|
1
|
Rosso L and Mienville JM: Pituicyte
modulation of neurohormone output. Glia. 57:235–243. 2009.
View Article : Google Scholar
|
|
2
|
Doniach I: Histopathology of the
pituitary. Clin Endocrinol Metab. 14:765–789. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chauvet N, El-Yandouzi T, Mathieu MN,
Schlernitzauer A, Galibert E, Lafont C, Le Tissier P, Robinson IC,
Mollard P and Coutry N: Characterization of adherens junction
protein expression and localization in pituitary cell networks. J
Endocrinol. 202:375–387. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Stojilkovic SS: A novel view of the
function of pituitary folliculostellate cell network. Trends
Endocrinol Metab. 12:378–380. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cristina C, Díaz-Torga G, Baldi A, Góngora
A, Rubinstein M, Low MJ and Becú-Villalobos D: Increased pituitary
vascular endothelial growth factor-a in dopaminergic D2 receptor
knockout female mice. Endocrinology. 146:2952–2962. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Alfer J, Neulen J and Gaumann A:
Lactotrophs: The new and major source for VEGF secretion and the
influence of ECM on rat pituitary function in vitro. Oncol Rep.
33:2129–2134. 2015.PubMed/NCBI
|
|
7
|
Chauvet N, Romanò N, Lafont C, Guillou A,
Galibert E, Bonnefont X, Le Tissier P, Fedele M, Fusco A, Mollard
P, et al: Complementary actions of dopamine D2 receptor agonist and
anti-vegf therapy on tumoral vessel normalization in a transgenic
mouse model. Int J Cancer. 140:2150–2161. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hoffmann A, Boekhoff S, Gebhardt U,
Sterkenburg AS, Daubenbüchel AM, Eveslage M and Müller HL: History
before diagnosis in childhood craniopharyngioma: Associations with
initial presentation and long-term prognosis. Eur J Endocrinol.
173:853–862. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mende KC, Matschke J, Burkhardt T, Saeger
W, Buslei R, Buchfelder M, Fahlbusch R, Westphal M and Flitsch J:
Pituicytoma-An outlook on possible targeted therapies. CNS Neurosci
Ther. 23:620–626. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li P, Yang Z, Wang Z, Zhou Q, Li S, Wang
X, Wang B, Zhao F and Liu P: Granular cell tumors in the central
nervous system: A report on eight cases and a literature review. Br
J Neurosurg. 30:611–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mumert ML, Walsh MT, Chin SS and Couldwell
WT: Cystic granular cell tumor mimicking Rathke cleft cyst. J
Neurosurg. 114:325–328. 2011. View Article : Google Scholar
|
|
12
|
Larkin S and Ansorge O: Pathology and
pathogenesis of pituitary adenomas and other sellar lesions
Endotext [Internet]. De Groot LJ, Chrousos G, Dungan K, Feingold
KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New
M, Purnell J, Rebar R, Singer F and Vinik A: MDText.com, Inc. 2000;
South Dartmouth, MA: 2017
|
|
13
|
Ezzat S, Asa SL, Couldwell WT, Barr CE,
Dodge WE, Vance ML and McCutcheon IE: The prevalence of pituitary
adenomas: A systematic review. Cancer. 101:613–619. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Asa SL: Tumors of the pituitary gland.
Atlas of Tumor Pathology. Rosai J: (3rd series Fascicle 22). Armed
Forces Institute of Pathology (AFIP); Washington DC: pp. 1–214.
1998
|
|
15
|
Blevins LS Jr, Verity DK and Allen G:
Aggressive pituitary tumors. Oncology (Williston Park).
12:1307–1312. 1315discussion 1315–1318. 1998.
|
|
16
|
Asa SL and Ezzat S: The pathogenesis of
pituitary tumours. Nat Rev Cancer. 2:836–849. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nammour GM, Ybarra J, Naheedy MH, Romeo JH
and Aron DC: Incidental pituitary macroadenoma: A population-based
study. Am J Med Sci. 314:287–291. 1997.PubMed/NCBI
|
|
18
|
Katznelson L, Alexander JM and Klibanski
A: Clinical review 45: Clinically nonfunctioning pituitary
adenomas. J Clin Endocrinol Metab. 76:1089–1094. 1993.PubMed/NCBI
|
|
19
|
Colao A, Di Somma C, Pivonello R, Faggiano
A, Lombardi G and Savastano S: Medical therapy for clinically
non-functioning pituitary adenomas. Endocr Relat Cancer.
15:905–915. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Daly AF, Tichomirowa MA and Beckers A: The
epidemiology and genetics of pituitary adenomas (Review). Best
Pract Res Clin Endocrinol Metab. 23:543–554. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Galland F, Lacroix L, Saulnier P, Dessen
P, Meduri G, Bernier M, Gaillard S, Guibourdenche J, Fournier T,
Evain-Brion D, et al: Differential gene expression profiles of
invasive and non-invasive non-functioning pituitary adenomas based
on microarray analysis. Endocr Relat Cancer. 17:361–371. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Syro LV, Rotondo F, Ramirez A, Di Ieva A,
Sav MA, Restrepo LM, Serna CA and Kovacs K: Progress in the
diagnosis and classification of pituitary adenomas. Front
Endocrinol (Lausanne). 6:972015.
|
|
23
|
Kovacs K, Scheithauer BW, Horvath E and
Lloyd RV: The World Health Organization classification of
adenohypophysial neoplasms. A proposed five-tier scheme. Cancer.
78:502–510. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jagannathan J, Dumont AS, Prevedello DM,
Lopes B, Oskouian RJ, Jane JA Jr and Laws ER Jr: Genetics of
pituitary adenomas: Current theories and future implications.
Neurosurg Focus. 19:E42005.
|
|
25
|
Wakefield LM and Roberts AB: TGF-beta
signaling: Positive and negative effects on tumorigenesis. Curr
Opin Genet Dev. 12:22–29. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Massagué J: TGFbeta in cancer (Review).
Cell. 134:215–230. 2008. View Article : Google Scholar
|
|
27
|
Jia W, Sander AJ, Jia G, Ni M, Liu X, Lu R
and Jiang WG: Vascular endothelial growth inhibitor (VEGI) is an
independent indicator for invasion in human pituitary adenomas.
Anticancer Res. 33:3815–3822. 2013.PubMed/NCBI
|
|
28
|
Lloyd RV, Scheithauer BW, Kuroki T, Vidal
S, Kovacs K and Stefaneanu L: Vascular endothelial growth factor
(VEGF) expression in human pituitary adenomas and carcinomas.
Endocr Pathol. 10:229–235. 1999. View Article : Google Scholar
|
|
29
|
Artico M, Bianchi E, Magliulo G, De
Vincentiis M, De Santis E, Orlandi A, Santoro A, Pastore FS,
Giangaspero F, Caruso R, et al: Neurotrophins, their receptors and
KI-67 in human GH-secreting pituitary adenomas: An
immunohistochemical analysis. Int J Immunopathol Pharmacol.
25:117–125. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ernst M and Jenkins BJ: Acquiring
signalling specificity from the cytokine receptor gp130. Trends
Genet. 20:23–32. 2004. View Article : Google Scholar
|
|
31
|
Masu Y, Wolf E, Holtmann B, Sendtner M,
Brem G and Thoenen H: Disruption of the CNTF gene results in motor
neuron degeneration. Nature. 365:27–32. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Linker RA, Mäurer M, Gaupp S, Martini R,
Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M,
et al: CNTF is a major protective factor in demyelinating CNS
disease: A neurotrophic cytokine as modulator in neuroinflammation.
Nat Med. 8:620–624. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ray D and Melmed S: Pituitary cytokine and
growth factor expression and action. Endocr Rev. 18:206–228. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Perez Castro C, Nagashima AC, Pereda MP,
Goldberg V, Chervin A, Largen P, Renner U, Stalla GK and Arzt E:
The gp130 cytokines interleukin-11 and ciliary neurotropic factor
regulate through specific receptors the function and growth of
lactosomatotropic and folliculostellate pituitary cell lines.
Endocrinology. 141:1746–1753. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Perez Castro C, Carbia Nagashima A, Páez
Pereda M, Goldberg V, Chervin A, Carrizo G, Molina H, Renner U,
Stalla GK and Arzt E: Effects of the gp130 cytokines ciliary
neurotropic factor (CNTF) and interleukin-11 on pituitary cells:
CNTF receptors on human pituitary adenomas and stimulation of
prolactin and GH secretion in normal rat anterior pituitary
aggregate cultures. J Endocrinol. 169:539–547. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang L, Pang Y and Moses HL: TGF-beta and
immune cells: An important regulatory axis in the tumor
microenvironment and progression. Trends Immunol. 31:220–227. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Johnson MD, Shaw AK, O'Connell MJ, Sim FJ
and Moses HL: Analysis of transforming growth factor β receptor
expression and signaling in higher grade meningiomas. J Neurooncol.
103:277–285. 2011. View Article : Google Scholar
|
|
38
|
Bruna A, Darken RS, Rojo F, Ocaña A,
Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, et al:
High TGFbeta-Smad activity confers poor prognosis in glioma
patients and promotes cell proliferation depending on the
methylation of the PDGF-B gene. Cancer Cell. 11:147–160. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu Y, Li Q, Zhou X, Yu J, Mu Y, Munker S,
Xu C, Shen Z, Müllenbach R, Liu Y, et al: Decreased levels of
active SMAD2 correlate with poor prognosis in gastric cancer. PLoS
One. 7:e356842012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Massagué J: TGFβ signalling in context.
Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar
|
|
41
|
Heldin CH, Miyazono K and ten Dijke P:
TGF-beta signalling from cell membrane to nucleus through SMAD
proteins. Nature. 390:465–471. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nakao A, Afrakhte M, Morén A, Nakayama T,
Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH,
et al: Identification of Smad7, a TGFbeta-inducible antagonist of
TGF-beta signalling. Nature. 389:631–635. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu C, Li Z, Wu D, Li C and Zhang Y: Smad3
and phospho-Smad3 are potential markers of invasive nonfunctioning
pituitary adenomas. Onco Targets Ther. 9:2265–2271. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Elenkova A, Atanassova I, Kirilov G,
Vasilev V, Kalinov K and Zacharieva S: Transforming growth factor
β1 is not a reliable biomarker for valvular fibrosis but could be a
potential serum marker for invasiveness of prolactinomas (pilot
study). Eur J Endocrinol. 169:299–306. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen C, Zhao KN, Masci PP, Lakhani SR,
Antonsson A, Simpson PT and Vitetta L: TGFβ isoforms and receptors
mRNA expression in breast tumours: Prognostic value and clinical
implications. BMC Cancer. 15:10102015. View Article : Google Scholar
|
|
46
|
Liu ZY, Zhang GL, Wang MM, Xiong YN and
Cui HQ: MicroRNA-663 targets TGFB1 and regulates lung cancer
proliferation. Asian Pac J Cancer Prev. 12:2819–2823.
2011.PubMed/NCBI
|
|
47
|
Wang Y, Jiang M, Li Z, Wang J, Du C,
Yanyang L, Yu Y, Wang X, Zhang N, Zhao M, et al: Hypoxia and TGF-β1
lead to endostatin resistance by cooperatively increasing cancer
stem cells in A549 transplantation tumors. Cell Biosci. 5:722015.
View Article : Google Scholar
|
|
48
|
McAndrew J, Paterson AJ, Asa SL, McCarthy
KJ and Kudlow JE: Targeting of transforming growth factor-alpha
expression to pituitary lactotrophs in transgenic mice results in
selective lactotroph proliferation and adenomas. Endocrinology.
136:4479–4488. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Airaksinen MS, Titievsky A and Saarma M:
GDNF family neurotrophic factor signaling: Four masters, one
servant? Mol Cell Neurosci. 13:313–325. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Airaksinen MS and Saarma M: The GDNF
family: Signalling, biological functions and therapeutic value. Nat
Rev Neurosci. 3:383–394. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kramer ER, Aron L, Ramakers GM, Seitz S,
Zhuang X, Beyer K, Smidt MP and Klein R: Absence of Ret signaling
in mice causes progressive and late degeneration of the
nigrostriatal system. PLoS Biol. 5:e392007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Treanor JJ, Goodman L, de Sauvage F, Stone
DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F,
et al: Characterization of a multicomponent receptor for GDNF.
Nature. 382:80–83. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Robertson K and Mason I: The GDNF-RET
signalling partnership. Trends Genet. 13:1–3. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Urbano AG, Suárez-Peñaranda JM, Diéguez C
and Alvarez CV: GDNF and RET-gene expression in anterior
pituitary-cell types. Endocrinology. 141:1893–1896. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Japón MA, Urbano AG, Sáez C, Segura DI,
Cerro AL, Diéguez C and Alvarez CV: Glial-derived neurotropic
factor and RET gene expression in normal human anterior pituitary
cell types and in pituitary tumors. J Clin Endocrinol Metab.
87:1879–1884. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lykissas MG, Batistatou AK,
Charalabopoulos KA and Beris AE: The role of neurotrophins in
axonal growth, guidance, and regeneration. Curr Neurovasc Res.
4:143–151. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cui X, Chen L, Ren Y, Ji Y, Liu W, Liu J,
Yan Q, Cheng L and Sun YE: Genetic modification of mesenchymal stem
cells in spinal cord injury repair strategies. Biosci Trends.
7:202–208. 2013.PubMed/NCBI
|
|
58
|
Wiesmann C and de Vos AM: Nerve growth
factor: Structure and function. Cell Mol Life Sci. 58:748–759.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mancino M, Ametller E, Gascón P and
Almendro V: The neuronal influence on tumor progression. Biochim
Biophys Acta. 1816:105–118. 2011.PubMed/NCBI
|
|
60
|
Krüttgen A, Schneider I and Weis J: The
dark side of the NGF family: Neurotrophins in neoplasias. Brain
Pathol. 16:304–310. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Molloy NH, Read DE and Gorman AM: Nerve
growth factor in cancer cell death and survival. Cancers (Basel).
3:510–530. 2011. View Article : Google Scholar
|
|
62
|
MacGrogan D, Saint-André JP and Dicou E:
Expression of nerve growth factor and nerve growth factor receptor
genes in human tissues and in prostatic adenocarcinoma cell lines.
J Neurochem. 59:1381–1391. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vanhecke E, Adriaenssens E, Verbeke S,
Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X and
Hondermarck H: Brain-derived neurotrophic factor and
neurotrophin-4/5 are expressed in breast cancer and can be targeted
to inhibit tumor cell survival. Clin Cancer Res. 17:1741–1752.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Varon S, Nomura J and Shooter EM: The
isolation of the mouse nerve growth factor protein in a high
molecular weight form. Biochemistry. 6:2202–2209. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Thoenen H and Barde YA: Physiology of
nerve growth factor. Physiol Rev. 60:1284–1335. 1980.PubMed/NCBI
|
|
66
|
Fahnestock M, Yu G, Michalski B, Mathew S,
Colquhoun A, Ross GM and Coughlin MD: The nerve growth factor
precursor proNGF exhibits neurotrophic activity but is less active
than mature nerve growth factor. J Neurochem. 89:581–592. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Seidel MF, Herguijuela M, Forkert R and
Otten U: Nerve growth factor in rheumatic diseases. Semin Arthritis
Rheum. 40:109–126. 2010. View Article : Google Scholar
|
|
68
|
Masoudi R, Ioannou MS, Coughlin MD,
Pagadala P, Neet KE, Clewes O, Allen SJ, Dawbarn D and Fahnestock
M: Biological activity of nerve growth factor precursor is
dependent upon relative levels of its receptors. J Biol Chem.
284:18424–18433. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Haase G, Pettmann B, Raoul C and Henderson
CE: Signaling by death receptors in the nervous system. Curr Opin
Neurobiol. 18:284–291. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Barker PA: High affinity not in the
vicinity? Neuron. 53:1–4. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nakagawara A: Trk receptor tyrosine
kinases: A bridge between cancer and neural development. Cancer
Lett. 169:107–114. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Walsh EM, Kim R, Del Valle L, Weaver M,
Sheffield J, Lazarovici P and Marcinkiewicz C: Importance of
interaction between nerve growth factor and α9β1 integrin in glial
tumor angiogenesis. Neurooncol. 14:890–901. 2012.
|
|
73
|
Reis-Filho JS, Steele D, Di Palma S, Jones
RL, Savage K, James M, Milanezi F, Schmitt FC and Ashworth A:
Distribution and significance of nerve growth factor receptor
(NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod
Pathol. 19:307–319. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Küchler J, Hartmann W, Waha A, Koch A,
Endl E, Wurst P, Kindler D, Mikeska T, Waha A, Goodyer CG, et al:
p75(NTR) induces apoptosis in medulloblastoma cells. Int J Cancer.
128:1804–1812. 2011. View Article : Google Scholar
|
|
75
|
Fiorentini C, Guerra N, Facchetti M,
Finardi A, Tiberio L, Schiaffonati L, Spano P and Missale C: Nerve
growth factor regulates dopamine D(2) receptor expression in
prolactinoma cell lines via p75(NGFR)-mediated activation of
nuclear factor-kappaB. Mol Endocrinol. 16:353–366. 2002.PubMed/NCBI
|
|
76
|
Descamps S, Toillon RA, Adriaenssens E,
Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP
and Hondermarck H: Nerve growth factor stimulates proliferation and
survival of human breast cancer cells through two distinct
signaling pathways. J Biol Chem. 276:17864–17870. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sortino MA, Condorelli F, Vancheri C,
Chiarenza A, Bernardini R, Consoli U and Canonico PL: Mitogenic
effect of nerve growth factor (NGF) in LNCaP prostate
adenocarcinoma cells: Role of the high- and low-affinity NGF
receptors. Mol Endocrinol. 14:124–136. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hughes AL, Gollapudi L, Sladek TL and Neet
KE: Mediation of nerve growth factor-driven cell cycle arrest in
PC12 cells by p53. Simultaneous differentiation and proliferation
subsequent to p53 functional inactivation. J Biol Chem.
275:37829–37837. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Decker SJ: Nerve growth factor-induced
growth arrest and induction of p21Cip1/WAF1 in NIH-3T3 cells
expressing TrkA. J Biol Chem. 270:30841–30844. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Krygier S and Djakiew D: Neurotrophin
receptor p75(NTR) suppresses growth and nerve growth
factor-mediated metastasis of human prostate cancer cells. Int J
Cancer. 98:1–7. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Khwaja F and Djakiew D: Inhibition of
cell-cycle effectors of proliferation in bladder tumor epithelial
cells by the p75NTR tumor suppressor. Mol Carcinog. 36:153–160.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Weis C, Wiesenhofer B and Humpel C: Nerve
growth factor plays a divergent role in mediating growth of rat C6
glioma cells via binding to the p75 neurotrophin receptor. J
Neurooncol. 56:59–67. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zilfou JT and Lowe SW: Tumor suppressive
functions of p53. Cold Spring Harb Perspect Biol. 1:a0018832009.
View Article : Google Scholar :
|
|
84
|
Rivlin N, Brosh R, Oren M and Rotter V:
Mutations in the p53 tumor suppressor gene: Important milestones at
the various Steps of tumorigenesis. Genes Cancer. 2:466–474. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tanizaki Y, Jin L, Scheithauer BW, Kovacs
K, Roncaroli F and Lloyd RV: P53 gene mutations in pituitary
carcinomas. Endocr Pathol. 18:217–222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Borrelli E, Sawchenko PE and Evans RM:
Pituitary hyperplasia induced by ectopic expression of nerve growth
factor. Proc Natl Acad Sci USA. 89:2764–2768. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ferrara N and Davis-Smyth T: The biology
of vascular endothelial growth factor (Review). Endocr Rev.
18:4–25. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fukui S, Nawashiro H, Otani N, Ooigawa H,
Yano A, Nomura N, Tokumaru AM, Miyazawa T, Ohnuki A, Tsuzuki N, et
al: Vascular endothelial growth factor expression in pituitary
adenomas. Acta Neurochir (Suppl). 86:519–521. 2003.
|
|
89
|
Niveiro M, Aranda FI, Peiró G, Alenda C
and Picó A: Immunohistochemical analysis of tumor angiogenic
factors in human pituitary adenomas. Hum Pathol. 36:1090–1095.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pan LX, Chen ZP, Liu YS and Zhao JH:
Magnetic resonance imaging and biological markers in pituitary
adenomas with invasion of the cavernous sinus space. J Neurooncol.
74:71–76. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Arita K, Kurisu K, Tominaga A, Sugiyama K,
Eguchi K, Hama S, Yoshioka H, Yamasaki F and Kanou Y: Relationship
between intratumoral hemorrhage and overexpression of vascular
endothelial growth factor (VEGF) in pituitary adenoma. Hiroshima J
Med Sci. 53:23–27. 2004.PubMed/NCBI
|
|
92
|
Sondell M, Sundler F and Kanje M: Vascular
endothelial growth factor is a neurotrophic factor which stimulates
axonal outgrowth through the flk-1 receptor. Eur J Neurosci.
12:4243–4254. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Maeda K, Chung YS, Takatsuka S, Ogawa Y,
Sawada T, Yamashita Y, Onoda N, Kato Y, Nitta A and Arimoto Y:
Tumor angiogenesis as a predictor of recurrence in gastric
carcinoma. J Clin Oncol. 13:477–481. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ochoa AL, Mitchner NA, Paynter CD, Morris
RE and Ben-Jonathan N: Vascular endothelial growth factor in the
rat pituitary: Differential distribution and regulation by
estrogen. J Endocrinol. 165:483–492. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Vidal S, Lloyd RV, Moya L, Scheithauer BW
and Kovacs K: Expression and distribution of vascular endothelial
growth factor receptor Flk-1 in the rat pituitary. J Histochem
Cytochem. 50:533–540. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yamada S and Takada K: Angiogenesis in
pituitary adenomas. Microsc Res Tech. 60:236–243. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
McCabe CJ, Boelaert K, Tannahill LA,
Heaney AP, Stratford AL, Khaira JS, Hussain S, Sheppard MC,
Franklyn JA and Gittoes NJ: Vascular endothelial growth factor, its
receptor KDR/Flk-1, and pituitary tumor transforming gene in
pituitary tumors. J Clin Endocrinol Metab. 87:4238–4244. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Banerjee SK, Zoubine MN, Tran TM, Weston
AP and Campbell DR: Overexpression of vascular endothelial growth
factor164 and its co-receptor neuropilin-1 in estrogen-induced rat
pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol.
16:253–260. 2000.PubMed/NCBI
|
|
99
|
Kim K, Yoshida D and Teramoto A:
Expression of hypoxia-inducible factor 1alpha and vascular
endothelial growth factor in pituitary adenomas. Endocr Pathol.
16:115–121. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Onofri C, Carbia Nagashima A, Schaaf L,
Feirer M, Lohrer P, Stummer W, Berner S, Chervin A, Goldberg V,
Stalla GK, et al: Estradiol stimulates vascular endothelial growth
factor and interleukin-6 in human lactotroph and lactosomatotroph
pituitary adenomas. Exp Clin Endocrinol Diabetes. 112:18–23. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Viacava P, Gasperi M, Acerbi G, Manetti L,
Cecconi E, Bonadio AG, Naccarato AG, Acerbi F, Parenti G, Lupi I,
et al: Microvascular density and vascular endothelial growth factor
expression in normal pituitary tissue and pituitary adenomas. J
Endocrinol Invest. 26:23–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cristina C, Perez-Millan MI, Luque G,
Dulce RA, Sevlever G, Berner SI and Becu-Villalobos D: VEGF and
CD31 association in pituitary adenomas. Endocr Pathol. 21:154–160.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lohrer P, Gloddek J, Hopfner U, Losa M,
Uhl E, Pagotto U, Stalla GK and Renner U: Vascular endothelial
growth factor production and regulation in rodent and human
pituitary tumor cells in vitro. Neuroendocrinology. 74:95–105.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Korsisaari N, Ross J, Wu X, Kowanetz M,
Pal N, Hall L, Eastham-Anderson J, Forrest WF, Van Bruggen N, Peale
FV, et al: Blocking vascular endothelial growth factor-A inhibits
the growth of pituitary adenomas and lowers serum prolactin level
in a mouse model of multiple endocrine neoplasia type 1. Clin
Cancer Res. 14:249–258. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Fowkes RC and Vlotides G: Hypoxia-induced
VEGF production 'RSUMEs' in pituitary adenomas. Endocr Relat
Cancer. 19:C1–C5. 2012. View Article : Google Scholar
|
|
106
|
Zhai Y, Ni J, Jiang GW, Lu J, Xing L,
Lincoln C, Carter KC, Janat F, Kozak D, Xu S, et al: VEGI, a novel
cytokine of the tumor necrosis factor family, is an angiogenesis
inhibitor that suppresses the growth of colon carcinomas in vivo.
FASEB J. 13:181–189. 1999.PubMed/NCBI
|
|
107
|
Prehn JL, Thomas LS, Landers CJ, Yu QT,
Michelsen KS and Targan SR: The T cell costimulator TL1A is induced
by FcgammaR signaling in human monocytes and dendritic cells. J
Immunol. 178:4033–4038. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Migone TS, Zhang J, Luo X, Zhuang L, Chen
C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, et al: TL1A is a
TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell
costimulator. Immunity. 16:479–492. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Bamias G, Martin C III, Marini M, Hoang S,
Mishina M, Ross WG, Sachedina MA, Friel CM, Mize J, Bickston SJ, et
al: Expression, localization, and functional activity of TL1A, a
novel Th1-polarizing cytokine in inflammatory bowel disease. J
Immunol. 171:4868–4874. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liang PH, Tian F, Lu Y, Duan B, Stolz DB
and Li LY: Vascular endothelial growth inhibitor (VEGI; TNFSF15)
inhibits bone marrow-derived endothelial progenitor cell
incorporation into Lewis lung carcinoma tumors. Angiogenesis.
14:61–68. 2011. View Article : Google Scholar :
|
|
111
|
Zhang N, Sanders AJ, Ye L, Kynaston HG and
Jiang WG: Vascular endothelial growth inhibitor, expression in
human prostate cancer tissue and the impact on adhesion and
migration of prostate cancer cells in vitro. Int J Oncol.
35:1473–1480. 2009.PubMed/NCBI
|
|
112
|
Parr C, Gan CH, Watkins G and Jiang WG:
Reduced vascular endothelial growth inhibitor (VEGI) expression is
associated with poor prognosis in breast cancer patients.
Angiogenesis. 9:73–81. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Haridas V, Shrivastava A, Su J, Yu GL, Ni
J, Liu D, Chen SF, Ni Y, Ruben SM, Gentz R, et al: VEGI, a new
member of the TNF family activates nuclear factor-kappa B and c-Jun
N-terminal kinase and modulates cell growth. Oncogene.
18:6496–6504. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lu Y, Gu X, Chen L, Yao Z, Song J, Niu X,
Xiang R, Cheng T, Qin Z, Deng W, et al: Interferon-γ produced by
tumor-infiltrating NK cells and CD4+ T cells
downregulates TNFSF15 expression in vascular endothelial cells.
Angiogenesis. 17:529–540. 2014. View Article : Google Scholar
|
|
115
|
Yu J, Tian S, Metheny-Barlow L, Chew LJ,
Hayes AJ, Pan H, Yu GL and Li LY: Modulation of endothelial cell
growth arrest and apoptosis by vascular endothelial growth
inhibitor. Circ Res. 89:1161–1167. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kaptein A, Jansen M, Dilaver G, Kitson J,
Dash L, Wang E, Owen MJ, Bodmer JL, Tschopp J and Farrow SN:
Studies on the interaction between TWEAK and the death receptor
WSL-1/TRAMP (DR3). FEBS Lett. 485:135–141. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Locksley RM, Killeen N and Lenardo MJ: The
TNF and TNF receptor superfamilies: Integrating mammalian biology.
Cell. 104:487–501. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gospodarowicz D, Jones KL and Sato G:
Purification of a growth factor for ovarian cells from bovine
pituitary glands. Proc Natl Acad Sci USA. 71:2295–2299. 1974.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ezzat S, Zheng L and Asa SL: Pituitary
tumor-derived fibroblast growth factor receptor 4 isoform disrupts
neural cell-adhesion molecule/N-cadherin signaling to diminish cell
adhesiveness: A mechanism underlying pituitary neoplasia. Mol
Endocrinol. 18:2543–2552. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gospodarowicz D, Ferrara N, Schweigerer L
and Neufeld G: Structural characterization and biological functions
of fibroblast growth factor. Endocr Rev. 8:95–114. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li Y, Koga M, Kasayama S, Matsumoto K,
Arita N, Hayakawa T and Sato B: Identification and characterization
of high molecular weight forms of basic fibroblast growth factor in
human pituitary adenomas. J Clin Endocrinol Metab. 75:1436–1441.
1992.PubMed/NCBI
|
|
122
|
Zimering MB, Katsumata N, Sato Y, Brandi
ML, Aurbach GD, Marx SJ and Friesen HG: Increased basic fibroblast
growth factor in plasma from multiple endocrine neoplasia type 1:
Relation to pituitary tumor. J Clin Endocrinol Metab. 76:1182–1187.
1993.PubMed/NCBI
|
|
123
|
Ozkaya HM, Comunoglu N, Keskin FE, Oz B,
Haliloglu OA, Tanriover N, Gazioglu N and Kadioglu P: Locally
produced estrogen through aromatization might enhance tissue
expression of pituitary tumor transforming gene and fibroblast
growth factor 2 in growth hormone-secreting adenomas. Endocrine.
52:632–640. 2016. View Article : Google Scholar
|
|
124
|
Moscatelli D: High and low affinity
binding sites for basic fibroblast growth factor on cultured cells:
Absence of a role for low affinity binding in the stimulation of
plasminogen activator production by bovine capillary endothelial
cells. J Cell Physiol. 131:123–130. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Givol D and Yayon A: Complexity of FGF
receptors: Genetic basis for structural diversity and functional
specificity. FASEB J. 6:3362–3369. 1992.PubMed/NCBI
|
|
126
|
Qian ZR, Sano T, Asa SL, Yamada S,
Horiguchi H, Tashiro T, Li CC, Hirokawa M, Kovacs K and Ezzat S:
Cytoplasmic expression of fibroblast growth factor receptor-4 in
human pituitary adenomas: Relation to tumor type, size,
proliferation, and invasiveness. J Clin Endocrinol Metab.
89:1904–1911. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Jaakkola S, Salmikangas P, Nylund S,
Partanen J, Armstrong E, Pyrhönen S, Lehtovirta P and Nevanlinna H:
Amplification of fgfr4 gene in human breast and gynecological
cancers. Int J Cancer. 54:378–382. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ohta T, Yamamoto M, Numata M, Iseki S,
Tsukioka Y, Miyashita T, Kayahara M, Nagakawa T, Miyazaki I,
Nishikawa K, et al: Expression of basic fibroblast growth factor
and its receptor in human pancreatic carcinomas. Br J Cancer.
72:824–831. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ahmed NU, Ueda M, Ito A, Ohashi A,
Funasaka Y and Ichihashi M: Expression of fibroblast growth factor
receptors in naevus-cell naevus and malignant melanoma. Melanoma
Res. 7:299–305. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Giri D, Ropiquet F and Ittmann M:
Alterations in expression of basic fibroblast growth factor (FGF) 2
and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res.
5:1063–1071. 1999.PubMed/NCBI
|
|
131
|
Henriksson ML, Edin S, Dahlin AM,
Oldenborg PA, Öberg Å, Van Guelpen B, Rutegård J, Stenling R and
Palmqvist R: Colorectal cancer cells activate adjacent fibroblasts
resulting in FGF1/FGFR3 signaling and increased invasion. Am J
Pathol. 178:1387–1394. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
McCabe CJ, Khaira JS, Boelaert K, Heaney
AP, Tannahill LA, Hussain S, Mitchell R, Olliff J, Sheppard MC,
Franklyn JA, et al: Expression of pituitary tumour transforming
gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human
pituitary adenomas: Relationships to clinical tumour behaviour.
Clin Endocrinol (Oxf). 58:141–150. 2003. View Article : Google Scholar
|
|
133
|
Fukui S, Otani N, Nawashiro H, Yano A,
Nomura N, Miyazawa T, Ohnuki A, Tsuzuki N, Katoh H, Ishihara S, et
al: Subcellular localization of basic fibroblast growth factor and
fibroblast growth factor receptor 1 in pituitary adenomas. Brain
Tumor Pathol. 19:23–29. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhu X, Asa SL and Ezzat S: Fibroblast
growth factor 2 and estrogen control the balance of histone 3
modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer
Res. 14:1984–1996. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tateno T, Asa SL, Zheng L, Mayr T, Ullrich
A and Ezzat S: The FGFR4-G388R polymorphism promotes mitochondrial
STAT3 serine phosphorylation to facilitate pituitary growth hormone
cell tumorigenesis. PLoS Genet. 7:e10024002011. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
da Costa Andrade VC, Parise O Jr, Hors CP,
de Melo Martins PC, Silva AP and Garicochea B: The fibroblast
growth factor receptor 4 (FGFR4) Arg388 allele correlates with
survival in head and neck squamous cell carcinoma. Exp Mol Pathol.
82:53–57. 2007. View Article : Google Scholar
|
|
137
|
Frullanti E, Berking C, Harbeck N,
Jézéquel P, Haugen A, Mawrin C, Parise O Jr, Sasaki H, Tsuchiya N
and Dragani TA: Meta and pooled analyses of FGFR4 Gly388Arg
polymorphism as a cancer prognostic factor. Eur J Cancer Prev.
20:340–347. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Serra S, Zheng L, Hassan M, Phan AT,
Woodhouse LJ, Yao JC, Ezzat S and Asa SL: The FGFR4-G388R
single-nucleotide polymorphism alters pancreatic neuroendocrine
tumor progression and response to mTOR inhibition therapy. Cancer
Res. 72:5683–5691. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Marmé F, Werft W, Benner A, Burwinkel B,
Sinn P, Sohn C, Lichter P, Hahn M and Schneeweiss A: FGFR4 Arg388
genotype is associated with pathological complete response to
neoadjuvant chemotherapy for primary breast cancer. Ann Oncol.
21:1636–1642. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Abbass SA, Asa SL and Ezzat S: Altered
expression of fibroblast growth factor receptors in human pituitary
adenomas. J Clin Endocrinol Metab. 82:1160–1166. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Ezzat S, Zheng L, Zhu XF, Wu GE and Asa
SL: Targeted expression of a human pituitary tumor-derived isoform
of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin
Invest. 109:69–78. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Ezzat S, Yu S and Asa SL: Ikaros isoforms
in human pituitary tumors: Distinct localization, histone
acetylation, and activation of the 5′ fibroblast growth factor
receptor-4 promoter. Am J Pathol. 163:1177–1184. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Ezzat S, Zheng L, Winer D and Asa SL:
Targeting N-cadherin through fibroblast growth factor receptor-4:
Distinct pathogenetic and therapeutic implications. Mol Endocrinol.
20:2965–2975. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Fisher DA and Lakshmanan J: Metabolism and
effects of epidermal growth factor and related growth factors in
mammals (Review). Endocr Rev. 11:418–442. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Murdoch GH, Potter E, Nicolaisen AK, Evans
RM and Rosenfeld MG: Epidermal growth factor rapidly stimulates
prolactin gene transcription. Nature. 300:192–194. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Qian X, LeVea CM, Freeman JK, Dougall WC
and Greene MI: Heterodimerization of epidermal growth factor
receptor and wild-type or kinase-deficient Neu: A mechanism of
interreceptor kinase activation and transphosphorylation. Proc Natl
Acad Sci USA. 91:1500–1504. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Downward J, Yarden Y, Mayes E, Scrace G,
Totty N, Stockwell P, Ullrich A, Schlessinger J and Waterfield MD:
Close similarity of epidermal growth factor receptor and v-erb-B
oncogene protein sequences. Nature. 307:521–527. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Bethune G, Bethune D, Ridgway N and Xu Z:
Epidermal growth factor receptor (EGFR) in lung cancer: An overview
and update. J Thorac Dis. 2:48–51. 2010.PubMed/NCBI
|
|
149
|
Nicholson S, Richard J, Sainsbury C,
Halcrow P, Kelly P, Angus B, Wright C, Henry J, Farndon JR and
Harris AL: Epidermal growth factor receptor (EGFr); results of a 6
year follow-up study in operable breast cancer with emphasis on the
node negative subgroup. Br J Cancer. 63:146–150. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Hudson LG, Zeineldin R, Silberberg M and
Stack MS: Activated epidermal growth factor receptor in ovarian
cancer. Cancer Treat Res. 149:203–226. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Takehana T, Kunitomo K, Suzuki S, Kono K,
Fujii H, Matsumoto Y and Ooi A: Expression of epidermal growth
factor receptor in gastric carcinomas. Clin Gastroenterol Hepatol.
1:438–445. 2003. View Article : Google Scholar
|
|
152
|
LeRiche VK, Asa SL and Ezzat S: Epidermal
growth factor and its receptor (EGF-R) in human pituitary adenomas:
EGF-R correlates with tumor aggressiveness. J Clin Endocrinol
Metab. 81:656–662. 1996.PubMed/NCBI
|
|
153
|
Chaidarun SS, Eggo MC, Sheppard MC and
Stewart PM: Expression of epidermal growth factor (EGF), its
receptor, and related oncoprotein (erbB-2) in human pituitary
tumors and response to EGF in vitro. Endocrinology. 135:2012–2021.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Onguru O, Scheithauer BW, Kovacs K, Vidal
S, Jin L, Zhang S, Ruebel KH and Lloyd RV: Analysis of epidermal
growth factor receptor and activated epidermal growth factor
receptor expression in pituitary adenomas and carcinomas. Mod
Pathol. 17:772–780. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak
A, Ren SG, Bruyette D and Melmed S: EGFR as a therapeutic target
for human, canine, and mouse ACTH-secreting pituitary adenomas. J
Clin Invest. 121:4712–4721. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Vallar L, Spada A and Giannattasio G:
Altered Gs and adenylate cyclase activity in human GH-secreting
pituitary adenomas. Nature. 330:566–568. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Theodoropoulou M, Arzberger T, Gruebler Y,
Jaffrain-Rea ML, Schlegel J, Schaaf L, Petrangeli E, Losa M, Stalla
GK and Pagotto U: Expression of epidermal growth factor receptor in
neoplastic pituitary cells: Evidence for a role in corticotropinoma
cells. J Endocrinol. 183:385–394. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Theodoropoulou M, Reincke M, Fassnacht M
and Komada M: Decoding the genetic basis of Cushing's disease: USP8
in the spotlight. Eur J Endocrinol. 173:M73–M83. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Yu R and Melmed S: Pathogenesis of
pituitary tumors. Prog Brain Res. 182:207–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Onofri C, Theodoropoulou M, Losa M, Uhl E,
Lange M, Arzt E, Stalla GK and Renner U: Localization of vascular
endothelial growth factor (VEGF) receptors in normal and
adenomatous pituitaries: Detection of a non-endothelial function of
VEGF in pituitary tumours. J Endocrinol. 191:249–261. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Turner HE, Nagy Z, Gatter KC, Esiri MM,
Harris AL and Wass JA: Angiogenesis in pituitary adenomas and the
normal pituitary gland. J Clin Endocrinol Metab. 85:1159–1162.
2000. View Article : Google Scholar : PubMed/NCBI
|