Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2017 Volume 51 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2017 Volume 51 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Rho GTPases as therapeutic targets in cancer (Review)

  • Authors:
    • G. A. Cardama
    • N. Gonzalez
    • J. Maggio
    • P. Lorenzano Menna
    • D. E. Gomez
  • View Affiliations / Copyright

    Affiliations: Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
    Copyright: © Cardama et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1025-1034
    |
    Published online on: August 9, 2017
       https://doi.org/10.3892/ijo.2017.4093
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Rho GTPases are key molecular switches controlling the transduction of external signals to cytoplasmic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases in cancer. The aim of the present review is to describe the cellular functions regulated by these proteins with focus in deregulated signals present in malignant tumors. Finally, we describe the state of the art in search of different experimental therapeutic strategies with Rho GTPases as molecular targets.
View Figures

Figure 1

View References

1 

Marei H and Malliri A: Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. Jul 21–2016.Epub ahead of print. PubMed/NCBI

2 

Feltri ML, Suter U and Relvas JB: The function of RhoGTPases in axon ensheathment and myelination. Glia. 56:1508–1517. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Wuichet K and Søgaard-Andersen L: Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes. Genome Biol Evol. 7:57–70. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Ramos S, Khademi F, Somesh BP and Rivero F: Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene. 298:147–157. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Leung KF, Baron R, Ali BR, Magee AI and Seabra MC: Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem. 282:1487–1497. 2007. View Article : Google Scholar

6 

Aicart-Ramos C, Valero RA and Rodriguez-Crespo I: Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta. 1808:2981–2994. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Shinde SR and Maddika S: Post translational modifications of Rab GTPases. Small GTPases. Feb 28–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

8 

Ulu A and Frost JA: Regulation of RhoA activation and cytoskeletal organization by acetylation. Small GTPases. 7:76–81. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Martin E, Ouellette MH and Jenna S: Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J Cell Biol. 215:483–498. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Sahai E and Marshall CJ: RHO-GTPases and cancer. Nat Rev Cancer. 2:133–142. 2002. View Article : Google Scholar

11 

Takai Y, Sasaki T and Matozaki T: Small GTP-binding proteins. Physiol Rev. 81:153–208. 2001.PubMed/NCBI

12 

Kjøller L and Hall A: Signaling to Rho GTPases. Exp Cell Res. 253:166–179. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Symons M: The Rac and Rho pathways as a source of drug targets for Ras-mediated malignancies. Curr Opin Biotechnol. 6:668–674. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Griner EM, Caino MC, Sosa MS, Colón-González F, Chalmers MJ, Mischak H and Kazanietz MG: A novel crosstalk in diacylglycerol signaling: The Rac-GAP β2-chimaerin is negatively regulated by protein kinase Cdelta-mediated phosphorylation. J Biol Chem. 285:16931–16941. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Bustos RI, Forget MA, Settleman JE and Hansen SH: Coordination of Rho and Rac GTPase function via p190B RhoGAP. Curr Biol. 18:1606–1611. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Rosenfeldt H, Castellone MD, Randazzo PA and Gutkind JS: Rac inhibits thrombin-induced Rho activation: Evidence of a Pak-dependent GTPase crosstalk. J Mol Signal. 1:8. 2006. View Article : Google Scholar

17 

Jaffe AB and Hall A: Rho GTPases: Biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Kyrkou A, Soufi M, Bahtz R, Ferguson C, Bai M, Parton RG, Hoffmann I, Zerial M, Fotsis T and Murphy C: RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene. 32:1831–1842. 2013. View Article : Google Scholar

19 

Wei L, Surma M, Shi S, Lambert-Cheatham N and Shi J: Novel insights into the roles of Rho kinase in cancer. Arch Immunol Ther Exp (Warsz). 64:259–278. 2016. View Article : Google Scholar

20 

Bartolini F, Moseley JB, Schmoranzer J, Cassimeris L, Goode BL and Gundersen GG: The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J Cell Biol. 181:523–536. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Reicher B, Joseph N, David A, Pauker MH, Perl O and Barda-Saad M: Ubiquitylation-dependent negative regulation of WASp is essential for actin cytoskeleton dynamics. Mol Cell Biol. 32:3153–3163. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S and Mizuno K: Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 275:3577–3582. 2000. View Article : Google Scholar : PubMed/NCBI

23 

Lian G and Sheen VL: Cytoskeletal proteins in cortical development and disease: Actin associated proteins in periventricular heterotopia. Front Cell Neurosci. 9:992015. View Article : Google Scholar : PubMed/NCBI

24 

Malarkannan S, Awasthi A, Rajasekaran K, Kumar P, Schuldt KM, Bartoszek A, Manoharan N, Goldner NK, Umhoefer CM and Thakar MS: IQGAP1: A regulator of intracellular spacetime relativity. J Immunol. 188:2057–2063. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Belletti B and Baldassarre G: Stathmin: A protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets. 15:1249–1266. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Bishop AL and Hall A: Rho GTPases and their effector proteins. Biochem J. 348:241–255. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Miyano K and Sumimoto H: Assessment of the role for Rho family GTPases in NADPH oxidase activation. Methods Mol Biol. 827:195–212. 2012. View Article : Google Scholar

28 

David M, Petit D and Bertoglio J: Cell cycle regulation of Rho signaling pathways. Cell Cycle. 11:3003–3010. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Porter AP, Papaioannou A and Malliri A: Deregulation of Rho GTPases in cancer. Small GTPases. 7:123–138. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, et al: A landscape of driver mutations in melanoma. Cell. 150:251–263. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, et al: Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 44:1006–1014. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Rossman KL, Der CJ and Sondek J: GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 6:167–180. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Fields AP and Justilien V: The guanine nucleotide exchange factor (GEF) Ect2 is an oncogene in human cancer. Adv Enzyme Regul. 50:190–200. 2010. View Article : Google Scholar :

35 

Vigil D, Cherfils J, Rossman KL and Der CJ: Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nat Rev Cancer. 10:842–857. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Jarzynka MJ, Hu B, Hui KM, Bar-Joseph I, Gu W, Hirose T, Haney LB, Ravichandran KS, Nishikawa R and Cheng SY: ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res. 67:7203–7211. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS and Kazanietz MG: Rac signaling in breast cancer: A tale of GEFs and GAPs. Cell Signal. 24:353–362. 2012. View Article : Google Scholar :

38 

Khosravi-Far R, Solski PA, Clark GJ, Kinch MS and Der CJ: Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 15:6443–6453. 1995. View Article : Google Scholar : PubMed/NCBI

39 

Qiu RG, Chen J, McCormick F and Symons M: A role for Rho in Ras transformation. Proc Natl Acad Sci USA. 92:11781–11785. 1995. View Article : Google Scholar : PubMed/NCBI

40 

Sahai E and Marshall CJ: Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 5:711–719. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB and Friedl P: Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 160:267–277. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K and Takahashi Y: Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev Cell. 7:425–438. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Lv Z, Hu M, Zhen J, Lin J, Wang Q and Wang R: Rac1/AK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol. 45:255–264. 2013. View Article : Google Scholar

44 

Fritz G, Just I and Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer. 81:682–687. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Engers R, Ziegler S, Mueller M, Walter A, Willers R and Gabbert HE: Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer. 14:245–256. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Lin Y and Zheng Y: Approaches of targeting Rho GTPases in cancer drug discovery. Expert Opin Drug Discov. 10:991–1010. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Gómez del Pulgar T, Benitah SA, Valerón PF, Espina C and Lacal JC: Rho GTPase expression in tumourigenesis: Evidence for a significant link. BioEssays. 27:602–613. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Liu Y, Song N, Ren K, Meng S, Xie Y, Long Q, Chen X and Zhao X: Expression loss and revivification of RhoB gene in ovary carcinoma carcinogenesis and development. PLoS One. 8:e784172013. View Article : Google Scholar : PubMed/NCBI

49 

Karlsson R, Pedersen ED, Wang Z and Brakebusch C: Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 1796:91–98. 2009.PubMed/NCBI

50 

Royer C and Lu X: Epithelial cell polarity: A major gatekeeper against cancer? Cell Death Differ. 18:1470–1477. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Parri M and Chiarugi P: Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 8:23. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Mackay AR, Gomez DE, Nason AM and Thorgeirsson UP: Studies on the effects of laminin, E-8 fragment of laminin and synthetic laminin peptides PA22-2 and YIGSR on matrix metalloproteinases and tissue inhibitor of metalloproteinase expression. Lab Invest. 70:800–806. 1994.PubMed/NCBI

54 

Zavarella S, Nakada M, Belverud S, Coniglio SJ, Chan A, Mittler MA, Schneider SJ and Symons M: Role of Rac1-regulated signaling in medulloblastoma invasion. Laboratory investigation. J Neurosurg Pediatr. 4:97–104. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Salhia B, Tran NL, Chan A, Wolf A, Nakada M, Rutka F, Ennis M, McDonough WS, Berens ME, Symons M, et al: The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am J Pathol. 173:1828–1838. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR and Symons M: Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene. 24:7821–7829. 2005. View Article : Google Scholar : PubMed/NCBI

57 

de Lorenzo MS, Ripoll GV, Yoshiji H, Yamazaki M, Thorgeirsson UP, Alonso DF and Gomez DE: Altered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1. In Vivo. 17:45–50. 2003.PubMed/NCBI

58 

Bryan BA and D'Amore PA: What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci. 64:2053–2065. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Habets GG, van der Kammen RA, Stam JC, Michiels F and Collard JG: Sequence of the human invasion-inducing TIAM1 gene, its conservation in evolution and its expression in tumor cell lines of different tissue origin. Oncogene. 10:1371–1376. 1995.PubMed/NCBI

60 

van Leeuwen FN, van der Kammen RA, Habets GG and Collard JG: Oncogenic activity of Tiam1 and Rac1 in NIH3T3 cells. Oncogene. 11:2215–2221. 1995.PubMed/NCBI

61 

Li Z, Liu Q, Piao J, Hua F, Wang J, Jin G, Lin Z and Zhang Y: Clinicopathological implications of Tiam1 overexpression in invasive ductal carcinoma of the breast. BMC Cancer. 16:6812016. View Article : Google Scholar : PubMed/NCBI

62 

Razidlo GL, Magnine C, Sletten AC, Hurley RM, Almada LL, Fernandez-Zapico ME, Ji B and McNiven MA: Targeting pancreatic cancer metastasis by inhibition of Vav1, a driver of tumor cell invasion. Cancer Res. 75:2907–2915. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Yang C, Liu Y, Leskow FC, Weaver VM and Kazanietz MG: Rac-GAP-dependent inhibition of breast cancer cell proliferation by {beta}2-chimerin. J Biol Chem. 280:24363–24370. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Menna PL, Skilton G, Leskow FC, Alonso DF, Gomez DE and Kazanietz MG: Inhibition of aggressiveness of metastatic mouse mammary carcinoma cells by the beta2-chimaerin GAP domain. Cancer Res. 63:2284–2291. 2003.PubMed/NCBI

65 

Gomez DE, Armando RG and Alonso DF: AZT as a telomerase inhibitor. Front Oncol. 2:1132012. View Article : Google Scholar : PubMed/NCBI

66 

Armando RG, Gomez DM and Gomez DE: AZT exerts its antitumoral effect by telomeric and non-telomeric effects in a mammary adenocarcinoma model. Oncol Rep. 36:2731–2736. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Qu Y, Mao M, Li X, Zhang L, Huang X, Yang C, Zhao F, Xiong Y and Mu D: Enhanced migration and CXCR4 over-expression in fibroblasts with telomerase reconstitution. Mol Cell Biochem. 313:45–52. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Yeh YM, Pan YT and Wang TC: Cdc42/Rac1 participates in the control of telomerase activity in human nasopharyngeal cancer cells. Cancer Lett. 218:207–213. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Gomez DLM, Armando RG, Cerrudo CS, Ghiringhelli PD and Gomez DE: Telomerase as a cancer target. Development of new molecules. Curr Top Med Chem. 16:2432–2440. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Fernández Larrosa PN, Ruíz Grecco M, Mengual Gómez D, Alvarado CV, Panelo LC, Rubio MF, Alonso DF, Gómez DE and Costas MA: RAC3 more than a nuclear receptor coactivator: A key inhibitor of senescence that is downregulated in aging. Cell Death Dis. 6:e19022015. View Article : Google Scholar : PubMed/NCBI

71 

Chen PC, Peng JR, Huang L, Li WX, Wang WZ, Cui ZQ, Han H, Gong L, Xiang DP, Qiao SS, et al: Overexpression of human telomerase reverse transcriptase promotes the motility and invasiveness of HepG2 cells in vitro. Oncol Rep. 30:1157–1164. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Gómez DL, Farina HG and Gómez DE: Telomerase regulation: A key to inhibition? (Review). Int J Oncol. 43:1351–1356. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Cassimeris L: The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol. 14:18–24. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Tyler JJ, Allwood EG and Ayscough KR: WASP family proteins, more than Arp2/3 activators. Biochem Soc Trans. 44:1339–1345. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Choi S and Anderson RA: IQGAP1 is a phosphoinositide effector and kinase scaffold. Adv Biol Regul. 60:29–35. 2016. View Article : Google Scholar :

76 

Dummler B, Ohshiro K, Kumar R and Field J: Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 28:51–63. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Parsons M and Adams JC: Rac regulates the interaction of fascin with protein kinase C in cell migration. J Cell Sci. 121:2805–2813. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Wei L, Surma M, Shi S, Lambert-Cheatham N and Shi J: Novel insights into the roles of Rho kinase in cancer. Arch Immunol Ther Exp (Warsz). 64:259–278. 2016. View Article : Google Scholar

79 

Rattan S and Singh J: RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter. Am J Physiol Gastrointest Liver Physiol. 302:G664–G675. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Dawson JC, Bruche S, Spence HJ, Braga VM and Machesky LM: Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1. PLoS One. 7:e311412012. View Article : Google Scholar : PubMed/NCBI

81 

Zandvakili I, Lin Y, Morris JC and Zheng Y: Rho GTPases: Anti-or pro-neoplastic targets. Oncogene. 36:3213–3222. 2017. View Article : Google Scholar

82 

Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C and Kehrer-Sawatzki H: Where genotype is not predictive of phenotype: Towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 132:1077–1130. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Gao Y, Dickerson JB, Guo F, Zheng J and Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA. 101:7618–7623. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Bid HK, Roberts RD, Manchanda PK and Houghton PJ: RAC1: An emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther. 12:1925–1934. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Kaneto N, Yokoyama S, Hayakawa Y, Kato S, Sakurai H and Saiki I: RAC1 inhibition as a therapeutic target for gefitinib-resistant non-small-cell lung cancer. Cancer Sci. 105:788–794. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Dokmanovic M, Wu Y, Shen Y, Chen J, Hirsch DS and Wu WJ: Trastuzumab-induced recruitment of Csk-homologous kinase (CHK) to ErbB2 receptor is associated with ErbB2-Y1248 phosphorylation and ErbB2 degradation to mediate cell growth inhibition. Cancer Biol Ther. 15:1029–1041. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Karpel-Massler G, Westhoff MA, Kast RE, Dwucet A, Karpel-Massler S, Nonnenmacher L, Siegelin MD, Wirtz CR, Debatin KM and Halatsch ME: Simultaneous interference with HER1/EGFR and RAC1 signaling drives cytostasis and suppression of survivin in human glioma cells in vitro. Neurochem Res. 42:1543–1554. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Montalvo-Ortiz BL, Castillo-Pichardo L, Hernández E, Humphries-Bickley T, De la Mota-Peynado A, Cubano LA, Vlaar CP and Dharmawardhane S: Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J Biol Chem. 287:13228–13238. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Cardama GA, Comin MJ, Hornos L, Gonzalez N, Defelipe L, Turjanski AG, Alonso DF, Gomez DE and Menna PL: Preclinical development of novel Rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med Chem. 14:840–851. 2014. View Article : Google Scholar :

90 

Gonzalez N, Cardama GA, Comin MJ, Segatori VI, Pifano M, Alonso DF, Gomez DE and Menna PL: Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell Signal. 30:154–161. 2017. View Article : Google Scholar

91 

Felekkis KN, Narsimhan RP, Near R, Castro AF, Zheng Y, Quilliam LA and Lerner A: AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner. Mol Cancer Res. 3:32–41. 2005.PubMed/NCBI

92 

Cai D, Iyer A, Felekkis KN, Near RI, Luo Z, Chernoff J, Albanese C, Pestell RG and Lerner A: AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63:6802–6808. 2003.PubMed/NCBI

93 

Cardama GA, Gonzalez N, Ciarlantini M, Gandolfi Donadío L, Comin MJ, Alonso DF, Menna PL and Gomez DE: Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets Ther. 7:2021–2033. 2014.PubMed/NCBI

94 

Hwang SY, Jung JW, Jeong JS, Kim YJ, Oh ES, Kim TH, Kim JY, Cho KH and Han IO: Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. Int J Cancer. 118:2056–2063. 2006. View Article : Google Scholar

95 

Delmas C, Heliez C, Cohen-Jonathan E, End D, Bonnet J, Favre G and Toulas C: Farnesyltransferase inhibitor, R115777, reverses the resistance of human glioma cell lines to ionizing radiation. Int J Cancer. 100:43–48. 2002. View Article : Google Scholar : PubMed/NCBI

96 

Zhai GG, Malhotra R, Delaney M, Latham D, Nestler U, Zhang M, Mukherjee N, Song Q, Robe P and Chakravarti A: Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol. 76:227–237. 2006. View Article : Google Scholar

97 

Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, et al: Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 10:520–530. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Hong L, Kenney SR, Phillips GK, Simpson D, Schroeder CE, Nöth J, Romero E, Swanson S, Waller A, Strouse JJ, et al: Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem. 288:8531–8543. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Friesland A, Zhao Y, Chen YH, Wang L, Zhou H and Lu Q: Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci USA. 110:1261–1266. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Shang X, Marchioni F, Sipes N, Evelyn CR, Jerabek-Willemsen M, Duhr S, Seibel W, Wortman M and Zheng Y: Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol. 19:699–710. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F and Der CJ: Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem. 282:35666–35678. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Arnst JL, Hein AL, Taylor MA, Palermo NY, Contreras JI, Sonawane YA, Wahl AO, Ouellette MM, Natarajan A and Yan Y: Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget. 8:34586–34600. 2017.PubMed/NCBI

103 

Mazieres J, Pradines A and Favre G: Perspectives on farnesyl transferase inhibitors in cancer therapy. Cancer Lett. 206:159–167. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Chan KK, Oza AM and Siu LL: The statins as anticancer agents. Clin Cancer Res. 9:10–19. 2003.PubMed/NCBI

105 

Farina HG, Bublik DR, Alonso DF and Gomez DE: Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells. Clin Exp Metastasis. 19:551–559. 2002. View Article : Google Scholar : PubMed/NCBI

106 

Tanaka S, Fukumoto Y, Nochioka K, Minami T, Kudo S, Shiba N, Takai Y, Williams CL, Liao JK and Shimokawa H: Statins exert the pleiotropic effects through small GTP-binding protein dissociation stimulator upregulation with a resultant Rac1 degradation. Arterioscler Thromb Vasc Biol. 33:1591–1600. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Michaelson D, Abidi W, Guardavaccaro D, Zhou M, Ahearn I, Pagano M and Philips MR: Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J Cell Biol. 181:485–496. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Navarro-Lérida I, Pellinen T, Sanchez SA, Guadamillas MC, Wang Y, Mirtti T, Calvo E and Del Pozo MA: Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion. Dev Cell. 32:318–334. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Mendoza-Catalán MA, Cristóbal-Mondragón GR, Adame-Gómez J, del Valle-Flores HN, Coppe JF, Sierra-López L, Romero-Hernández MA, del Carmen Alarcón-Romero L, Illades-Aguiar B and Castañeda-Saucedo E: Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells. BMC Cancer. 12:116. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Lu J, Chan L, Fiji HDG, Dahl R, Kwon O and Tamanoi F: In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Mol Cancer Ther. 8:1218–1226. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Zimonjic DB, Chan LN, Tripathi V, Lu J, Kwon O, Popescu NC, Lowy DR and Tamanoi F: In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer. 13:198. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Berndt N, Hamilton AD and Sebti SM: Targeting protein prenylation for cancer therapy. Nat Rev Cancer. 11:775–791. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Draper JM, Xia Z and Smith CD: Cellular palmitoylation and trafficking of lipidated peptides. J Lipid Res. 48:1873–1884. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Nagumo H, Sasaki Y, Ono Y, Okamoto H, Seto M and Takuwa Y: Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol. 278:C57–C65. 2000.PubMed/NCBI

115 

Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, et al: Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 389:990–994. 1997. View Article : Google Scholar : PubMed/NCBI

116 

Kale VP, Hengst JA, Desai DH, Amin SG and Yun JK: The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer Lett. 361:185–196. 2015. View Article : Google Scholar : PubMed/NCBI

117 

James SE, Burden H, Burgess R, Xie Y, Yang T, Massa SM, Longo FM and Lu Q: Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants. Neurotoxicology. 29:605–612. 2008. View Article : Google Scholar : PubMed/NCBI

118 

Dong M, Yan BP, Liao JK, Lam YY, Yip GWK and Yu CM: Rho-kinase inhibition: A novel therapeutic target for the treatment of cardiovascular diseases. Drug Discov Today. 15:622–629. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Fritz G and Kaina B: Rho GTPases: Promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 6:1–14. 2006.PubMed/NCBI

120 

Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR and Cohen P: The selectivity of protein kinase inhibitors: A further update. Biochem J. 408:297–315. 2007. View Article : Google Scholar : PubMed/NCBI

121 

Boerma M, Fu Q, Wang J, Loose DS, Bartolozzi A, Ellis JL, McGonigle S, Paradise E, Sweetnam P, Fink LM, et al: Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin. Blood Coagul Fibrinolysis. 19:709–718. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Sadok A, McCarthy A, Caldwell J, Collins I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK, et al: Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 75:2272–2284. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr HA, Wirtz S, Becker C, Atreya R, et al: CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 111:1133–1145. 2003. View Article : Google Scholar : PubMed/NCBI

124 

Menna PL, Parera RL, Cardama GA, Alonso DF, Gomez DE and Farina HG: Enhanced cytostatic activity of statins in mouse mammary carcinoma cells overexpressing β2-chimaerin. Mol Med Rep. 2:97–102. 2009.PubMed/NCBI

125 

Becker MS, Müller PM, Bajorat J, Schroeder A, Giaisi M, Amin E, Ahmadian MR, Rocks O, Köhler R, Krammer PH, et al: The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration. Oncotarget. 7:51908–51921. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Dent P, Curiel DT, Fisher PB and Grant S: Synergistic combinations of signaling pathway inhibitors: Mechanisms for improved cancer therapy. Drug Resist Updat. 12:65–73. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cardama GA, Gonzalez N, Maggio J, Menna PL and Gomez DE: Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol 51: 1025-1034, 2017.
APA
Cardama, G.A., Gonzalez, N., Maggio, J., Menna, P.L., & Gomez, D.E. (2017). Rho GTPases as therapeutic targets in cancer (Review). International Journal of Oncology, 51, 1025-1034. https://doi.org/10.3892/ijo.2017.4093
MLA
Cardama, G. A., Gonzalez, N., Maggio, J., Menna, P. L., Gomez, D. E."Rho GTPases as therapeutic targets in cancer (Review)". International Journal of Oncology 51.4 (2017): 1025-1034.
Chicago
Cardama, G. A., Gonzalez, N., Maggio, J., Menna, P. L., Gomez, D. E."Rho GTPases as therapeutic targets in cancer (Review)". International Journal of Oncology 51, no. 4 (2017): 1025-1034. https://doi.org/10.3892/ijo.2017.4093
Copy and paste a formatted citation
x
Spandidos Publications style
Cardama GA, Gonzalez N, Maggio J, Menna PL and Gomez DE: Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol 51: 1025-1034, 2017.
APA
Cardama, G.A., Gonzalez, N., Maggio, J., Menna, P.L., & Gomez, D.E. (2017). Rho GTPases as therapeutic targets in cancer (Review). International Journal of Oncology, 51, 1025-1034. https://doi.org/10.3892/ijo.2017.4093
MLA
Cardama, G. A., Gonzalez, N., Maggio, J., Menna, P. L., Gomez, D. E."Rho GTPases as therapeutic targets in cancer (Review)". International Journal of Oncology 51.4 (2017): 1025-1034.
Chicago
Cardama, G. A., Gonzalez, N., Maggio, J., Menna, P. L., Gomez, D. E."Rho GTPases as therapeutic targets in cancer (Review)". International Journal of Oncology 51, no. 4 (2017): 1025-1034. https://doi.org/10.3892/ijo.2017.4093
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team