|
1
|
World Cancer Research Fund International:
BC Statistics: http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics
Accessed January 19, 2018.
|
|
2
|
Breastcancer.org: U.S. BC statistics:
http://www.breastcancer.org/symptoms/understand_bc/statistics.
Accessed January 19, 2018.
|
|
3
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Havas KM, Milchevskaya V, Radic K, Alladin
A, Kafkia E, Garcia M, Stolte J, Klaus B, Rotmensz N, Gibson TJ, et
al: Metabolic shifts in residual breast cancer drive tumor
recurrence. J Clin Invest. 127:2091–2105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu W and Zhao S: Metabolic changes in
cancer: Beyond the Warburg effect. Acta Biochim Biophys Sin
(Shanghai). 45:18–26. 2013. View Article : Google Scholar
|
|
7
|
Bardella C, Pollard PJ and Tomlinson I:
SDH mutations in cancer. Biochim Biophys Acta. 1807:1432–1443.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bogenhagen DF: Mitochondrial DNA nucleoid
structure. Biochim Biophys Acta. 1819:914–920. 2012. View Article : Google Scholar
|
|
9
|
Andrews RM, Kubacka I, Chinnery PF,
Lightowlers RN, Turnbull DM and Howell N: Reanaly-sis and revision
of the Cambridge reference sequence for human mitochondrial DNA.
Nat Genet. 23:1471999. View
Article : Google Scholar
|
|
10
|
Wallace DC and Chalkia D: Mitochondrial
DNA genetics and the heteroplasmy conundrum in evolution and
disease. Cold Spring Harb Perspect Biol. 5:a0212202013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Stewart JB and Chinnery PF: The dynamics
of mitochondrial DNA heteroplasmy: Implications for human health
and disease. Nat Rev Genet. 16:530–542. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Akhmedov AT and Marín-García J:
Mitochondrial DNA maintenance: An appraisal. Mol Cell Biochem.
409:283–305. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yakes FM and Van Houten B: Mitochondrial
DNA damage is more extensive and persists longer than nuclear DNA
damage in human cells following oxidative stress. Proc Natl Acad
Sci USA. 94:514–519. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Egea PF, Stroud RM and Walter P: Targeting
proteins to membranes: Structure of the signal recognition
particle. Curr Opin Struct Biol. 15:213–220. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baker MJ, Frazier AE, Gulbis JM and Ryan
MT: Mitochondrial protein-import machinery: Correlating structure
with function. Trends Cell Biol. 17:456–464. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Neupert W and Herrmann JM: Translocation
of proteins into mitochondria. Annu Rev Biochem. 76:723–749. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lill R and Mühlenhoff U: Maturation of
iron-sulfur proteins in eukaryotes: Mechanisms, connected
processes, and diseases. Annu Rev Biochem. 77:669–700. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Virbasius JV and Scarpulla RC: Activation
of the human mitochondrial transcription factor A gene by nuclear
respiratory factors: A potential regulatory link between nuclear
and mitochondrial gene expression in organelle biogenesis. Proc
Natl Acad Sci USA. 91:1309–1313. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hendrickson SL, Lautenberger JA, Chinn LW,
Malasky M, Sezgin E, Kingsley LA, Goedert JJ, Kirk GD, Gomperts ED,
Buchbinder SP, et al: Genetic variants in nuclear-encoded
mitochondrial genes influence AIDS progression. PLoS One.
5:e128622010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Scarpulla RC: Nucleus-encoded regulators
of mitochondrial function: Integration of respiratory chain
expression, nutrient sensing and metabolic stress. Biochim Biophys
Acta. 1819:1088–1097. 2012. View Article : Google Scholar :
|
|
21
|
Kasashima K and Endo H: Interaction of
human mitochondrial transcription factor A in mitochondria: Its
involvement in the dynamics of mitochondrial DNA nucleoids. Genes
Cells. 20:1017–1027. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lee HC and Wei YH: Mitochondrial
biogenesis and mitochondrial DNA maintenance of mammalian cells
under oxidative stress. Int J Biochem Cell Biol. 37:822–834. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hance N, Ekstrand MI and Trifunovic A:
Mitochondrial DNA polymerase gamma is essential for mammalian
embryogenesis. Hum Mol Genet. 14:1775–1783. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mokranjac D and Neupert W: Cell biology:
Architecture of a protein entry gate. Nature. 528:201–202. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fan AC, Bhangoo MK and Young JC: Hsp90
functions in the targeting and outer membrane translocation steps
of Tom70-mediated mitochondrial import. J Biol Chem.
281:33313–33324. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
MacKenzie JA and Payne RM: Mitochondrial
protein import and human health and disease. Bi-ochim Biophys Acta.
1772:509–523. 2007.
|
|
27
|
Bandiera S, Rüberg S, Girard M, Cagnard N,
Hanein S, Chrétien D, Munnich A, Lyonnet S and Henrion-Caude A:
Nuclear outsourcing of RNA interference components to human
mitochondria. PLoS One. 6:e207462011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stefano GB and Kream RM: Mitochondrial DNA
heteroplasmy in human health and disease. Biomed Rep. 4:259–262.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hudson G, Gomez-Duran A, Wilson IJ and
Chinnery PF: Recent mitochondrial DNA mutations increase the risk
of developing common late-onset human diseases. PLoS Genet.
10:e10043692014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hudson G, Carelli V, Spruijt L, Gerards M,
Mowbray C, Achilli A, Pyle A, Elson J, Howell N, La Morgia C, et
al: Clinical expression of Leber hereditary optic neuropathy is
affected by the mitochondrial DNA-haplogroup background. Am J Hum
Genet. 81:228–233. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
31
|
Soini HK, Moilanen JS, Vilmi-Kerälä T,
Finnilä S and Majamaa K: Mitochondrial DNA variant m.15218A >G
in Finnish epilepsy patients who have maternal relatives with
epilepsy, sensorineural hearing impairment or diabetes mellitus.
BMC Med Genet. 14:732013. View Article : Google Scholar
|
|
32
|
Fragaki K, Procaccio V, Bannwarth S, Serre
V, O'Hearn S, Potluri P, Augé G, Casagrande F, Caruba C, Lambert
JC, et al: A neonatal polyvisceral failure linked to a de novo
homoplasmic mutation in the mitochondrially encoded cytochrome b
gene. Mitochondrion. 9:346–352. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ghezzi D, Marelli C, Achilli A, Goldwurm
S, Pezzoli G, Barone P, Pellecchia MT, Stanzione P, Brusa L,
Bentivoglio AR, et al: Mitochondrial DNA haplogroup K is associated
with a lower risk of Parkinson's disease in Italians. Eur J Hum
Genet. 13:748–752. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huerta C, Castro MG, Coto E, Blázquez M,
Ribacoba R, Guisasola LM, Salvador C, Martínez C, Lahoz CH and
Alvarez V: Mitochondrial DNA polymorphisms and risk of Parkinson's
disease in Spanish population. J Neurol Sci. 236:49–54. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Galmiche L, Serre V, Beinat M, Assouline
Z, Lebre AS, Chretien D, Nietschke P, Benes V, Boddaert N, Sidi D,
et al: Exome sequencing identifies MRPL3 mutation in mitochondrial
cardiomyopathy. Hum Mutat. 32:1225–1231. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Götz A, Tyynismaa H, Euro L, Ellonen P,
Hyötyläinen T, Ojala T, Hämäläinen RH, Tommiska J, Raivio T, Oresic
M, et al: Exome sequencing identifies mitochondrial alanyl-tRNA
synthetase mutations in infantile mitochondrial cardiomyopathy. Am
J Hum Genet. 88:635–642. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bayat V, Thiffault I, Jaiswal M, Tétreault
M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire MJ,
Mathieu J, et al: Mutations in the mitochondrial methionyl-tRNA
synthetase cause a neurodegenerative phenotype in flies and a
recessive ataxia (ARSAL) in humans. PLoS Biol. 10:e10012882012.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Elo JM, Yadavalli SS, Euro L, Isohanni P,
Götz A, Carroll CJ, Valanne L, Alkuraya FS, Uusimaa J, Paetau A, et
al: Mitochondrial phenylalanyl-tRNA synthetase mutations underlie
fatal infantile Alpers encephalopathy. Hum Mol Genet. 21:4521–4529.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Haack TB, Kopajtich R, Freisinger P,
Wieland T, Rorbach J, Nicholls TJ, Baruffini E, Walther A,
Danhauser K, Zimmermann FA, et al: ELAC2 mutations cause a
mitochondrial RNA processing defect associated with hypertrophic
cardiomyopathy. Am J Hum Genet. 93:211–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Soiferman D, Ayalon O, Weissman S and
Saada A: The effect of small molecules on nuclear-encoded
translation diseases. Biochimie. 100:184–191. 2014. View Article : Google Scholar
|
|
41
|
Powell CA, Nicholls TJ and Minczuk M:
Nuclear-encoded factors involved in post-transcriptional processing
and modification of mitochondrial tRNAs in human disease. Front
Genet. 6:792015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Takakubo F, Cartwright P, Hoogenraad N,
Thorburn DR, Collins F, Lithgow T and Dahl HH: An amino acid
substitution in the pyruvate dehydrogenase E1 alpha gene, affecting
mitochondrial import of the precursor protein. Am J Hum Genet.
57:772–780. 1995.PubMed/NCBI
|
|
43
|
Weraarpachai W, Sasarman F, Nishimura T,
Antonicka H, Auré K, Rötig A, Lombès A and Shoubridge EA: Mutations
in C12orf62, a factor that couples COX I synthesis with cytochrome
c oxidase assembly, cause fatal neonatal lactic acidosis. Am J Hum
Genet. 90:142–151. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Larman TC, DePalma SR, Hadjipanayis AG,
Protopopov A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati
R and Seidman JG; Cancer Genome Atlas Research Network: Spectrum of
somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci
USA. 109:14087–14091. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kenny TC, Hart P, Ragazzi M, Sersinghe M,
Chipuk J, Sagar MA, Eliceiri KW, LaFramboise T, Grandhi S, Santos
J, et al: Selected mitochondrial DNA landscapes activate the SIRT3
axis of the UPRmt to promote metastasis. Oncogene. 36:4393–4404.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ahn EH, Hirohata K, Kohrn BF, Fox EJ,
Chang CC and Loeb LA: Detection of ultrarare mitochondrial
mutations in breast stem cells by duplex sequencing. PLoS One.
10:e01362162015. View Article : Google Scholar
|
|
47
|
Polyak K, Li Y, Zhu H, Lengauer C, Willson
JK, Markowitz SD, Trush MA, Kinzler KW and Vogelstein B: Somatic
mutations of the mitochondrial genome in human colorectal tumours.
Nat Genet. 20:291–293. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yadav N and Chandra D: Mitochondrial DNA
mutations and breast tumorigenesis. Biochim Bi-ophys Acta.
1836:336–344. 2013.
|
|
49
|
Pedersen PL, Mathupala S, Rempel A,
Geschwind JF and Ko YH: Mitochondrial bound type II hexokinase: A
key player in the growth and survival of many cancers and an ideal
prospect for therapeutic intervention. Biochim Biophys Acta.
1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Brandon M, Baldi P and Wallace DC:
Mitochondrial mutations in cancer. Oncogene. 25:4647–4662. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kirches E: Mitochondrial and nuclear genes
of mitochondrial components in cancer. Curr Genomics. 10:281–293.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kenny TC and Germain D: mtDNA, metastasis,
and the mitochondrial unfolded protein response (UPRmt). Front Cell
Dev Biol. 5:372017. View Article : Google Scholar :
|
|
53
|
Habano W, Sugai T, Yoshida T and Nakamura
S: Mitochondrial gene mutation, but not large-scale deletion, is a
feature of colorectal carcinomas with mitochondrial microsatellite
instability. Int J Cancer. 83:625–629. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Petros JA, Baumann AK, Ruiz-Pesini E, Amin
MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, et
al: mtDNA mutations increase tumorigenicity in prostate cancer.
Proc Natl Acad Sci USA. 102:719–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yu M, Shi Y, Zhang F, Zhou Y, Yang Y, Wei
X, Zhang L and Niu R: Sequence variations of mitochondrial DNA
D-loop region are highly frequent events in familial breast cancer.
J Biomed Sci. 15:535–543. 2008. View Article : Google Scholar
|
|
56
|
Liu VW, Wang Y, Yang HJ, Tsang PCK, Ng TY,
Wong LC, Nagley P and Ngan HY: Mitochondrial DNA variant
16189T>C is associated with susceptibility to endometrial
cancer. Hum Mutat. 22:173–174. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Canter JA, Kallianpur AR, Parl FF and
Millikan RC: Mitochondrial DNA G10398A polymorphism and invasive
breast cancer in African-American women. Cancer Res. 65:8028–8033.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang J, Asin-Cayuela J, Fish J, Michikawa
Y, Bonafe M, Olivieri F, Passarino G, De Benedictis G, Franceschi C
and Attardi G: Strikingly higher frequency in centenarians and
twins of mtDNA mutation causing remodeling of replication origin in
leukocytes. Proc Natl Acad Sci USA. 100:1116–1121. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liou CW, Lin TK, Chen JB, Tiao MM, Weng
SW, Chen SD, Chuang YC, Chuang JH and Wang PW: Association between
a common mitochondrial DNA D-loop polycytosine variant and
alteration of mitochondrial copy number in human peripheral blood
cells. J Med Genet. 47:723–728. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Peng TI, Yu PR, Chen JY, Wang HL, Wu HY,
Wei YH and Jou MJ: Visualizing common deletion of mitochondrial
DNA-augmented mitochondrial reactive oxygen species generation and
apoptosis upon oxidative stress. Biochim Biophys Acta.
1762:241–255. 2006. View Article : Google Scholar
|
|
61
|
Su X, Wang W, Ruan G, Liang M, Zheng J,
Chen Y, Wu H, Fahey TJ III, Guan M and Teng L: A comprehensive
characterization of mitochondrial genome in papillary thyroid
cancer. Int J Mol Sci. 17:15942016. View Article : Google Scholar :
|
|
62
|
Wang Y, Liu VW, Xue WC, Tsang PC, Cheung
AN and Ngan HY: The increase of mitochondrial DNA content in
endometrial adenocarcinoma cells: A quantitative study using
laser-captured microdissected tissues. Gynecol Oncol. 98:104–110.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Singh B, Owens KM, Bajpai P, Desouki MM,
Srinivasasainagendra V, Tiwari HK and Singh KK: Mitochondrial DNA
polymerase POLG1 disease mutations and germline variants promote
tumorigenic properties. PLoS One. 10:e01398462015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Reznik E, Miller ML, Şenbabaoğlu Y, Riaz
N, Sarungbam J, Tickoo SK, Al-Ahmadie HA, Lee W, Seshan VE, Hakimi
AA, et al: Mitochondrial DNA copy number variation across human
cancers. eLife. 5:e107692016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Booker LM, Habermacher GM, Jessie BC, Sun
QC, Baumann AK, Amin M, Lim SD, Fernan-dez-Golarz C, Lyles RH,
Brown MD, et al: North American white mitochondrial haplogroups in
prostate and renal cancer. J Urol. 175:468–473. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fang H, Shen L, Chen T, He J, Ding Z, Wei
J, Qu J, Chen G, Lu J and Bai Y: Cancer type-specific modulation of
mitochondrial haplogroups in breast, colorectal and thyroid cancer.
BMC Cancer. 10:4212010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hu SP, Du JP, Li DR and Yao YG:
Mitochondrial DNA haplogroup confers genetic susceptibility to
nasopharyngeal carcinoma in Chaoshanese from Guangdong, China. PLoS
One. 9:e877952014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Y, Beckman KB, Caberto C, Kazma R,
Lum-Jones A, Haiman CA, Le Marchand L, Stram DO, Saxena R and Cheng
I: Association of genes, pathways, and haplogroups of the
mitochondrial genome with the risk of colorectal cancer: The
multiethnic Cohort. PLoS One. 10:e01367962015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang J, Zhao JH, Wang XL, Di JI, Liu ZB,
Li GY, Wang MZ, Li Y, Chen R and Ge RL: Analysis of mitochondrial
DNA in Tibetan gastric cancer patients at high altitude. Mol Clin
Oncol. 3:875–879. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Poynter JN, Richardson M, Langer E, Hooten
AJ, Roesler M, Hirsch B, Nguyen PL, Cioc A, Warlick E and Ross JA:
Association between mitochondrial DNA haplogroup and
myelodysplastic syndromes. Genes Chromosomes Cancer. 55:688–693.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Singh KK and Kulawiec M: Mitochondrial DNA
polymorphism and risk of cancer. Methods Mol Biol. 471:291–303.
2009. View Article : Google Scholar
|
|
72
|
Yacoub HA, Mahmoud WM, El-Baz HA, Eid OM,
El-Fayoumi RI, Mahmoud MM, Harakeh S and Abuzinadah OH: New
haplotypes of the ATP synthase subunit 6 gene of mitochondrial DNA
are associated with acute lymphoblastic leukemia in Saudi Arabia.
Asian Pac J Cancer Prev. 15:10433–10438. 2014. View Article : Google Scholar
|
|
73
|
Cano D, Gomez CF, Ospina N, Cajigas JA,
Groot H, Andrade RE and Torres MM: Mitochondrial DNA haplogroups
and susceptibility to prostate cancer in a colombian population.
ISRN Oncol. 2014:5306752014.PubMed/NCBI
|
|
74
|
Yu FY, Xu Q, Wu DD, Lau AT and Xu YM: The
Prognostic and Clinicopathological roles of Sirtuin-3 in various
cancers. PLoS One. 11:e01598012016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Czarnecka AM, Krawczyk T, Plak K, Klemba
A, Zdrozny M, Arnold RS, Kofler B, Golik P, Szybinska A, Lubinski
J, et al: Mitochondrial genotype and breast cancer predisposition.
Oncol Rep. 24:1521–1534. 2010.PubMed/NCBI
|
|
76
|
Verma M, Naviaux RK, Tanaka M, Kumar D,
Franceschi C and Singh KK: Meeting report: Mitochondrial DNA and
cancer epidemiology. Cancer Res. 67:437–439. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
van Gisbergen MW, Voets AM, Starmans MH,
de Coo IF, Yadak R, Hoffmann RF, Boutros PC, Smeets HJ, Dubois L
and Lambin P: How do changes in the mtDNA and mitochondrial
dysfunction influence cancer and cancer therapy? Challenges,
opportunities and models. Mutat Res Rev Mutat Res. 764:16–30. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Parker SJ and Metallo CM: Metabolic
consequences of oncogenic IDH mutations. Pharmacol Ther. 152:54–62.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Reitman ZJ, Jin G, Karoly ED, Spasojevic
I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B and Yan H:
Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations
on the cellular metabolome. Proc Natl Acad Sci USA. 108:3270–3275.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Burnichon N, Brière JJ, Libé R, Vescovo L,
Rivière J, Tissier F, Jouanno E, Jeunemaitre X, Bénit P, Tzagoloff
A, et al: SDHA is a tumor suppressor gene causing paraganglioma.
Hum Mol Genet. 19:3011–3020. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang B, Wang J, Huang Z, Wei P, Liu Y,
Hao J, Zhao L, Zhang F, Tu Y and Wei T: Aberrantly upregulated
TRAP1 is required for tumorigenesis of breast cancer. Oncotarget.
6:44495–44508. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lin YF, Schulz AM, Pellegrino MW, Lu Y,
Shaham S and Haynes CM: Maintenance and propagation of a
deleterious mitochondrial genome by the mitochondrial unfolded
protein response. Nature. 533:416–419. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
McMahon S and LaFramboise T: Mutational
patterns in the breast cancer mitochondrial genome, with clinical
correlates. Carcinogenesis. 35:1046–1054. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yu Y, Lv F, Lin H, Qian G, Jiang YS, Pang
LX, Wang YP, Wang XF, Kang YM, Li CB, et al: Mitochondrial ND3
G10398A mutation: A biomarker for breast cancer. Genet Mol Res.
14:17426–17431. 2015. View Article : Google Scholar
|
|
85
|
Bai RK, Leal SM, Covarrubias D, Liu A and
Wong LJ: Mitochondrial genetic background modifies breast cancer
risk. Cancer Res. 67:4687–4694. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhu W, Qin W, Bradley P, Wessel A, Puckett
CL and Sauter ER: Mitochondrial DNA mutations in breast cancer
tissue and in matched nipple aspirate fluid. Carcinogenesis.
26:145–152. 2005. View Article : Google Scholar
|
|
87
|
Wang Y, Liu VW, Tsang PC, Chiu PM, Cheung
AN, Khoo US, Nagley P and Ngan HY: Microsatellite instability in
mitochondrial genome of common female cancers. Int J Gynecol
Cancer. 16(Suppl 1): 259–266. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bianchi MS, Bianchi NO and Bailliet G:
Mitochondrial DNA mutations in normal and tumor tissues from breast
cancer patients. Cytogenet Cell Genet. 71:99–103. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Shakhssalim N, Houshmand M, Kamalidehghan
B, Faraji A, Sarhangnejad R, Dadgar S, Mobaraki M, Rosli R and
Sanati MH: The mitochondrial C16069T polymorphism, not
mitochondrial D310 (D-loop) mononucleotide sequence variations, is
associated with bladder cancer. Cancer Cell Int. 13:1202013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tipirisetti NR, Govatati S, Pullari P,
Malempati S, Thupurani MK, Perugu S, Guruvaiah P, Rao KL, Digumarti
RR, Nallanchakravarthula V, et al: Mitochondrial control region
alterations and breast cancer risk: A study in South Indian
population. PLoS One. 9:e853632014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fendt L, Niederstätter H, Huber G, Zelger
B, Dünser M, Seifarth C, Röck A, Schäfer G, Klock-er H and Parson
W: Accumulation of mutations over the entire mitochondrial genome
of breast cancer cells obtained by tissue microdis-section. Breast
Cancer Res Treat. 128:327–336. 2011. View Article : Google Scholar
|
|
92
|
Ebner S, Lang R, Mueller EE, Eder W,
Oeller M, Moser A, Koller J, Paulweber B, Mayr JA, Sperl W, et al:
Mitochondrial haplogroups, control region polymorphisms and
malignant melanoma: A study in middle European Caucasians. PLoS
One. 6:e271922011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang CY, Wang HW, Yao YG, Kong QP and
Zhang YP: Somatic mutations of mitochondrial genome in early stage
breast cancer. Int J Cancer. 121:1253–1256. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Czarnecka AM, Klemba A, Krawczyk T,
Zdrozny M, Arnold RS, Bartnik E and Petros JA: Mitochondrial
NADH-dehydrogenase polymorphisms as sporadic breast cancer risk
factor. Oncol Rep. 23:531–535. 2010.PubMed/NCBI
|
|
95
|
Weigl S, Paradiso A and Tommasi S:
Mitochondria and familial predisposition to breast cancer. Curr
Genomics. 14:195–203. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li L, Chen L, Li J, Zhang W, Liao Y, Chen
J and Sun Z: Correlational study on mitochondrial DNA mutations as
potential risk factors in breast cancer. Oncotarget. 7:31270–31283.
2016.PubMed/NCBI
|
|
97
|
Rohan TE, Wong LJ, Wang T, Haines J and
Kabat GC: Do alterations in mitochondrial DNA play a role in breast
carcinogenesis? J Oncol. 2010:6043042010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Covarrubias D, Bai RK, Wong LJ and Leal
SM: Mitochondrial DNA variant interactions modify breast cancer
risk. J Hum Genet. 53:924–928. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Darvishi K, Sharma S, Bhat AK, Rai E and
Bamezai RN: Mitochondrial DNA G10398A polymorphism imparts maternal
Haplogroup N a risk for breast and esophageal cancer. Cancer Lett.
249:249–255. 2007. View Article : Google Scholar
|
|
100
|
Tengku Baharudin N, Jaafar H and Zainuddin
Z: Association of mitochondrial DNA 10398 polymorphism in invasive
breast cancer in malay population of peninsular malaysia. Malays J
Med Sci. 19:36–42. 2012.PubMed/NCBI
|
|
101
|
Tan DJ, Bai RK and Wong LJ: Comprehensive
scanning of somatic mitochondrial DNA mutations in breast cancer.
Cancer Res. 62:972–976. 2002.PubMed/NCBI
|
|
102
|
Gallardo ME, Moreno-Loshuertos R, López C,
Casqueiro M, Silva J, Bonilla F, Rodríguez de Córdoba S and
Enríquez JA: m.6267G>A: a recurrent mutation in the human
mitochondrial DNA that reduces cytochrome c oxidase activity and is
associated with tumors. Hum Mutat. 27:575–582. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Aral C, Kaya H, Ataizi-Celikel C, Akkiprik
M, Sonmez O, Gulluoglu BM and Ozer A: A novel approach for rapid
screening of mitochondrial D310 polymorphism. BMC Cancer. 6:212006.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ma Y, Bai RK, Trieu R and Wong LJ:
Mitochondrial dysfunction in human breast cancer cells and their
transmitochondrial cybrids. Biochim Biophys Acta. 1797:29–37. 2010.
View Article : Google Scholar
|
|
105
|
Santos GC Jr, Góes AC, Vitto H, Moreira
CC, Avvad E, Rumjanek FD and Moura Gallo CV: Genomic instability at
the 13q31 locus and somatic mtDNA mutation in the D-loop site
correlate with tumor aggressiveness in sporadic Brazilian breast
cancer cases. Clinics (São Paulo). 67:1181–1190. 2012. View Article : Google Scholar
|
|
106
|
Xu C, Tran-Thanh D, Ma C, May K, Jung J,
Vecchiarelli J and Done SJ: Mitochondrial D310 mutations in the
early development of breast cancer. Br J Cancer. 106:1506–1511.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Parrella P, Xiao Y, Fliss M,
Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, Nicol T, Gabriel-son
E, Cuomo C, Cohen D, et al: Detection of mitochondrial DNA
mutations in primary breast cancer and fine-needle aspirates.
Cancer Res. 61:7623–7626. 2001.PubMed/NCBI
|
|
108
|
Alhomidi MA, Vedicherla B, Movva S, Rao
PK, Ahuja YR and Hasan Q: Mitochondrial D310 instability in Asian
Indian breast cancer patients. Tumour Biol. 34:2427–2432. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lott MT, Leipzig JN, Derbeneva O, Xie HM,
Chalkia D, Sarmady M, Procaccio V and Wallace DC: mtDNA variation
and analysis using mitomap and mitomaster. Curr Protoc
Bioinformatics. 44:1.23.1–1.23.26. 2013. View Article : Google Scholar
|
|
110
|
Payne BA, Wilson IJ, Yu-Wai-Man P, Coxhead
J, Deehan D, Horvath R, Taylor RW, Samuels DC, Santibanez-Koref M
and Chinnery PF: Universal heteroplasmy of human mitochondrial DNA.
Hum Mol Genet. 22:384–390. 2013. View Article : Google Scholar
|
|
111
|
Weerts MJ, Sieuwerts AM, Smid M, Look MP,
Foekens JA, Sleijfer S and Martens JW: Mitochondrial DNA content in
breast cancer: Impact on in vitro and in vivo phenotype and patient
prognosis. Oncotarget. 7:29166–29176. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Mueller EE, Brunner SM, Mayr JA, Stanger
O, Sperl W and Kofler B: Functional differences between
mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells.
PLoS One. 7:e523672012. View Article : Google Scholar
|
|
113
|
Tommasi S, Favia P, Weigl S, Bianco A,
Pilato B, Russo L, Paradiso A and Petruzzella V: Mitochondrial DNA
variants and risk of familial breast cancer: An exploratory study.
Int J Oncol. 44:1691–1698. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Blein S, Bardel C, Danjean V, McGuffog L,
Healey S, Barrowdale D, Lee A, Dennis J, Kuchenbaecker KB, Soucy P,
et al: Breast Cancer Family Registry; EMBRACE; GEMO Study
Col-laborators; HEBON: An original phylogenetic approach identified
mitochondrial haplogroup T1a1 as inversely associated with breast
cancer risk in BRCA2 mutation carriers. Breast Cancer Res.
17:612015. View Article : Google Scholar
|
|
115
|
Rao R, Rivers A, Rahimi A, Wooldridge R,
Rao M, Leitch M, Euhus D and Haley BB: Genetic ancestry using
mitochondrial DNA in patients with triple-negative breast cancer
(GAMiT study). Cancer. 123:107–113. 2017. View Article : Google Scholar
|
|
116
|
Mosquera-Miguel A, Alvarez-Iglesias V,
Carracedo A, Salas A, Vega A, Carracedo A, Milne R, de León AC,
Benitez J, Carracedo A, et al: Is mitochondrial DNA variation
associated with sporadic breast cancer risk. Cancer Res.
68:623–625; author reply 624. 2008. View Article : Google Scholar
|
|
117
|
van Oven M and Kayser M: Updated
comprehensive phylogenetic tree of global human mitochondrial DNA
variation. Hum Mutat. 30:E386–E394. 2009. View Article : Google Scholar
|
|
118
|
Salas A, García-Magariños M, Logan I and
Bandelt HJ: The saga of the many studies wrongly associating
mitochondrial DNA with breast cancer. BMC Cancer. 14:6592014.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Walsh T, Casadei S, Coats KH, Swisher E,
Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Ciernikova S, et
al: Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in
families at high risk of breast cancer. JAMA. 295:1379–1388. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hossein R and Houshmand M: Diagnostic
algorithm for identification of individuals with hereditary
predisposition to breast cancer. Lik Sprava. 1–2:103–108. 2008.
|
|
121
|
Jandova J, Janda J and Sligh JE: Changes
in mitochondrial DNA alter expression of nuclear encoded genes
associated with tumorigenesis. Exp Cell Res. 318:2215–2225. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhang Q, Liang Z, Gao Y, Teng M and Niu L:
Differentially expressed mitochondrial genes in breast cancer
cells: Potential new targets for anti-cancer therapies. Gene.
596:45–52. 2017. View Article : Google Scholar
|
|
123
|
Lin CS, Chang SC, Ou LH, Chen CM, Hsieh
SS, Chung YP, King KL, Lin SL and Wei YH: Mitochondrial DNA
alterations correlate with the pathological status and the
immunological ER, PR, HER-2/neu, p53 and Ki-67 expression in breast
invasive ductal carcinoma. Oncol Rep. 33:2924–2934. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Blein S, Barjhoux L, Damiola F, Dondon MG,
Eon-Marchais S, Marcou M, Caron O, Lortholary A, Buecher B, Vennin
P, et al GENESIS investigators: Targeted sequencing of the
mitochondrial genome of women at high risk of breast cancer without
detectable mutations in BRCA1/2. PLoS One. 10:e01361922015.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Hsu CW, Yin PH, Lee HC, Chi CW and Tseng
LM: Mitochondrial DNA content as a potential marker to predict
response to anthra-cycline in breast cancer patients. Breast J.
16:264–270. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Farnie G, Sotgia F and Lisanti MP: High
mitochondrial mass identifies a sub-population of stem-like cancer
cells that are chemo-resistant. Oncotarget. 6:30472–30486. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Ferreri AJ, Ponzoni M, Guidoboni M, Resti
AG, Politi LS, Cortelazzo S, Demeter J, Zallio F, Palmas A, Muti G,
et al: Bacteria-eradicating therapy with doxycycline in ocular
adnexal MALT lymphoma: A multicenter prospective trial. J Natl
Cancer Inst. 98:1375–1382. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lamb R, Harrison H, Hulit J, Smith DL,
Lisanti MP and Sotgia F: Mitochondria as new therapeutic targets
for eradicating cancer stem cells: Quantitative proteomics and
functional validation via MCT1/2 inhibition. Oncotarget.
5:11029–11037. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ferreri AJ, Ponzoni M, Guidoboni M, De
Conciliis C, Resti AG, Mazzi B, Lettini AA, De-meter J, Dell'Oro S,
Doglioni C, et al: Regression of ocular adnexal lymphoma after
Chlamydia psittaci-eradicating antibiotic therapy. J Clin Oncol.
23:5067–5073. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Teixeira FK, Sanchez CG, Hurd TR, Seifert
JRK, Czech B, Preall JB, Hannon GJ and Lehmann R: ATP synthase
promotes germ cell differentiation independent of oxidative
phosphorylation. Nat Cell Biol. 17:689–696. 2015. View Article : Google Scholar : PubMed/NCBI
|