|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, McCarron P and Parkin DM: The
changing global patterns of female breast cancer incidence and
mortality. Breast Cancer Res. 6:229–239. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
DeSantis CE, Bray F, Ferlay J,
Lortet-Tieulent J, Anderson BO and Jemal A: International variation
in female breast cancer incidence and mortality rates. Cancer
Epidemiol Biomarkers Prev. 24:1495–1506. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ekwueme DU, Guy GP Jr, Rim SH, White A,
Hall IJ, Fairley TL and Dean HD: Health and economic impact of
breast cancer mortality in young women, 1970–2008. Am J Prev Med.
46:71–79. 2014. View Article : Google Scholar
|
|
5
|
Dai X, Xiang L, Li T and Bai Z: Cancer
Hallmarks, Biomarkers and breast cancer molecular subtypes. J
Cancer. 7:1281–1294. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zardavas D, Irrthum A, Swanton C and
Piccart M: Clinical management of breast cancer heterogeneity. Nat
Rev Clin Oncol. 12:381–394. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Koren S and Bentires-Alj M: Breast tumor
heterogeneity: Source of fitness, Hurdle for Therapy. Mol Cell.
60:537–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lacroix M, Toillon RA and Leclercq G:
Stable 'portrait' of breast tumors during progression: Data from
biology, pathology and genetics. Endocr Relat Cancer. 11:497–522.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Simpson PT, Reis-Filho JS, Gale T and
Lakhani SR: Molecular evolution of breast cancer. J Pathol.
205:248–254. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Perou CM, Sørlie T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sørlie T, Perou CM, Tibshirani R, Aas T,
Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey
SS, et al: Gene expression patterns of breast carcinomas
distinguish tumor subclasses with clinical implications. Proc Natl
Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sorlie T, Tibshirani R, Parker J, Hastie
T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et
al: Repeated observation of breast tumor subtypes in independent
gene expression data sets. Proc Natl Acad Sci USA. 100:8418–8423.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Turner NC and Reis-Filho JS: Basal-like
breast cancer and the BRCA1 phenotype. Oncogene. 25:5846–5853.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fang Y, Zhang Q, Wang X, Yang X, Wang X,
Huang Z, Jiao Y and Wang J: Quantitative phosphoproteomics reveals
genistein as a modulator of cell cycle and DNA damage response
pathways in triple-negative breast cancer cells. Int J Oncol.
48:1016–1028. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gnant M, Harbeck N and Thomssen C: St.
Gallen 2011: Summary of the Consensus Discussion. Breast Care
(Basel). 6:136–141. 2011. View Article : Google Scholar
|
|
16
|
Raman V, Fuentes Lorenzo JL, Stashenko EE,
Levy M, Levy MM and Camarillo IG: Lippia origanoides extract
induces cell cycle arrest and apoptosis and suppresses NF-κB
signaling in triple-negative breast cancer cells. Int J Oncol.
51:1801–1808. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lee A and Djamgoz MBA: Triple negative
breast cancer: Emerging therapeutic modalities and novel
combination therapies. Cancer Treat Rev. 62:110–122. 2018.
View Article : Google Scholar
|
|
18
|
Yao H, He G, Yan S, Chen C, Song L, Rosol
TJ and Deng X: Triple-negative breast cancer: Is there a treatment
on the horizon? Oncotarget. 8:1913–1924. 2017.
|
|
19
|
Prat A, Pineda E, Adamo B, Galván P,
Fernández A, Gaba L, Díez M, Viladot M, Arance A and Muñoz M:
Clinical implications of the intrinsic molecular subtypes of breast
cancer. Breast. 24(Suppl 2): S26–S35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fulford LG, Easton DF, Reis-Filho JS,
Sofronis A, Gillett CE, Lakhani SR and Hanby A: Specific
morphological features predictive for the basal phenotype in grade
3 invasive ductal carcinoma of breast. Histopathology. 49:22–34.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gudjonsson T, Adriance MC, Sternlicht MD,
Petersen OW and Bissell MJ: Myoepithelial cells: Their origin and
function in breast morphogenesis and neoplasia. J Mammary Gland
Biol Neoplasia. 10:261–272. 2005. View Article : Google Scholar
|
|
22
|
Badowska-Kozakiewicz AM and Budzik MP:
Immunohisto-chemical characteristics of basal-like breast cancer.
Contemp Oncol (Pozn). 20:436–443. 2016.
|
|
23
|
Nielsen TO, Hsu FD, Jensen K, Cheang M,
Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler
L, et al: Immunohistochemical and clinical characterization of the
basal-like subtype of invasive breast carcinoma. Clin Cancer Res.
10:5367–5374. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cheang MC, Voduc D, Bajdik C, Leung S,
McKinney S, Chia SK, Perou CM and Nielsen TO: Basal-like breast
cancer defined by five biomarkers has superior prognostic value
than triple-negative phenotype. Clin Cancer Res. 14:1368–1376.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Prat A, Adamo B, Cheang MC, Anders CK,
Carey LA and Perou CM: Molecular characterization of basal-like and
non-basal-like triple-negative breast cancer. Oncologist.
18:123–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lachapelle J and Foulkes W:
Triple-negative and basal-like breast cancer: Implications for
oncologists. Curr Oncol. 18:161–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bertucci F, Finetti P, Viens P and
Birnbaum D: Difference in therapeutic response between basal and
nonbasal triple-negative breast cancers. Oncologist. 18:1060–1061.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Prat A and Perou CM: Deconstructing the
molecular portraits of breast cancer. Mol Oncol. 5:5–23. 2011.
View Article : Google Scholar
|
|
29
|
Sheffield BS, Kos Z, Asleh-Aburaya K, Wang
XQ, Leung S, Gao D, Won J, Chow C, Rachamadugu R, Stijleman I, et
al: Molecular subtype profiling of invasive breast cancers weakly
positive for estrogen receptor. Breast Cancer Res Treat.
155:483–490. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Prabhu JS, Korlimarla A, Desai K,
Alexander A, Raghavan R, Anupama C, Dendukuri N, Manjunath S,
Correa M, Raman N, et al: A majority of low (1-10%) ER positive
breast cancers behave like hormone receptor negative tumors. J
Cancer. 5:156–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Iwamoto T, Booser D, Valero V, Murray JL,
Koenig K, Esteva FJ, Ueno NT, Zhang J, Shi W, Qi Y, et al: Estrogen
receptor (ER) mRNA and ER-related gene expression in breast cancers
that are 1% to 10% ER-positive by immunohistochemistry. J Clin
Oncol. 30:729–734. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nadji M, Gomez-Fernandez C, Ganjei-Azar P
and Morales AR: Immunohistochemistry of estrogen and progesterone
receptors reconsidered: Experience with 5,993 breast cancers. Am J
Clin Pathol. 123:21–27. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Khoshnoud MR, Löfdahl B, Fohlin H,
Fornander T, Stål O, Skoog L, Bergh J and Nordenskjöld B:
Immunohistochemistry compared to cytosol assays for determination
of estrogen receptor and prediction of the long-term effect of
adjuvant tamoxifen. Breast Cancer Res Treat. 126:421–430. 2011.
View Article : Google Scholar
|
|
34
|
Asleh K, Won JR, Gao D, Voduc KD and
Nielsen TO: Nestin expression in breast cancer: Association with
prognosis and subtype on 3641 cases with long-term follow-up.
Breast Cancer Res Treat. 168:107–115. 2018. View Article : Google Scholar
|
|
35
|
Asleh-Aburaya K, Sheffield BS, Kos Z, Won
JR, Wang XQ, Gao D, Wolber R, Gilks CB, Bernard PS, Chia SK, et al:
Basal biomarkers nestin and INPP4b identify intrinsic subtypes
accurately in breast cancers that are weakly positive for oestrogen
receptor. Histopathology. 70:185–194. 2017. View Article : Google Scholar
|
|
36
|
Michalczyk K and Ziman M: Nestin structure
and predicted function in cellular cytoskeletal organisation.
Histol Histopathol. 20:665–671. 2005.PubMed/NCBI
|
|
37
|
Wiese C, Rolletschek A, Kania G, Blyszczuk
P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR and Wobus AM:
Nestin expression - a property of multi-lineage progenitor cells?
Cell Mol Life Sci. 61:2510–2522. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mokrý J and Nĕmecek S: Immunohistochemical
detection of intermediate filament nestin. Acta Medica (Hradec
Kralove). 41:73–80. 1998.
|
|
39
|
Cattaneo E and McKay R: Proliferation and
differentiation of neuronal stem cells regulated by nerve growth
factor. Nature. 347:762–765. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lendahl U, Zimmerman LB and McKay RD: CNS
stem cells express a new class of intermediate filament protein.
Cell. 60:585–595. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Krum JM and Rosenstein JM: Transient
coexpression of nestin, GFAP, and vascular endothelial growth
factor in mature reactive astroglia following neural grafting or
brain wounds. Exp Neurol. 160:348–360. 1999. View Article : Google Scholar
|
|
42
|
Vaittinen S, Lukka R, Sahlgren C, Hurme T,
Rantanen J, Lendahl U, Eriksson JE and Kalimo H: The expression of
intermediate filament protein nestin as related to vimentin and
desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol.
60:588–597. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lindqvist J, Torvaldson E, Gullmets J,
Karvonen H, Nagy A, Taimen P and Eriksson JE: Nestin contributes to
skeletal muscle homeostasis and regeneration. J Cell Sci.
130:2833–2842. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
About I, Laurent-Maquin D, Lendahl U and
Mitsiadis TA: Nestin expression in embryonic and adult human teeth
under normal and pathological conditions. Am J Pathol. 157:287–295.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lin RC, Matesic DF, Marvin M, McKay RD and
Brüstle O: Re-expression of the intermediate filament nestin in
reactive astrocytes. Neurobiol Dis. 2:79–85. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sejersen T and Lendahl U: Transient
expression of the intermediate filament nestin during skeletal
muscle development. J Cell Sci. 106:1291–1300. 1993.PubMed/NCBI
|
|
47
|
Kachinsky AM, Dominov JA and Miller JB:
Myogenesis and the intermediate filament protein, nestin. Dev Biol.
165:216–228. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kachinsky AM, Dominov JA and Miller JB:
Intermediate filaments in cardiac myogenesis: Nestin in the
developing mouse heart. J Histochem Cytochem. 43:843–847. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Terling C, Rass A, Mitsiadis TA, Fried K,
Lendahl U and Wroblewski J: Expression of the intermediate filament
nestin during rodent tooth development. Int J Dev Biol. 39:947–956.
1995.PubMed/NCBI
|
|
50
|
Fröjdman K, Pelliniemi LJ, Lendahl U,
Virtanen I and Eriksson JE: The intermediate filament protein
nestin occurs transiently in differentiating testis of rat and
mouse. Differentiation. 61:243–249. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zulewski H, Abraham EJ, Gerlach MJ, Daniel
PB, Moritz W, Müller B, Vallejo M, Thomas MK and Habener JF:
Multipotential nestin-positive stem cells isolated from adult
pancreatic islets differentiate ex vivo into pancreatic endocrine,
exocrine, and hepatic phenotypes. Diabetes. 50:521–533. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vanderwinden JM, Gillard K, De Laet MH,
Messam CA and Schiffmann SN: Distribution of the intermediate
filament nestin in the muscularis propria of the human
gastrointestinal tract. Cell Tissue Res. 309:261–268. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Vogel W, Grünebach F, Messam CA, Kanz L,
Brugger W and Bühring HJ: Heterogeneity among human bone
marrow-derived mesenchymal stem cells and neural progenitor cells.
Haematologica. 88:126–133. 2003.PubMed/NCBI
|
|
54
|
Amoh Y, Yang M, Li L, Reynoso J, Bouvet M,
Moossa AR, Katsuoka K and Hoffman RM: Nestin-linked green
fluorescent protein transgenic nude mouse for imaging human tumor
angiogenesis. Cancer Res. 65:5352–5357. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mokrý J, Cízková D, Filip S, Ehrmann J,
Osterreicher J, Kolár Z and English D: Nestin expression by newly
formed human blood vessels. Stem Cells Dev. 13:658–664. 2004.
View Article : Google Scholar
|
|
56
|
Nowak A, Grzegrzolka J, Paprocka M,
Piotrowska A, Rys J, Matkowski R and Dziegiel P: Nestin-positive
microvessel density is an independent prognostic factor in breast
cancer. Int J Oncol. 51:668–676. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tohyama T, Lee VM, Rorke LB, Marvin M,
McKay RD and Trojanowski JQ: Nestin expression in embryonic human
neuroepithelium and in human neuroepithelial tumor cells. Lab
Invest. 66:303–313. 1992.PubMed/NCBI
|
|
58
|
Dahlstrand J, Collins VP and Lendahl U:
Expression of the class VI intermediate filament nestin in human
central nervous system tumors. Cancer Res. 52:5334–5341.
1992.PubMed/NCBI
|
|
59
|
Li H, Cherukuri P, Li N, Cowling V,
Spinella M, Cole M, Godwin AK, Wells W and DiRenzo J: Nestin is
expressed in the basal/myoepithelial layer of the mammary gland and
is a selective marker of basal epithelial breast tumors. Cancer
Res. 67:501–510. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kleeberger W, Bova GS, Nielsen ME, Herawi
M, Chuang AY, Epstein JI and Berman DM: Roles for the stem cell
associated intermediate filament Nestin in prostate cancer
migration and metastasis. Cancer Res. 67:9199–9206. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Matsuda Y, Naito Z, Kawahara K, Nakazawa
N, Korc M and Ishiwata T: Nestin is a novel target for suppressing
pancreatic cancer cell migration, invasion and metastasis. Cancer
Biol Ther. 11:512–523. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sterlacci W, Savic S, Fiegl M, Obermann E
and Tzankov A: Putative stem cell markers in non-small-cell lung
cancer: A clinicopathologic characterization. J Thorac Oncol.
9:41–49. 2014. View Article : Google Scholar
|
|
63
|
Qin Q, Sun Y, Fei M, Zhang J, Jia Y, Gu M,
Xia R, Chen S and Deng A: Expression of putative stem marker nestin
and CD133 in advanced serous ovarian cancer. Neoplasma. 59:310–315.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ishiwata T, Matsuda Y and Naito Z: Nestin
in gastrointestinal and other cancers: Effects on cells and tumor
angiogenesis. World J Gastroenterol. 17:409–418. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Piras F, Perra MT, Murtas D, Minerba L,
Floris C, Maxia C, Demurtas P, Ugalde J, Ribatti D and Sirigu P:
The stem cell marker nestin predicts poor prognosis in human
melanoma. Oncol Rep. 23:17–24. 2010.
|
|
66
|
Zhong B, Wang T, Lun X, Zhang J, Zheng S,
Yang W, Li W, Xiang AP and Chen Z: Contribution of nestin positive
esophageal squamous cancer cells on malignant proliferation,
apoptosis, and poor prognosis. Cancer Cell Int. 14:572014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li S, Lai Y, Fan J, Shen C and Che G:
Clinicopathological and prognostic significance of Nestin
expression in patients with non-small cell lung cancer: A
systematic review and meta-analysis. Clin Exp Med. 17:161–174.
2017. View Article : Google Scholar
|
|
68
|
Neradil J and Veselska R: Nestin as a
marker of cancer stem cells. Cancer Sci. 106:803–811. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Guérette D, Khan PA, Savard PE and Vincent
M: Molecular evolution of type VI intermediate filament proteins.
BMC Evol Biol. 7:1642007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chou YH, Khuon S, Herrmann H and Goldman
RD: Nestin promotes the phosphorylation-dependent disassembly of
vimentin intermediate filaments during mitosis. Mol Biol Cell.
14:1468–1478. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sjöberg G, Jiang WQ, Ringertz NR, Lendahl
U and Sejersen T: Colocalization of nestin and vimentin/desmin in
skeletal muscle cells demonstrated by three-dimensional
fluorescence digital imaging microscopy. Exp Cell Res. 214:447–458.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Holle AW, Kalafat M, Ramos AS, Seufferlein
T, Kemkemer R and Spatz JP: Intermediate filament reorganization
dynamically influences cancer cell alignment and migration. Sci
Rep. 7:451522017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Makihara H, Inaba H, Enomoto A, Tanaka H,
Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, et al:
Desmin phosphorylation by Cdk1 is required for efficient separation
of desmin intermediate filaments in mitosis and detected in murine
embryonic/newborn muscle and human rhabdomyosarcoma tissues.
Biochem Biophys Res Commun. 478:1323–1329. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sahlgren CM, Mikhailov A, Vaittinen S,
Pallari HM, Kalimo H, Pant HC and Eriksson JE: Cdk5 regulates the
organization of Nestin and its association with p35. Mol Cell Biol.
23:5090–5106. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sahlgren CM, Mikhailov A, Hellman J, Chou
YH, Lendahl U, Goldman RD and Eriksson JE: Mitotic reorganization
of the intermediate filament protein nestin involves
phosphorylation by cdc2 kinase. J Biol Chem. 276:16456–16463. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Matsuda Y, Ishiwata T, Yoshimura H,
Yamahatsu K, Minamoto T and Arai T: Nestin phosphorylation at
threonines 315 and 1299 correlates with proliferation and
metastasis of human pancreatic cancer. Cancer Sci. 108:354–361.
2017. View Article : Google Scholar :
|
|
77
|
Pozo K and Bibb JA: The Emerging Role of
Cdk5 in Cancer. Trends Cancer. 2:606–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chiker S, Pennaneach V, Loew D, Dingli F,
Biard D, Cordelières FP, Gemble S, Vacher S, Bieche I, Hall J, et
al: Cdk5 promotes DNA replication stress checkpoint activation
through RPA-32 phosphorylation, and impacts on metastasis free
survival in breast cancer patients. Cell Cycle. 14:3066–3078. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu
DX, Feng J, Hou P, Yao R, Zhang Y, et al: CDK5 is essential for
TGF-β1-induced epithelial-mesenchymal transition and breast cancer
progression. Sci Rep. 3:29322013. View Article : Google Scholar
|
|
80
|
Sahlgren CM, Pallari HM, He T, Chou YH,
Goldman RD and Eriksson JE: A nestin scaffold links Cdk5/p35
signaling to oxidant-induced cell death. EMBO J. 25:4808–4819.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Choi SS, Syn WK, Karaca GF, Omenetti A,
Moylan CA, Witek RP, Agboola KM, Jung Y, Michelotti GA and Diehl
AM: Leptin promotes the myofibroblastic phenotype in hepatic
stellate cells by activating the hedgehog pathway. J Biol Chem.
285:36551–36560. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Habib JG and O'Shaughnessy JA: The
hedgehog pathway in triple-negative breast cancer. Cancer Med.
5:2989–3006. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fan Y, Chong YS, Choolani MA, Cregan MD
and Chan JK: Unravelling the mystery of stem/progenitor cells in
human breast milk. PLoS One. 5:e144212010. View Article : Google Scholar
|
|
84
|
Patki S, Kadam S, Chandra V and Bhonde R:
Human breast milk is a rich source of multipotent mesenchymal stem
cells. Hum Cell. 23:35–40. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cregan MD, Fan Y, Appelbee A, Brown ML,
Klopcic B, Koppen J, Mitoulas LR, Piper KM, Choolani MA, Chong YS,
et al: Identification of nestin-positive putative mammary stem
cells in human breastmilk. Cell Tissue Res. 329:129–136. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hosseini SM, Talaei-Khozani T, Sani M and
Owrangi B: Differentiation of human breast-milk stem cells to
neural stem cells and neurons. Neurol Res Int. 2014:8078962014.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bussolati B, Grange C, Sapino A and
Camussi G: Endothelial cell differentiation of human breast tumour
stem/progenitor cells. J Cell Mol Med. 13:309–319. 2009. View Article : Google Scholar
|
|
88
|
Zhao Z, Lu P, Zhang H, Xu H, Gao N, Li M
and Liu C: Nestin positively regulates the Wnt/β-catenin pathway
and the proliferation, survival and invasiveness of breast cancer
stem cells. Breast Cancer Res. 16:4082014. View Article : Google Scholar
|
|
89
|
Apostolou P, Toloudi M, Chatziioannou M,
Ioannou E and Papasotiriou I: Cancer stem cells stemness
transcription factors expression correlates with breast cancer
disease stage. Curr Stem Cell Res Ther. 7:415–419. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Parry S, Savage K, Marchiò C and
Reis-Filho JS: Nestin is expressed in basal-like and triple
negative breast cancers. J Clin Pathol. 61:1045–1050. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu C, Chen B, Zhu J, Zhang R, Yao F, Jin
F, Xu H and Lu P: Clinical implications for nestin protein
expression in breast cancer. Cancer Sci. 101:815–819. 2010.
View Article : Google Scholar
|
|
92
|
Piras F, Ionta MT, Lai S, Perra MT, Atzori
F, Minerba L, Pusceddu V, Maxia C, Murtas D, Demurtas P, et al:
Nestin expression associates with poor prognosis and triple
negative phenotype in locally advanced (T4) breast cancer. Eur J
Histochem. 55:e392011. View Article : Google Scholar
|
|
93
|
Won JR, Gao D, Chow C, Cheng J, Lau SY,
Ellis MJ, Perou CM, Bernard PS and Nielsen TO: A survey of
immunohistochemical biomarkers for basal-like breast cancer against
a gene expression profile gold standard. Mod Pathol. 26:1438–1450.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tampaki EC, Tampakis A, Nonni A,
Kontzoglou K, Patsouris E and Kouraklis G: Nestin and cluster of
differentiation 146 expression in breast cancer: Predicting early
recurrence by targeting metastasis? Tumour Biol.
39:1010428317691181. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gao N, Xu H, Liu C, Xu H, Chen G, Wang X,
Li Y and Wang Y: Nestin: Predicting specific survival factors for
breast cancer. Tumour Biol. 35:1751–1755. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Krüger K, Wik E, Knutsvik G, Nalwoga H,
Klingen TA, Arnes JB, Chen Y, Mannelqvist M, Dimitrakopoulou K,
Stefansson IM, et al: Expression of Nestin associates with BRCA1
mutations, a basal-like phenotype and aggressive breast cancer. Sci
Rep. 7:10892017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nowak A, Grzegrzółka J, Kmiecik A,
Piotrowska A, Matkowski R and Dzięgiel P: Role of nestin expression
in angiogenesis and breast cancer progression. Int J Oncol.
52:527–535. 2018.PubMed/NCBI
|
|
98
|
Huang A, Cao S and Tang L: The tumor
microenvironment and inflammatory breast cancer. J Cancer.
8:1884–1891. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
van Uden DJ, van Laarhoven HW, Westenberg
AH, de Wilt JH and Blanken-Peeters CF: Inflammatory breast cancer:
An overview. Crit Rev Oncol Hematol. 93:116–126. 2015. View Article : Google Scholar
|
|
100
|
Xiao Y, Ye Y, Yearsley K, Jones S and
Barsky SH: The lymphovascular embolus of inflammatory breast cancer
expresses a stem cell-like phenotype. Am J Pathol. 173:561–574.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Rögelsperger O, Ekmekcioglu C, Jäger W,
Klimpfinger M, Königsberg R, Krenbek D, Sellner F and Thalhammer T:
Coexpression of the melatonin receptor 1 and nestin in human breast
cancer specimens. J Pineal Res. 46:422–432. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Laakso M, Loman N, Borg A and Isola J:
Cytokeratin 5/14-positive breast cancer: True basal phenotype
confined to BRCA1 tumors. Mod Pathol. 18:1321–1328. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Badve S, Dabbs DJ, Schnitt SJ, Baehner FL,
Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR,
et al: Basal-like and triple-negative breast cancers: A critical
review with an emphasis on the implications for pathologists and
oncologists. Mod Pathol. 24:157–167. 2011. View Article : Google Scholar
|
|
104
|
Foulkes WD, Metcalfe K, Hanna W, Lynch HT,
Ghadirian P, Tung N, Olopade O, Weber B, McLennan J, Olivotto IA,
et al: Disruption of the expected positive correlation between
breast tumor size and lymph node status in BRCA1-related breast
carcinoma. Cancer. 98:1569–1577. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zimmer AS, Gillard M, Lipkowitz S and Lee
JM: Update on PARP inhibitors in breast cancer. Curr Treat Options
Oncol. 19:212018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sihto H, Lundin J, Lundin M, Lehtimäki T,
Ristimäki A, Holli K, Sailas L, Kataja V, Turpeenniemi-Hujanen T,
Isola J, et al: Breast cancer biological subtypes and protein
expression predict for the preferential distant metastasis sites: A
nationwide cohort study. Breast Cancer Res. 13:R872011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
de Groot AE, Roy S, Brown JS, Pienta KJ
and Amend SR: Revisiting Seed and Soil: Examining the primary tumor
and cancer cell foraging in metastasis. Mol Cancer Res. 15:361–370.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Custódio-Santos T, Videira M and Brito MA:
Brain metastasization of breast cancer. Biochim Biophys Acta.
1868:132–147. 2017.PubMed/NCBI
|
|
110
|
Meisen WH, Dubin S, Sizemore ST,
Mathsyaraja H, Thies K, Lehman NL, Boyer P, Jaime-Ramirez AC, Elder
JB, Powell K, et al: Changes in BAI1 and nestin expression are
prognostic indicators for survival and metastases in breast cancer
and provide opportunities for dual targeted therapies. Mol Cancer
Ther. 14:307–314. 2015. View Article : Google Scholar :
|
|
111
|
Neve RM, Chin K, Fridlyand J, Yeh J,
Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al: A
collection of breast cancer cell lines for the study of
functionally distinct cancer subtypes. Cancer Cell. 10:515–527.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sin WC and Lim CL: Breast cancer stem
cells-from origins to targeted therapy. Stem Cell Investig.
4:962017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Albini A, Bruno A, Gallo C, Pajardi G,
Noonan DM and Dallaglio K: Cancer stem cells and the tumor
microenvironment: Interplay in tumor heterogeneity. Connect Tissue
Res. 56:414–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shima H, Yamada A, Ishikawa T and Endo I:
Are breast cancer stem cells the key to resolving clinical issues
in breast cancer therapy? Gland Surg. 6:82–88. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB: Identification of a cancer stem
cell in human brain tumors. Cancer Res. 63:5821–5828.
2003.PubMed/NCBI
|
|
116
|
Singh SK, Clarke ID, Hide T and Dirks PB:
Cancer stem cells in nervous system tumors. Oncogene. 23:7267–7273.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang H, Wang L, Song Y, Wang S, Huang X,
Xuan Q, Kang X and Zhang Q: CD44+/CD24−
phenotype predicts a poor prognosis in triple-negative breast
cancer. Oncol Lett. 14:5890–5898. 2017.PubMed/NCBI
|
|
119
|
Ma F, Li H, Wang H, Shi X, Fan Y, Ding X,
Lin C, Zhan Q, Qian H and Xu B: Enriched CD44(+)/CD24(−) population
drives the aggressive phenotypes presented in triple-negative
breast cancer (TNBC). Cancer Lett. 353:153–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liu C, Cao X, Zhang Y, Xu H, Zhang R, Wu
Y, Lu P and Jin F: Co-expression of Oct-4 and Nestin in human
breast cancers. Mol Biol Rep. 39:5875–5881. 2012. View Article : Google Scholar
|
|
121
|
Xiao Y, Ye Y, Zou X, Jones S, Yearsley K,
Shetuni B, Tellez J and Barsky SH: The lymphovascular embolus of
inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene.
30:287–300. 2011. View Article : Google Scholar
|
|
122
|
Chang R, Zhang P and You J:
Post-translational modifications of EMT transcriptional factors in
cancer metastasis. Open Life Sci. 11:237–243. 2016.
|
|
123
|
Grzegrzolka J, Biala M, Wojtyra P,
Kobierzycki C, Olbromski M, Gomulkiewicz A, Piotrowska A, Rys J,
Podhorska-Okolow M and Dziegiel P: Expression of EMT markers SLUG
and TWIST in breast cancer. Anticancer Res. 35:3961–3968.
2015.PubMed/NCBI
|
|
124
|
Liang Q, Li W, Zhao Z and Fu Q:
Advancement of Wnt signal pathway and the target of breast cancer.
Open Life Sci. 11:98–104. 2016.
|
|
125
|
Luo G, Huang D, Tao R and Chen J: The role
of E-cadherin - 160C/A polymorphism in breast cancer. Open Life
Sci. 11:110–115. 2016.
|
|
126
|
Odiba A, Ottah V, Anunobi O, Edeke AA,
Ukegbu CY, Chukwunonyelum I, Onosakponome I and Joshua PE: Research
progress in oncology. Highlighting and exploiting the roles of
several strategic proteins in understanding cancer biology. Open
Life Sci. 11:331–347. 2016.
|
|
127
|
de Sousa E Melo F and Vermeulen L: Wnt
Signaling in cancer stem cell biology. Cancers (Basel).
8:82016.
|
|
128
|
Sun M, Zhang N, Wang X, Li Y, Qi W, Zhang
H, Li Z and Yang Q: Hedgehog pathway is involved in nitidine
chloride induced inhibition of epithelial-mesenchymal transition
and cancer stem cells-like properties in breast cancer cells. Cell
Biosci. 6:442016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang X, Zhang N, Huo Q, Sun M, Dong L,
Zhang Y, Xu G and Yang Q: Huaier aqueous extract inhibits stem-like
characteristics of MCF7 breast cancer cells via inactivation of
hedgehog pathway. Tumour Biol. 35:10805–10813. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hatsell S and Frost AR: Hedgehog signaling
in mammary gland development and breast cancer. J Mammary Gland
Biol Neoplasia. 12:163–173. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Feng W, Liu S, Zhu R, Li B, Zhu Z, Yang J
and Song C: SOX10 induced Nestin expression regulates cancer stem
cell properties of TNBC cells. Biochem Biophys Res Commun.
485:522–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Dravis C, Spike BT, Harrell JC, Johns C,
Trejo CL, Southard-Smith EM, Perou CM and Wahl GM: Sox10 regulates
stem/progenitor and mesenchymal cell states in mammary epithelial
cells. Cell Reports. 12:2035–2048. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Carmeliet P: Angiogenesis in life, disease
and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Folkman J: Tumor angiogenesis: Therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Hanahan D and Folkman J: Patterns and
emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Krupkova O Jr, Loja T, Zambo I and
Veselska R: Nestin expression in human tumors and tumor cell lines.
Neoplasma. 57:291–298. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Krüger K, Stefansson IM, Collett K, Arnes
JB, Aas T and Akslen LA: Microvessel proliferation by co-expression
of endothelial nestin and Ki-67 is associated with a basal-like
phenotype and aggressive features in breast cancer. Breast.
22:282–288. 2013. View Article : Google Scholar
|
|
140
|
Paprocka M, Krawczenko A, Dus D, Kantor A,
Carreau A, Grillon C and Kieda C: CD133 positive progenitor
endothelial cell lines from human cord blood. Cytometry A.
79:594–602. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Alliot F, Rutin J, Leenen PJ and Pessac B:
Pericytes and periendothelial cells of brain parenchyma vessels
co-express aminopeptidase N, aminopeptidase A, and nestin. J
Neurosci Res. 58:367–378. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Nakagawa S, Miki Y, Miyashita M, Hata S,
Takahashi Y, Rai Y, Sagara Y, Ohi Y, Hirakawa H, Tamaki K, et al:
Tumor micro-environment in invasive lobular carcinoma: Possible
therapeutic targets. Breast Cancer Res Treat. 155:65–75. 2016.
View Article : Google Scholar
|
|
143
|
Morikawa S, Baluk P, Kaidoh T, Haskell A,
Jain RK and McDonald DM: Abnormalities in pericytes on blood
vessels and endothelial sprouts in tumors. Am J Pathol.
160:985–1000. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Ikhapoh IA, Pelham CJ and Agrawal DK:
Sry-type HMG box 18 contributes to the differentiation of bone
marrow-derived mesenchymal stem cells to endothelial cells.
Differentiation. 89:87–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Downes M and Koopman P: SOX18 and the
transcriptional regulation of blood vessel development. Trends
Cardiovasc Med. 11:318–324. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Pula B, Olbromski M, Wojnar A,
Gomulkiewicz A, Witkiewicz W, Ugorski M, Dziegiel P and
Podhorska-Okolow M: Impact of SOX18 expression in cancer cells and
vessels on the outcome of invasive ductal breast carcinoma. Cell
Oncol (Dordr). 36:469–483. 2013. View Article : Google Scholar
|
|
147
|
Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T,
Gu Q, Yao Z, Dong XY, Zhao N and Liu N: CD133+ cells
with cancer stem cell characteristics associates with vasculogenic
mimicry in triple-negative breast cancer. Oncogene. 32:544–553.
2013. View Article : Google Scholar
|
|
148
|
Wang R, Chadalavada K, Wilshire J, Kowalik
U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and
Tabar V: Glioblastoma stem-like cells give rise to tumour
endothelium. Nature. 468:829–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Folberg R, Hendrix MJ and Maniotis AJ:
Vasculogenic mimicry and tumor angiogenesis. Am J Pathol.
156:361–381. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Baluk P, Hashizume H and McDonald DM:
Cellular abnormalities of blood vessels as targets in cancer. Curr
Opin Genet Dev. 15:102–111. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Shirakawa K, Kobayashi H, Heike Y,
Kawamoto S, Brechbiel MW, Kasumi F, Iwanaga T, Konishi F, Terada M
and Wakasugi H: Hemodynamics in vasculogenic mimicry and
angiogenesis of inflammatory breast cancer xenograft. Cancer Res.
62:560–566. 2002.PubMed/NCBI
|
|
152
|
Narita K, Matsuda Y, Seike M, Naito Z,
Gemma A and Ishiwata T: Nestin regulates proliferation, migration,
invasion and stemness of lung adenocarcinoma. Int J Oncol.
44:1118–1130. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Akiyama M, Matsuda Y, Ishiwata T, Naito Z
and Kawana S: Inhibition of the stem cell marker nestin reduces
tumor growth and invasion of malignant melanoma. J Invest Dermatol.
133:1384–1387. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Matsuda Y, Ishiwata T, Yoshimura H,
Yamashita S, Ushijima T and Arai T: Systemic administration of
small interfering RNA targeting human nestin inhibits pancreatic
cancer cell proliferation and metastasis. Pancreas. 45:93–100.
2016. View Article : Google Scholar
|