metastasis. Mol Cancer Ther. 12:1925–1934.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kaneto N, Yokoyama S, Hayakawa Y, Kato S,
Sakurai H and Saiki I: RAC1 inhibition as a therapeutic target for
gefitinib-resistant non-small-cell lung cancer. Cancer Sci.
105:788–794. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Dokmanovic M, Wu Y, Shen Y, Chen J, Hirsch
DS and Wu WJ: Trastuzumab-induced recruitment of Csk-homologous
kinase (CHK) to ErbB2 receptor is associated with ErbB2-Y1248
phosphorylation and ErbB2 degradation to mediate cell growth
inhibition. Cancer Biol Ther. 15:1029–1041. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Karpel-Massler G, Westhoff MA, Kast RE,
Dwucet A, Karpel-Massler S, Nonnenmacher L, Siegelin MD, Wirtz CR,
Debatin KM and Halatsch ME: Simultaneous interference with
HER1/EGFR and RAC1 signaling drives cytostasis and suppression of
survivin in human glioma cells in vitro. Neurochem Res.
42:1543–1554. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Montalvo-Ortiz BL, Castillo-Pichardo L,
Hernández E, Humphries-Bickley T, De la Mota-Peynado A, Cubano LA,
Vlaar CP and Dharmawardhane S: Characterization of EHop-016, novel
small molecule inhibitor of Rac GTPase. J Biol Chem.
287:13228–13238. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cardama GA, Comin MJ, Hornos L, Gonzalez
N, Defelipe L, Turjanski AG, Alonso DF, Gomez DE and Menna PL:
Preclinical development of novel Rac1-GEF signaling inhibitors
using a rational design approach in highly aggressive breast cancer
cell lines. Anticancer Agents Med Chem. 14:840–851. 2014.
View Article : Google Scholar :
|
|
90
|
Gonzalez N, Cardama GA, Comin MJ, Segatori
VI, Pifano M, Alonso DF, Gomez DE and Menna PL: Pharmacological
inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in
human resistant breast cancer cells. Cell Signal. 30:154–161. 2017.
View Article : Google Scholar
|
|
91
|
Felekkis KN, Narsimhan RP, Near R, Castro
AF, Zheng Y, Quilliam LA and Lerner A: AND-34 activates
phosphatidylinositol 3-kinase and induces anti-estrogen resistance
in a SH2 and GDP exchange factor-like domain-dependent manner. Mol
Cancer Res. 3:32–41. 2005.PubMed/NCBI
|
|
92
|
Cai D, Iyer A, Felekkis KN, Near RI, Luo
Z, Chernoff J, Albanese C, Pestell RG and Lerner A: AND-34/BCAR3, a
GDP exchange factor whose overexpression confers antiestrogen
resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer
Res. 63:6802–6808. 2003.PubMed/NCBI
|
|
93
|
Cardama GA, Gonzalez N, Ciarlantini M,
Gandolfi Donadío L, Comin MJ, Alonso DF, Menna PL and Gomez DE:
Proapoptotic and antiinvasive activity of Rac1 small molecule
inhibitors on malignant glioma cells. Onco Targets Ther.
7:2021–2033. 2014.PubMed/NCBI
|
|
94
|
Hwang SY, Jung JW, Jeong JS, Kim YJ, Oh
ES, Kim TH, Kim JY, Cho KH and Han IO: Dominant-negative Rac
increases both inherent and ionizing radiation-induced cell
migration in C6 rat glioma cells. Int J Cancer. 118:2056–2063.
2006. View Article : Google Scholar
|
|
95
|
Delmas C, Heliez C, Cohen-Jonathan E, End
D, Bonnet J, Favre G and Toulas C: Farnesyltransferase inhibitor,
R115777, reverses the resistance of human glioma cell lines to
ionizing radiation. Int J Cancer. 100:43–48. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhai GG, Malhotra R, Delaney M, Latham D,
Nestler U, Zhang M, Mukherjee N, Song Q, Robe P and Chakravarti A:
Radiation enhances the invasive potential of primary glioblastoma
cells via activation of the Rho signaling pathway. J Neurooncol.
76:227–237. 2006. View Article : Google Scholar
|
|
97
|
Florian MC, Dörr K, Niebel A, Daria D,
Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M,
Scharffetter-Kochanek K, et al: Cdc42 activity regulates
hematopoietic stem cell aging and rejuvenation. Cell Stem Cell.
10:520–530. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hong L, Kenney SR, Phillips GK, Simpson D,
Schroeder CE, Nöth J, Romero E, Swanson S, Waller A, Strouse JJ, et
al: Characterization of a Cdc42 protein inhibitor and its use as a
molecular probe. J Biol Chem. 288:8531–8543. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Friesland A, Zhao Y, Chen YH, Wang L, Zhou
H and Lu Q: Small molecule targeting Cdc42-intersectin interaction
disrupts Golgi organization and suppresses cell motility. Proc Natl
Acad Sci USA. 110:1261–1266. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shang X, Marchioni F, Sipes N, Evelyn CR,
Jerabek-Willemsen M, Duhr S, Seibel W, Wortman M and Zheng Y:
Rational design of small molecule inhibitors targeting RhoA
subfamily Rho GTPases. Chem Biol. 19:699–710. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shutes A, Onesto C, Picard V, Leblond B,
Schweighoffer F and Der CJ: Specificity and mechanism of action of
EHT 1864, a novel small molecule inhibitor of Rac family small
GTPases. J Biol Chem. 282:35666–35678. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Arnst JL, Hein AL, Taylor MA, Palermo NY,
Contreras JI, Sonawane YA, Wahl AO, Ouellette MM, Natarajan A and
Yan Y: Discovery and characterization of small molecule Rac1
inhibitors. Oncotarget. 8:34586–34600. 2017.PubMed/NCBI
|
|
103
|
Mazieres J, Pradines A and Favre G:
Perspectives on farnesyl transferase inhibitors in cancer therapy.
Cancer Lett. 206:159–167. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chan KK, Oza AM and Siu LL: The statins as
anticancer agents. Clin Cancer Res. 9:10–19. 2003.PubMed/NCBI
|
|
105
|
Farina HG, Bublik DR, Alonso DF and Gomez
DE: Lovastatin alters cytoskeleton organization and inhibits
experimental metastasis of mammary carcinoma cells. Clin Exp
Metastasis. 19:551–559. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tanaka S, Fukumoto Y, Nochioka K, Minami
T, Kudo S, Shiba N, Takai Y, Williams CL, Liao JK and Shimokawa H:
Statins exert the pleiotropic effects through small GTP-binding
protein dissociation stimulator upregulation with a resultant Rac1
degradation. Arterioscler Thromb Vasc Biol. 33:1591–1600. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Michaelson D, Abidi W, Guardavaccaro D,
Zhou M, Ahearn I, Pagano M and Philips MR: Rac1 accumulates in the
nucleus during the G2 phase of the cell cycle and promotes cell
division. J Cell Biol. 181:485–496. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Navarro-Lérida I, Pellinen T, Sanchez SA,
Guadamillas MC, Wang Y, Mirtti T, Calvo E and Del Pozo MA: Rac1
nucleocytoplasmic shuttling drives nuclear shape changes and tumor
invasion. Dev Cell. 32:318–334. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mendoza-Catalán MA, Cristóbal-Mondragón
GR, Adame-Gómez J, del Valle-Flores HN, Coppe JF, Sierra-López L,
Romero-Hernández MA, del Carmen Alarcón-Romero L, Illades-Aguiar B
and Castañeda-Saucedo E: Nuclear expression of Rac1 in cervical
premalignant lesions and cervical cancer cells. BMC Cancer. 12:116.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lu J, Chan L, Fiji HDG, Dahl R, Kwon O and
Tamanoi F: In vivo antitumor effect of a novel inhibitor of protein
geranylgeranyltransferase-I. Mol Cancer Ther. 8:1218–1226. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zimonjic DB, Chan LN, Tripathi V, Lu J,
Kwon O, Popescu NC, Lowy DR and Tamanoi F: In vitro and in vivo
effects of geranylgeranyltransferase I inhibitor P61A6 on non-small
cell lung cancer cells. BMC Cancer. 13:198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Berndt N, Hamilton AD and Sebti SM:
Targeting protein prenylation for cancer therapy. Nat Rev Cancer.
11:775–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Draper JM, Xia Z and Smith CD: Cellular
palmitoylation and trafficking of lipidated peptides. J Lipid Res.
48:1873–1884. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Nagumo H, Sasaki Y, Ono Y, Okamoto H, Seto
M and Takuwa Y: Rho kinase inhibitor HA-1077 prevents Rho-mediated
myosin phosphatase inhibition in smooth muscle cells. Am J Physiol
Cell Physiol. 278:C57–C65. 2000.PubMed/NCBI
|
|
115
|
Uehata M, Ishizaki T, Satoh H, Ono T,
Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M,
et al: Calcium sensitization of smooth muscle mediated by a
Rho-associated protein kinase in hypertension. Nature. 389:990–994.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kale VP, Hengst JA, Desai DH, Amin SG and
Yun JK: The regulatory roles of ROCK and MRCK kinases in the
plasticity of cancer cell migration. Cancer Lett. 361:185–196.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
James SE, Burden H, Burgess R, Xie Y, Yang
T, Massa SM, Longo FM and Lu Q: Anti-cancer drug induced
neurotoxicity and identification of Rho pathway signaling
modulators as potential neuroprotectants. Neurotoxicology.
29:605–612. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Dong M, Yan BP, Liao JK, Lam YY, Yip GWK
and Yu CM: Rho-kinase inhibition: A novel therapeutic target for
the treatment of cardiovascular diseases. Drug Discov Today.
15:622–629. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fritz G and Kaina B: Rho GTPases:
Promising cellular targets for novel anticancer drugs. Curr Cancer
Drug Targets. 6:1–14. 2006.PubMed/NCBI
|
|
120
|
Bain J, Plater L, Elliott M, Shpiro N,
Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR and
Cohen P: The selectivity of protein kinase inhibitors: A further
update. Biochem J. 408:297–315. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Boerma M, Fu Q, Wang J, Loose DS,
Bartolozzi A, Ellis JL, McGonigle S, Paradise E, Sweetnam P, Fink
LM, et al: Comparative gene expression profiling in three primary
human cell lines after treatment with a novel inhibitor of Rho
kinase or atorvastatin. Blood Coagul Fibrinolysis. 19:709–718.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sadok A, McCarthy A, Caldwell J, Collins
I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK,
et al: Rho kinase inhibitors block melanoma cell migration and
inhibit metastasis. Cancer Res. 75:2272–2284. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tiede I, Fritz G, Strand S, Poppe D,
Dvorsky R, Strand D, Lehr HA, Wirtz S, Becker C, Atreya R, et al:
CD28-dependent Rac1 activation is the molecular target of
azathioprine in primary human CD4+ T lymphocytes. J Clin
Invest. 111:1133–1145. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Menna PL, Parera RL, Cardama GA, Alonso
DF, Gomez DE and Farina HG: Enhanced cytostatic activity of statins
in mouse mammary carcinoma cells overexpressing β2-chimaerin. Mol
Med Rep. 2:97–102. 2009.PubMed/NCBI
|
|
125
|
Becker MS, Müller PM, Bajorat J, Schroeder
A, Giaisi M, Amin E, Ahmadian MR, Rocks O, Köhler R, Krammer PH, et
al: The anticancer phytochemical rocaglamide inhibits Rho GTPase
activity and cancer cell migration. Oncotarget. 7:51908–51921.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Dent P, Curiel DT, Fisher PB and Grant S:
Synergistic combinations of signaling pathway inhibitors:
Mechanisms for improved cancer therapy. Drug Resist Updat.
12:65–73. 2009. View Article : Google Scholar : PubMed/NCBI
|