Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2017 Volume 51 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2017 Volume 51 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Trophic and neurotrophic factors in human pituitary adenomas (Review)

  • Authors:
    • Marialuisa Spoletini
    • Samanta Taurone
    • Mario Tombolini
    • Antonio Minni
    • Giancarlo Altissimi
    • Venceslao Wierzbicki
    • Felice Giangaspero
    • Pier Paolo Parnigotto
    • Marco Artico
    • Lia Bardella
    • Enzo Agostinelli
    • Francesco Saverio Pastore
  • View Affiliations / Copyright

    Affiliations: Department of Anatomy, Histology, Forensic Medicine and Orthopedics, ‘Sapienza’ University of Rome, Rome, Italy, Department of Sensory Organs, ‘Sapienza’ University of Rome, Rome, Italy, Neurosurgery Department, Army Hospital of Rome ‘Celio’, Rome, Italy, Department of Radiology, Oncology and Anatomic Pathology, ‘Sapienza’ University of Rome, Rome, Italy, Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) Onlus, Padua, Italy, Department of Neurology and Psychiatry, ‘Sapienza’ University of Rome, Rome, Italy, Department of Biochemical Sciences ‘A. Rossi Fanelli’, ‘Sapienza’ University of Rome, Rome, Italy, Department of Systems' Medicine, Division of Neurosurgery, University of Rome ‘Tor Vergata’, Rome, Italy
  • Pages: 1014-1024
    |
    Published online on: September 5, 2017
       https://doi.org/10.3892/ijo.2017.4120
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.
View Figures

Figure 1

Figure 2

View References

1 

Rosso L and Mienville JM: Pituicyte modulation of neurohormone output. Glia. 57:235–243. 2009. View Article : Google Scholar

2 

Doniach I: Histopathology of the pituitary. Clin Endocrinol Metab. 14:765–789. 1985. View Article : Google Scholar : PubMed/NCBI

3 

Chauvet N, El-Yandouzi T, Mathieu MN, Schlernitzauer A, Galibert E, Lafont C, Le Tissier P, Robinson IC, Mollard P and Coutry N: Characterization of adherens junction protein expression and localization in pituitary cell networks. J Endocrinol. 202:375–387. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Stojilkovic SS: A novel view of the function of pituitary folliculostellate cell network. Trends Endocrinol Metab. 12:378–380. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Cristina C, Díaz-Torga G, Baldi A, Góngora A, Rubinstein M, Low MJ and Becú-Villalobos D: Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice. Endocrinology. 146:2952–2962. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Alfer J, Neulen J and Gaumann A: Lactotrophs: The new and major source for VEGF secretion and the influence of ECM on rat pituitary function in vitro. Oncol Rep. 33:2129–2134. 2015.PubMed/NCBI

7 

Chauvet N, Romanò N, Lafont C, Guillou A, Galibert E, Bonnefont X, Le Tissier P, Fedele M, Fusco A, Mollard P, et al: Complementary actions of dopamine D2 receptor agonist and anti-vegf therapy on tumoral vessel normalization in a transgenic mouse model. Int J Cancer. 140:2150–2161. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Hoffmann A, Boekhoff S, Gebhardt U, Sterkenburg AS, Daubenbüchel AM, Eveslage M and Müller HL: History before diagnosis in childhood craniopharyngioma: Associations with initial presentation and long-term prognosis. Eur J Endocrinol. 173:853–862. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Mende KC, Matschke J, Burkhardt T, Saeger W, Buslei R, Buchfelder M, Fahlbusch R, Westphal M and Flitsch J: Pituicytoma-An outlook on possible targeted therapies. CNS Neurosci Ther. 23:620–626. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Li P, Yang Z, Wang Z, Zhou Q, Li S, Wang X, Wang B, Zhao F and Liu P: Granular cell tumors in the central nervous system: A report on eight cases and a literature review. Br J Neurosurg. 30:611–618. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Mumert ML, Walsh MT, Chin SS and Couldwell WT: Cystic granular cell tumor mimicking Rathke cleft cyst. J Neurosurg. 114:325–328. 2011. View Article : Google Scholar

12 

Larkin S and Ansorge O: Pathology and pathogenesis of pituitary adenomas and other sellar lesions Endotext [Internet]. De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F and Vinik A: MDText.com, Inc. 2000; South Dartmouth, MA: 2017

13 

Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML and McCutcheon IE: The prevalence of pituitary adenomas: A systematic review. Cancer. 101:613–619. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Asa SL: Tumors of the pituitary gland. Atlas of Tumor Pathology. Rosai J: (3rd series Fascicle 22). Armed Forces Institute of Pathology (AFIP); Washington DC: pp. 1–214. 1998

15 

Blevins LS Jr, Verity DK and Allen G: Aggressive pituitary tumors. Oncology (Williston Park). 12:1307–1312. 1315discussion 1315–1318. 1998.

16 

Asa SL and Ezzat S: The pathogenesis of pituitary tumours. Nat Rev Cancer. 2:836–849. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Nammour GM, Ybarra J, Naheedy MH, Romeo JH and Aron DC: Incidental pituitary macroadenoma: A population-based study. Am J Med Sci. 314:287–291. 1997.PubMed/NCBI

18 

Katznelson L, Alexander JM and Klibanski A: Clinical review 45: Clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 76:1089–1094. 1993.PubMed/NCBI

19 

Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G and Savastano S: Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer. 15:905–915. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Daly AF, Tichomirowa MA and Beckers A: The epidemiology and genetics of pituitary adenomas (Review). Best Pract Res Clin Endocrinol Metab. 23:543–554. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Galland F, Lacroix L, Saulnier P, Dessen P, Meduri G, Bernier M, Gaillard S, Guibourdenche J, Fournier T, Evain-Brion D, et al: Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr Relat Cancer. 17:361–371. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Syro LV, Rotondo F, Ramirez A, Di Ieva A, Sav MA, Restrepo LM, Serna CA and Kovacs K: Progress in the diagnosis and classification of pituitary adenomas. Front Endocrinol (Lausanne). 6:972015.

23 

Kovacs K, Scheithauer BW, Horvath E and Lloyd RV: The World Health Organization classification of adenohypophysial neoplasms. A proposed five-tier scheme. Cancer. 78:502–510. 1996. View Article : Google Scholar : PubMed/NCBI

24 

Jagannathan J, Dumont AS, Prevedello DM, Lopes B, Oskouian RJ, Jane JA Jr and Laws ER Jr: Genetics of pituitary adenomas: Current theories and future implications. Neurosurg Focus. 19:E42005.

25 

Wakefield LM and Roberts AB: TGF-beta signaling: Positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 12:22–29. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Massagué J: TGFbeta in cancer (Review). Cell. 134:215–230. 2008. View Article : Google Scholar

27 

Jia W, Sander AJ, Jia G, Ni M, Liu X, Lu R and Jiang WG: Vascular endothelial growth inhibitor (VEGI) is an independent indicator for invasion in human pituitary adenomas. Anticancer Res. 33:3815–3822. 2013.PubMed/NCBI

28 

Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K and Stefaneanu L: Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol. 10:229–235. 1999. View Article : Google Scholar

29 

Artico M, Bianchi E, Magliulo G, De Vincentiis M, De Santis E, Orlandi A, Santoro A, Pastore FS, Giangaspero F, Caruso R, et al: Neurotrophins, their receptors and KI-67 in human GH-secreting pituitary adenomas: An immunohistochemical analysis. Int J Immunopathol Pharmacol. 25:117–125. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Ernst M and Jenkins BJ: Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet. 20:23–32. 2004. View Article : Google Scholar

31 

Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G and Thoenen H: Disruption of the CNTF gene results in motor neuron degeneration. Nature. 365:27–32. 1993. View Article : Google Scholar : PubMed/NCBI

32 

Linker RA, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, et al: CNTF is a major protective factor in demyelinating CNS disease: A neurotrophic cytokine as modulator in neuroinflammation. Nat Med. 8:620–624. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Ray D and Melmed S: Pituitary cytokine and growth factor expression and action. Endocr Rev. 18:206–228. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Perez Castro C, Nagashima AC, Pereda MP, Goldberg V, Chervin A, Largen P, Renner U, Stalla GK and Arzt E: The gp130 cytokines interleukin-11 and ciliary neurotropic factor regulate through specific receptors the function and growth of lactosomatotropic and folliculostellate pituitary cell lines. Endocrinology. 141:1746–1753. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Perez Castro C, Carbia Nagashima A, Páez Pereda M, Goldberg V, Chervin A, Carrizo G, Molina H, Renner U, Stalla GK and Arzt E: Effects of the gp130 cytokines ciliary neurotropic factor (CNTF) and interleukin-11 on pituitary cells: CNTF receptors on human pituitary adenomas and stimulation of prolactin and GH secretion in normal rat anterior pituitary aggregate cultures. J Endocrinol. 169:539–547. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Yang L, Pang Y and Moses HL: TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31:220–227. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Johnson MD, Shaw AK, O'Connell MJ, Sim FJ and Moses HL: Analysis of transforming growth factor β receptor expression and signaling in higher grade meningiomas. J Neurooncol. 103:277–285. 2011. View Article : Google Scholar

38 

Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, et al: High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 11:147–160. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Wu Y, Li Q, Zhou X, Yu J, Mu Y, Munker S, Xu C, Shen Z, Müllenbach R, Liu Y, et al: Decreased levels of active SMAD2 correlate with poor prognosis in gastric cancer. PLoS One. 7:e356842012. View Article : Google Scholar : PubMed/NCBI

40 

Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar

41 

Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI

42 

Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, et al: Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389:631–635. 1997. View Article : Google Scholar : PubMed/NCBI

43 

Liu C, Li Z, Wu D, Li C and Zhang Y: Smad3 and phospho-Smad3 are potential markers of invasive nonfunctioning pituitary adenomas. Onco Targets Ther. 9:2265–2271. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Elenkova A, Atanassova I, Kirilov G, Vasilev V, Kalinov K and Zacharieva S: Transforming growth factor β1 is not a reliable biomarker for valvular fibrosis but could be a potential serum marker for invasiveness of prolactinomas (pilot study). Eur J Endocrinol. 169:299–306. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Chen C, Zhao KN, Masci PP, Lakhani SR, Antonsson A, Simpson PT and Vitetta L: TGFβ isoforms and receptors mRNA expression in breast tumours: Prognostic value and clinical implications. BMC Cancer. 15:10102015. View Article : Google Scholar

46 

Liu ZY, Zhang GL, Wang MM, Xiong YN and Cui HQ: MicroRNA-663 targets TGFB1 and regulates lung cancer proliferation. Asian Pac J Cancer Prev. 12:2819–2823. 2011.PubMed/NCBI

47 

Wang Y, Jiang M, Li Z, Wang J, Du C, Yanyang L, Yu Y, Wang X, Zhang N, Zhao M, et al: Hypoxia and TGF-β1 lead to endostatin resistance by cooperatively increasing cancer stem cells in A549 transplantation tumors. Cell Biosci. 5:722015. View Article : Google Scholar

48 

McAndrew J, Paterson AJ, Asa SL, McCarthy KJ and Kudlow JE: Targeting of transforming growth factor-alpha expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology. 136:4479–4488. 1995. View Article : Google Scholar : PubMed/NCBI

49 

Airaksinen MS, Titievsky A and Saarma M: GDNF family neurotrophic factor signaling: Four masters, one servant? Mol Cell Neurosci. 13:313–325. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Airaksinen MS and Saarma M: The GDNF family: Signalling, biological functions and therapeutic value. Nat Rev Neurosci. 3:383–394. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP and Klein R: Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 5:e392007. View Article : Google Scholar : PubMed/NCBI

52 

Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, et al: Characterization of a multicomponent receptor for GDNF. Nature. 382:80–83. 1996. View Article : Google Scholar : PubMed/NCBI

53 

Robertson K and Mason I: The GDNF-RET signalling partnership. Trends Genet. 13:1–3. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Urbano AG, Suárez-Peñaranda JM, Diéguez C and Alvarez CV: GDNF and RET-gene expression in anterior pituitary-cell types. Endocrinology. 141:1893–1896. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Japón MA, Urbano AG, Sáez C, Segura DI, Cerro AL, Diéguez C and Alvarez CV: Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors. J Clin Endocrinol Metab. 87:1879–1884. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Lykissas MG, Batistatou AK, Charalabopoulos KA and Beris AE: The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res. 4:143–151. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Cui X, Chen L, Ren Y, Ji Y, Liu W, Liu J, Yan Q, Cheng L and Sun YE: Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies. Biosci Trends. 7:202–208. 2013.PubMed/NCBI

58 

Wiesmann C and de Vos AM: Nerve growth factor: Structure and function. Cell Mol Life Sci. 58:748–759. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Mancino M, Ametller E, Gascón P and Almendro V: The neuronal influence on tumor progression. Biochim Biophys Acta. 1816:105–118. 2011.PubMed/NCBI

60 

Krüttgen A, Schneider I and Weis J: The dark side of the NGF family: Neurotrophins in neoplasias. Brain Pathol. 16:304–310. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Molloy NH, Read DE and Gorman AM: Nerve growth factor in cancer cell death and survival. Cancers (Basel). 3:510–530. 2011. View Article : Google Scholar

62 

MacGrogan D, Saint-André JP and Dicou E: Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem. 59:1381–1391. 1992. View Article : Google Scholar : PubMed/NCBI

63 

Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X and Hondermarck H: Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 17:1741–1752. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Varon S, Nomura J and Shooter EM: The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry. 6:2202–2209. 1967. View Article : Google Scholar : PubMed/NCBI

65 

Thoenen H and Barde YA: Physiology of nerve growth factor. Physiol Rev. 60:1284–1335. 1980.PubMed/NCBI

66 

Fahnestock M, Yu G, Michalski B, Mathew S, Colquhoun A, Ross GM and Coughlin MD: The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J Neurochem. 89:581–592. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Seidel MF, Herguijuela M, Forkert R and Otten U: Nerve growth factor in rheumatic diseases. Semin Arthritis Rheum. 40:109–126. 2010. View Article : Google Scholar

68 

Masoudi R, Ioannou MS, Coughlin MD, Pagadala P, Neet KE, Clewes O, Allen SJ, Dawbarn D and Fahnestock M: Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J Biol Chem. 284:18424–18433. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Haase G, Pettmann B, Raoul C and Henderson CE: Signaling by death receptors in the nervous system. Curr Opin Neurobiol. 18:284–291. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Barker PA: High affinity not in the vicinity? Neuron. 53:1–4. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Nakagawara A: Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 169:107–114. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Walsh EM, Kim R, Del Valle L, Weaver M, Sheffield J, Lazarovici P and Marcinkiewicz C: Importance of interaction between nerve growth factor and α9β1 integrin in glial tumor angiogenesis. Neurooncol. 14:890–901. 2012.

73 

Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M, Milanezi F, Schmitt FC and Ashworth A: Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol. 19:307–319. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Küchler J, Hartmann W, Waha A, Koch A, Endl E, Wurst P, Kindler D, Mikeska T, Waha A, Goodyer CG, et al: p75(NTR) induces apoptosis in medulloblastoma cells. Int J Cancer. 128:1804–1812. 2011. View Article : Google Scholar

75 

Fiorentini C, Guerra N, Facchetti M, Finardi A, Tiberio L, Schiaffonati L, Spano P and Missale C: Nerve growth factor regulates dopamine D(2) receptor expression in prolactinoma cell lines via p75(NGFR)-mediated activation of nuclear factor-kappaB. Mol Endocrinol. 16:353–366. 2002.PubMed/NCBI

76 

Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP and Hondermarck H: Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem. 276:17864–17870. 2001. View Article : Google Scholar : PubMed/NCBI

77 

Sortino MA, Condorelli F, Vancheri C, Chiarenza A, Bernardini R, Consoli U and Canonico PL: Mitogenic effect of nerve growth factor (NGF) in LNCaP prostate adenocarcinoma cells: Role of the high- and low-affinity NGF receptors. Mol Endocrinol. 14:124–136. 2000. View Article : Google Scholar : PubMed/NCBI

78 

Hughes AL, Gollapudi L, Sladek TL and Neet KE: Mediation of nerve growth factor-driven cell cycle arrest in PC12 cells by p53. Simultaneous differentiation and proliferation subsequent to p53 functional inactivation. J Biol Chem. 275:37829–37837. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Decker SJ: Nerve growth factor-induced growth arrest and induction of p21Cip1/WAF1 in NIH-3T3 cells expressing TrkA. J Biol Chem. 270:30841–30844. 1995. View Article : Google Scholar : PubMed/NCBI

80 

Krygier S and Djakiew D: Neurotrophin receptor p75(NTR) suppresses growth and nerve growth factor-mediated metastasis of human prostate cancer cells. Int J Cancer. 98:1–7. 2002. View Article : Google Scholar : PubMed/NCBI

81 

Khwaja F and Djakiew D: Inhibition of cell-cycle effectors of proliferation in bladder tumor epithelial cells by the p75NTR tumor suppressor. Mol Carcinog. 36:153–160. 2003. View Article : Google Scholar : PubMed/NCBI

82 

Weis C, Wiesenhofer B and Humpel C: Nerve growth factor plays a divergent role in mediating growth of rat C6 glioma cells via binding to the p75 neurotrophin receptor. J Neurooncol. 56:59–67. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Zilfou JT and Lowe SW: Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 1:a0018832009. View Article : Google Scholar :

84 

Rivlin N, Brosh R, Oren M and Rotter V: Mutations in the p53 tumor suppressor gene: Important milestones at the various Steps of tumorigenesis. Genes Cancer. 2:466–474. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Tanizaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F and Lloyd RV: P53 gene mutations in pituitary carcinomas. Endocr Pathol. 18:217–222. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Borrelli E, Sawchenko PE and Evans RM: Pituitary hyperplasia induced by ectopic expression of nerve growth factor. Proc Natl Acad Sci USA. 89:2764–2768. 1992. View Article : Google Scholar : PubMed/NCBI

87 

Ferrara N and Davis-Smyth T: The biology of vascular endothelial growth factor (Review). Endocr Rev. 18:4–25. 1997. View Article : Google Scholar : PubMed/NCBI

88 

Fukui S, Nawashiro H, Otani N, Ooigawa H, Yano A, Nomura N, Tokumaru AM, Miyazawa T, Ohnuki A, Tsuzuki N, et al: Vascular endothelial growth factor expression in pituitary adenomas. Acta Neurochir (Suppl). 86:519–521. 2003.

89 

Niveiro M, Aranda FI, Peiró G, Alenda C and Picó A: Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol. 36:1090–1095. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Pan LX, Chen ZP, Liu YS and Zhao JH: Magnetic resonance imaging and biological markers in pituitary adenomas with invasion of the cavernous sinus space. J Neurooncol. 74:71–76. 2005. View Article : Google Scholar : PubMed/NCBI

91 

Arita K, Kurisu K, Tominaga A, Sugiyama K, Eguchi K, Hama S, Yoshioka H, Yamasaki F and Kanou Y: Relationship between intratumoral hemorrhage and overexpression of vascular endothelial growth factor (VEGF) in pituitary adenoma. Hiroshima J Med Sci. 53:23–27. 2004.PubMed/NCBI

92 

Sondell M, Sundler F and Kanje M: Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci. 12:4243–4254. 2000. View Article : Google Scholar : PubMed/NCBI

93 

Maeda K, Chung YS, Takatsuka S, Ogawa Y, Sawada T, Yamashita Y, Onoda N, Kato Y, Nitta A and Arimoto Y: Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol. 13:477–481. 1995. View Article : Google Scholar : PubMed/NCBI

94 

Ochoa AL, Mitchner NA, Paynter CD, Morris RE and Ben-Jonathan N: Vascular endothelial growth factor in the rat pituitary: Differential distribution and regulation by estrogen. J Endocrinol. 165:483–492. 2000. View Article : Google Scholar : PubMed/NCBI

95 

Vidal S, Lloyd RV, Moya L, Scheithauer BW and Kovacs K: Expression and distribution of vascular endothelial growth factor receptor Flk-1 in the rat pituitary. J Histochem Cytochem. 50:533–540. 2002. View Article : Google Scholar : PubMed/NCBI

96 

Yamada S and Takada K: Angiogenesis in pituitary adenomas. Microsc Res Tech. 60:236–243. 2003. View Article : Google Scholar : PubMed/NCBI

97 

McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, Hussain S, Sheppard MC, Franklyn JA and Gittoes NJ: Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 87:4238–4244. 2002. View Article : Google Scholar : PubMed/NCBI

98 

Banerjee SK, Zoubine MN, Tran TM, Weston AP and Campbell DR: Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol. 16:253–260. 2000.PubMed/NCBI

99 

Kim K, Yoshida D and Teramoto A: Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. Endocr Pathol. 16:115–121. 2005. View Article : Google Scholar : PubMed/NCBI

100 

Onofri C, Carbia Nagashima A, Schaaf L, Feirer M, Lohrer P, Stummer W, Berner S, Chervin A, Goldberg V, Stalla GK, et al: Estradiol stimulates vascular endothelial growth factor and interleukin-6 in human lactotroph and lactosomatotroph pituitary adenomas. Exp Clin Endocrinol Diabetes. 112:18–23. 2004. View Article : Google Scholar : PubMed/NCBI

101 

Viacava P, Gasperi M, Acerbi G, Manetti L, Cecconi E, Bonadio AG, Naccarato AG, Acerbi F, Parenti G, Lupi I, et al: Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest. 26:23–28. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Cristina C, Perez-Millan MI, Luque G, Dulce RA, Sevlever G, Berner SI and Becu-Villalobos D: VEGF and CD31 association in pituitary adenomas. Endocr Pathol. 21:154–160. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Lohrer P, Gloddek J, Hopfner U, Losa M, Uhl E, Pagotto U, Stalla GK and Renner U: Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro. Neuroendocrinology. 74:95–105. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Korsisaari N, Ross J, Wu X, Kowanetz M, Pal N, Hall L, Eastham-Anderson J, Forrest WF, Van Bruggen N, Peale FV, et al: Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin Cancer Res. 14:249–258. 2008. View Article : Google Scholar : PubMed/NCBI

105 

Fowkes RC and Vlotides G: Hypoxia-induced VEGF production 'RSUMEs' in pituitary adenomas. Endocr Relat Cancer. 19:C1–C5. 2012. View Article : Google Scholar

106 

Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, et al: VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J. 13:181–189. 1999.PubMed/NCBI

107 

Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS and Targan SR: The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 178:4033–4038. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, et al: TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 16:479–492. 2002. View Article : Google Scholar : PubMed/NCBI

109 

Bamias G, Martin C III, Marini M, Hoang S, Mishina M, Ross WG, Sachedina MA, Friel CM, Mize J, Bickston SJ, et al: Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 171:4868–4874. 2003. View Article : Google Scholar : PubMed/NCBI

110 

Liang PH, Tian F, Lu Y, Duan B, Stolz DB and Li LY: Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors. Angiogenesis. 14:61–68. 2011. View Article : Google Scholar :

111 

Zhang N, Sanders AJ, Ye L, Kynaston HG and Jiang WG: Vascular endothelial growth inhibitor, expression in human prostate cancer tissue and the impact on adhesion and migration of prostate cancer cells in vitro. Int J Oncol. 35:1473–1480. 2009.PubMed/NCBI

112 

Parr C, Gan CH, Watkins G and Jiang WG: Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis. 9:73–81. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Haridas V, Shrivastava A, Su J, Yu GL, Ni J, Liu D, Chen SF, Ni Y, Ruben SM, Gentz R, et al: VEGI, a new member of the TNF family activates nuclear factor-kappa B and c-Jun N-terminal kinase and modulates cell growth. Oncogene. 18:6496–6504. 1999. View Article : Google Scholar : PubMed/NCBI

114 

Lu Y, Gu X, Chen L, Yao Z, Song J, Niu X, Xiang R, Cheng T, Qin Z, Deng W, et al: Interferon-γ produced by tumor-infiltrating NK cells and CD4+ T cells downregulates TNFSF15 expression in vascular endothelial cells. Angiogenesis. 17:529–540. 2014. View Article : Google Scholar

115 

Yu J, Tian S, Metheny-Barlow L, Chew LJ, Hayes AJ, Pan H, Yu GL and Li LY: Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res. 89:1161–1167. 2001. View Article : Google Scholar : PubMed/NCBI

116 

Kaptein A, Jansen M, Dilaver G, Kitson J, Dash L, Wang E, Owen MJ, Bodmer JL, Tschopp J and Farrow SN: Studies on the interaction between TWEAK and the death receptor WSL-1/TRAMP (DR3). FEBS Lett. 485:135–141. 2000. View Article : Google Scholar : PubMed/NCBI

117 

Locksley RM, Killeen N and Lenardo MJ: The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 104:487–501. 2001. View Article : Google Scholar : PubMed/NCBI

118 

Gospodarowicz D, Jones KL and Sato G: Purification of a growth factor for ovarian cells from bovine pituitary glands. Proc Natl Acad Sci USA. 71:2295–2299. 1974. View Article : Google Scholar : PubMed/NCBI

119 

Ezzat S, Zheng L and Asa SL: Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: A mechanism underlying pituitary neoplasia. Mol Endocrinol. 18:2543–2552. 2004. View Article : Google Scholar : PubMed/NCBI

120 

Gospodarowicz D, Ferrara N, Schweigerer L and Neufeld G: Structural characterization and biological functions of fibroblast growth factor. Endocr Rev. 8:95–114. 1987. View Article : Google Scholar : PubMed/NCBI

121 

Li Y, Koga M, Kasayama S, Matsumoto K, Arita N, Hayakawa T and Sato B: Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J Clin Endocrinol Metab. 75:1436–1441. 1992.PubMed/NCBI

122 

Zimering MB, Katsumata N, Sato Y, Brandi ML, Aurbach GD, Marx SJ and Friesen HG: Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: Relation to pituitary tumor. J Clin Endocrinol Metab. 76:1182–1187. 1993.PubMed/NCBI

123 

Ozkaya HM, Comunoglu N, Keskin FE, Oz B, Haliloglu OA, Tanriover N, Gazioglu N and Kadioglu P: Locally produced estrogen through aromatization might enhance tissue expression of pituitary tumor transforming gene and fibroblast growth factor 2 in growth hormone-secreting adenomas. Endocrine. 52:632–640. 2016. View Article : Google Scholar

124 

Moscatelli D: High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol. 131:123–130. 1987. View Article : Google Scholar : PubMed/NCBI

125 

Givol D and Yayon A: Complexity of FGF receptors: Genetic basis for structural diversity and functional specificity. FASEB J. 6:3362–3369. 1992.PubMed/NCBI

126 

Qian ZR, Sano T, Asa SL, Yamada S, Horiguchi H, Tashiro T, Li CC, Hirokawa M, Kovacs K and Ezzat S: Cytoplasmic expression of fibroblast growth factor receptor-4 in human pituitary adenomas: Relation to tumor type, size, proliferation, and invasiveness. J Clin Endocrinol Metab. 89:1904–1911. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Jaakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhönen S, Lehtovirta P and Nevanlinna H: Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer. 54:378–382. 1993. View Article : Google Scholar : PubMed/NCBI

128 

Ohta T, Yamamoto M, Numata M, Iseki S, Tsukioka Y, Miyashita T, Kayahara M, Nagakawa T, Miyazaki I, Nishikawa K, et al: Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas. Br J Cancer. 72:824–831. 1995. View Article : Google Scholar : PubMed/NCBI

129 

Ahmed NU, Ueda M, Ito A, Ohashi A, Funasaka Y and Ichihashi M: Expression of fibroblast growth factor receptors in naevus-cell naevus and malignant melanoma. Melanoma Res. 7:299–305. 1997. View Article : Google Scholar : PubMed/NCBI

130 

Giri D, Ropiquet F and Ittmann M: Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 5:1063–1071. 1999.PubMed/NCBI

131 

Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Öberg Å, Van Guelpen B, Rutegård J, Stenling R and Palmqvist R: Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol. 178:1387–1394. 2011. View Article : Google Scholar : PubMed/NCBI

132 

McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S, Mitchell R, Olliff J, Sheppard MC, Franklyn JA, et al: Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: Relationships to clinical tumour behaviour. Clin Endocrinol (Oxf). 58:141–150. 2003. View Article : Google Scholar

133 

Fukui S, Otani N, Nawashiro H, Yano A, Nomura N, Miyazawa T, Ohnuki A, Tsuzuki N, Katoh H, Ishihara S, et al: Subcellular localization of basic fibroblast growth factor and fibroblast growth factor receptor 1 in pituitary adenomas. Brain Tumor Pathol. 19:23–29. 2002. View Article : Google Scholar : PubMed/NCBI

134 

Zhu X, Asa SL and Ezzat S: Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res. 14:1984–1996. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A and Ezzat S: The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet. 7:e10024002011. View Article : Google Scholar : PubMed/NCBI

136 

da Costa Andrade VC, Parise O Jr, Hors CP, de Melo Martins PC, Silva AP and Garicochea B: The fibroblast growth factor receptor 4 (FGFR4) Arg388 allele correlates with survival in head and neck squamous cell carcinoma. Exp Mol Pathol. 82:53–57. 2007. View Article : Google Scholar

137 

Frullanti E, Berking C, Harbeck N, Jézéquel P, Haugen A, Mawrin C, Parise O Jr, Sasaki H, Tsuchiya N and Dragani TA: Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 20:340–347. 2011. View Article : Google Scholar : PubMed/NCBI

138 

Serra S, Zheng L, Hassan M, Phan AT, Woodhouse LJ, Yao JC, Ezzat S and Asa SL: The FGFR4-G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res. 72:5683–5691. 2012. View Article : Google Scholar : PubMed/NCBI

139 

Marmé F, Werft W, Benner A, Burwinkel B, Sinn P, Sohn C, Lichter P, Hahn M and Schneeweiss A: FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann Oncol. 21:1636–1642. 2010. View Article : Google Scholar : PubMed/NCBI

140 

Abbass SA, Asa SL and Ezzat S: Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab. 82:1160–1166. 1997. View Article : Google Scholar : PubMed/NCBI

141 

Ezzat S, Zheng L, Zhu XF, Wu GE and Asa SL: Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest. 109:69–78. 2002. View Article : Google Scholar : PubMed/NCBI

142 

Ezzat S, Yu S and Asa SL: Ikaros isoforms in human pituitary tumors: Distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol. 163:1177–1184. 2003. View Article : Google Scholar : PubMed/NCBI

143 

Ezzat S, Zheng L, Winer D and Asa SL: Targeting N-cadherin through fibroblast growth factor receptor-4: Distinct pathogenetic and therapeutic implications. Mol Endocrinol. 20:2965–2975. 2006. View Article : Google Scholar : PubMed/NCBI

144 

Fisher DA and Lakshmanan J: Metabolism and effects of epidermal growth factor and related growth factors in mammals (Review). Endocr Rev. 11:418–442. 1990. View Article : Google Scholar : PubMed/NCBI

145 

Murdoch GH, Potter E, Nicolaisen AK, Evans RM and Rosenfeld MG: Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature. 300:192–194. 1982. View Article : Google Scholar : PubMed/NCBI

146 

Qian X, LeVea CM, Freeman JK, Dougall WC and Greene MI: Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: A mechanism of interreceptor kinase activation and transphosphorylation. Proc Natl Acad Sci USA. 91:1500–1504. 1994. View Article : Google Scholar : PubMed/NCBI

147 

Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J and Waterfield MD: Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 307:521–527. 1984. View Article : Google Scholar : PubMed/NCBI

148 

Bethune G, Bethune D, Ridgway N and Xu Z: Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J Thorac Dis. 2:48–51. 2010.PubMed/NCBI

149 

Nicholson S, Richard J, Sainsbury C, Halcrow P, Kelly P, Angus B, Wright C, Henry J, Farndon JR and Harris AL: Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer. 63:146–150. 1991. View Article : Google Scholar : PubMed/NCBI

150 

Hudson LG, Zeineldin R, Silberberg M and Stack MS: Activated epidermal growth factor receptor in ovarian cancer. Cancer Treat Res. 149:203–226. 2009. View Article : Google Scholar : PubMed/NCBI

151 

Takehana T, Kunitomo K, Suzuki S, Kono K, Fujii H, Matsumoto Y and Ooi A: Expression of epidermal growth factor receptor in gastric carcinomas. Clin Gastroenterol Hepatol. 1:438–445. 2003. View Article : Google Scholar

152 

LeRiche VK, Asa SL and Ezzat S: Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab. 81:656–662. 1996.PubMed/NCBI

153 

Chaidarun SS, Eggo MC, Sheppard MC and Stewart PM: Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology. 135:2012–2021. 1994. View Article : Google Scholar : PubMed/NCBI

154 

Onguru O, Scheithauer BW, Kovacs K, Vidal S, Jin L, Zhang S, Ruebel KH and Lloyd RV: Analysis of epidermal growth factor receptor and activated epidermal growth factor receptor expression in pituitary adenomas and carcinomas. Mod Pathol. 17:772–780. 2004. View Article : Google Scholar : PubMed/NCBI

155 

Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D and Melmed S: EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest. 121:4712–4721. 2011. View Article : Google Scholar : PubMed/NCBI

156 

Vallar L, Spada A and Giannattasio G: Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature. 330:566–568. 1987. View Article : Google Scholar : PubMed/NCBI

157 

Theodoropoulou M, Arzberger T, Gruebler Y, Jaffrain-Rea ML, Schlegel J, Schaaf L, Petrangeli E, Losa M, Stalla GK and Pagotto U: Expression of epidermal growth factor receptor in neoplastic pituitary cells: Evidence for a role in corticotropinoma cells. J Endocrinol. 183:385–394. 2004. View Article : Google Scholar : PubMed/NCBI

158 

Theodoropoulou M, Reincke M, Fassnacht M and Komada M: Decoding the genetic basis of Cushing's disease: USP8 in the spotlight. Eur J Endocrinol. 173:M73–M83. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Yu R and Melmed S: Pathogenesis of pituitary tumors. Prog Brain Res. 182:207–227. 2010. View Article : Google Scholar : PubMed/NCBI

160 

Onofri C, Theodoropoulou M, Losa M, Uhl E, Lange M, Arzt E, Stalla GK and Renner U: Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: Detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol. 191:249–261. 2006. View Article : Google Scholar : PubMed/NCBI

161 

Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL and Wass JA: Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab. 85:1159–1162. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Spoletini M, Taurone S, Tombolini M, Minni A, Altissimi G, Wierzbicki V, Giangaspero F, Parnigotto PP, Artico M, Bardella L, Bardella L, et al: Trophic and neurotrophic factors in human pituitary adenomas (Review). Int J Oncol 51: 1014-1024, 2017.
APA
Spoletini, M., Taurone, S., Tombolini, M., Minni, A., Altissimi, G., Wierzbicki, V. ... Pastore, F.S. (2017). Trophic and neurotrophic factors in human pituitary adenomas (Review). International Journal of Oncology, 51, 1014-1024. https://doi.org/10.3892/ijo.2017.4120
MLA
Spoletini, M., Taurone, S., Tombolini, M., Minni, A., Altissimi, G., Wierzbicki, V., Giangaspero, F., Parnigotto, P. P., Artico, M., Bardella, L., Agostinelli, E., Pastore, F. S."Trophic and neurotrophic factors in human pituitary adenomas (Review)". International Journal of Oncology 51.4 (2017): 1014-1024.
Chicago
Spoletini, M., Taurone, S., Tombolini, M., Minni, A., Altissimi, G., Wierzbicki, V., Giangaspero, F., Parnigotto, P. P., Artico, M., Bardella, L., Agostinelli, E., Pastore, F. S."Trophic and neurotrophic factors in human pituitary adenomas (Review)". International Journal of Oncology 51, no. 4 (2017): 1014-1024. https://doi.org/10.3892/ijo.2017.4120
Copy and paste a formatted citation
x
Spandidos Publications style
Spoletini M, Taurone S, Tombolini M, Minni A, Altissimi G, Wierzbicki V, Giangaspero F, Parnigotto PP, Artico M, Bardella L, Bardella L, et al: Trophic and neurotrophic factors in human pituitary adenomas (Review). Int J Oncol 51: 1014-1024, 2017.
APA
Spoletini, M., Taurone, S., Tombolini, M., Minni, A., Altissimi, G., Wierzbicki, V. ... Pastore, F.S. (2017). Trophic and neurotrophic factors in human pituitary adenomas (Review). International Journal of Oncology, 51, 1014-1024. https://doi.org/10.3892/ijo.2017.4120
MLA
Spoletini, M., Taurone, S., Tombolini, M., Minni, A., Altissimi, G., Wierzbicki, V., Giangaspero, F., Parnigotto, P. P., Artico, M., Bardella, L., Agostinelli, E., Pastore, F. S."Trophic and neurotrophic factors in human pituitary adenomas (Review)". International Journal of Oncology 51.4 (2017): 1014-1024.
Chicago
Spoletini, M., Taurone, S., Tombolini, M., Minni, A., Altissimi, G., Wierzbicki, V., Giangaspero, F., Parnigotto, P. P., Artico, M., Bardella, L., Agostinelli, E., Pastore, F. S."Trophic and neurotrophic factors in human pituitary adenomas (Review)". International Journal of Oncology 51, no. 4 (2017): 1014-1024. https://doi.org/10.3892/ijo.2017.4120
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team