Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2019 Volume 54 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2019 Volume 54 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Identification of FOXM1 as a specific marker for triple‑negative breast cancer

  • Authors:
    • Yanli Tan
    • Qixue Wang
    • Yingbin Xie
    • Xiaoxia Qiao
    • Shun Zhang
    • Yanan Wang
    • Yongbin Yang
    • Bo Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin 300052, P.R. China, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China, Department of Pathology, Hebei University Medical College, Baoding, Hebei 071000, P.R. China
    Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 87-97
    |
    Published online on: October 19, 2018
       https://doi.org/10.3892/ijo.2018.4598
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)‑associated pathway in triple‑negative breast cancer (TNBC). Using a Cancer Landscapes‑based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key position in gene networks and is a critical regulatory gene in breast cancer. Using breast carcinoma gene expression data from The Cancer Genome Atlas, it was identified that FOXM1 expression was increased in the basal‑like breast cancer subtype compared with other breast cancer subtypes. RNA‑sequencing analysis of MDA‑MB‑231 cells treated with 4 and 10 µl/ml Thiostrepton identified 662 and 5,888 significantly differentially expressed genes, respectively. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that FOXM1 was highly associated with multiple biological processes and was markedly associated with metabolic pathways in TNBC. The use of Search Tool for the Retrieval of Interacting Genes/Proteins provided a critical assessment and integration of protein‑protein interactions, and demonstrated the multiple important functions of FOXM1 in TNBC. Real‑time cell analysis, reverse transcription‑quantitative polymerase chain reaction and immunofluorescence staining were used to assess the anti‑tumor activity of Thiostrepton in TNBC cells in vitro. The present results identified that suppression of FOXM1 using Thiostrepton inhibited MDA‑MB‑231 cell proliferation and the expression of cell cycle‑associated genes, including cyclin A2, cyclin B2, checkpoint kinase 1, centrosomal protein 55 and polo like kinase 1. Immunofluorescence staining analysis demonstrated that vimentin, filamentous actin and zinc finger E‑box‑binding homeobox 1 were all decreased following treatment with Thiostrepton. Furthermore, a BALB/C nude mouse subcutaneous xenograft model was used to verify the function of FOXM1 in vivo. The present results demonstrated that FOXM1 inhibition significantly suppressed MDA‑MB‑231 cell tumorigenesis in vivo. Overall, the present results suggested that FOXM1 is a key gene that serves important roles in multiple biological processes in TNBC and that it may serve as a novel therapeutic target in TNBC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Khongkow P, Gomes AR, Gong C, Man EP, Tsang JW, Zhao F, Monteiro LJ, Coombes RC, Medema RH, Khoo US, et al: Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene. 35:990–1002. 2016. View Article : Google Scholar

3 

Borin TF, Angara K, Rashid MH, Achyut BR and Arbab AS: Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int J Mol Sci. 18:pii: E2661. 2017. View Article : Google Scholar

4 

Arnold KM, Pohlig RT and Sims-Mourtada J: Co-activation of Hedgehog and Wnt signaling pathways is associated with poor outcomes in triple negative breast cancer. Oncol Lett. 14:5285–5292. 2017.PubMed/NCBI

5 

McGuire A, Lowery AJ, Kell MR, Kerin MJ and Sweeney KJ: Locoregional recurrence following breast cancer surgery in the trastuzumab era: A systematic review by subtype. Ann Surg Oncol. 24:3124–3132. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Gu G, Dustin D and Fuqua SA: Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol. 31:97–103. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Liu J, Xiao Y, Wei W, Guo JX, Liu YC, Huang XH, Zhang RX, Wu YJ and Zhou J: Clinical efficacy of administering oxaliplatin combined with S-1 in the treatment of advanced triple-negative breast cancer. Exp Ther Med. 10:379–385. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Reaz S, Tamkus D and Andrechek ER: Using gene expression data to direct breast cancer therapy: Evidence from a preclinical trial. J Mol Med (Berl). 96:111–117. 2018. View Article : Google Scholar

9 

Guo GC, Wang JX, Han ML, Zhang LP and Li L: microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell Oncol (Dordr). 40:157–166. 2017. View Article : Google Scholar

10 

Lam EW and Gomes AR: Forkhead box transcription factors in cancer initiation, progression and chemotherapeutic drug response. Front Oncol. 4:3052014. View Article : Google Scholar : PubMed/NCBI

11 

Abdeljaoued S, Bettaieb I, Nasri M, Adouni O, Goucha A, El Amine O, Boussen H, Rahal K and Gamoudi A: Overexpression of FOXM1 Is a Potential Prognostic Marker in Male Breast Cancer. Oncol Res Treat. 40:167–172. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Lam AK, Ngan AW, Leung MH, Kwok DC, Liu VW, Chan DW, Leung WY and Yao KM: FOXM1b, which is present at elevated levels in cancer cells, has a greater transforming potential than FOXM1c. Front Oncol. 3:112013.PubMed/NCBI

13 

Hamurcu Z, Kahraman N, Ashour A and Ozpolat B: FOXM1 transcriptionally regulates expression of integrin β1 in triple-negative breast cancer. Breast Cancer Res Treat. 163:485–493. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Lee JJ, Lee HJ, Son BH, Kim SB, Ahn JH, Ahn SD, Cho EY and Gong G: Expression of FOXM1 and related proteins in breast cancer molecular subtypes. Int J Exp Pathol. 97:170–177. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Hamurcu Z, Ashour A, Kahraman N and Ozpolat B: FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget. 7:16619–16635. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

17 

National Research Council (US) Institute for Laboratory Animal Research: Guide for the Care and Use of Laboratory Animals. National Academies Press (US); Washington, DC: 1996

18 

Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Xu Y, Li W, Liu X, Ma H, Tu Z and Dai Y: Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. Int J Mol Med. 32:1115–1125. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Yang M, Li H, Li Y, Ruan Y and Quan C: Identification of genes and pathways associated with MDR in MCF-7/MDR breast cancer cells by RNA-seq analysis. Mol Med Rep. 17:6211–6226. 2018.PubMed/NCBI

21 

Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Liu C, Chen N, Huang K, Jiang M, Liang H, Sun Z, Tian J and Wang D: Identifying hub genes and potential mechanisms associated with senescence in human annulus cells by gene expression profiling and bioinformatics analysis. Mol Med Rep. 17:3465–3472. 2018.

23 

Polak P, Karlić R, Koren A, Thurman R, Sandstrom R, Lawrence M, Reynolds A, Rynes E, Vlahoviček K, Stamatoyannopoulos JA, et al: Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature. 518:360–364. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Zona S, Bella L, Burton MJ, Nestal de Moraes G and Lam EW: FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta. 1839.1316–1322. 2014.

25 

Sanders DA, Ross-Innes CS, Beraldi D, Carroll JS and Balasubramanian S: Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol. 14:R62013. View Article : Google Scholar : PubMed/NCBI

26 

Fischer M and Müller GA: Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 52:638–662. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Kwok JMM, Myatt SS, Marson CM, Coombes RC, Constantinidou D and Lam EW: Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther. 7:2022–2032. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Yang N, Zhou TC, Lei XX, Wang C, Yan M, Wang ZF, Liu W, Wang J, Ming KH, Wang BC, et al: Inhibition of Sonic Hedgehog Signaling Pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-Stem-Like Population and Sphere-Forming Capacity in Triple-Negative Breast Cancer. Cell Physiol Biochem. 38:1157–1170. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Chuang HY, Lee E, Liu YT, Lee D and Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol. 3:1402007. View Article : Google Scholar : PubMed/NCBI

30 

Chowdhury SA, Nibbe RK, Chance MR and Koyutürk M: Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol. 18:263–281. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1): D447–D452. 2015. View Article : Google Scholar

32 

Li L, Zhao F, Lu J, Li T, Yang H, Wu C and Liu Y: Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation. PLoS One. 9:e959122014. View Article : Google Scholar

33 

Rizzo P, Miao H, D’Souza G, Osipo C, Song LL, Yun J, Zhao H, Mascarenhas J, Wyatt D, Antico G, et al: Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 68:5226–5235. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Wojewoda C, Miele L and Sarkar FH: Downregulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem. 112:78–88. 2011. View Article : Google Scholar

35 

Christopoulos PF, Msaouel P and Koutsilieris M: The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer. 14:432015. View Article : Google Scholar : PubMed/NCBI

36 

Suzuki S, Iwamoto M, Saito Y, Fuchimoto D, Sembon S, Suzuki M, Mikawa S, Hashimoto M, Aoki Y, Najima Y, et al: Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell. 10:753–758. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Kopp S, Slumstrup L, Corydon TJ, Sahana J, Aleshcheva G, Islam T, Magnusson NE, Wehland M, Bauer J, Infanger M, et al: Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci Rep. 6:268872016. View Article : Google Scholar : PubMed/NCBI

38 

Malin D, Kim IM, Boetticher E, Kalin TV, Ramakrishna S, Meliton L, Ustiyan V, Zhu X and Kalinichenko VV: Forkhead box F1 is essential for migration of mesenchymal cells and directly induces integrin-beta3 expression. Mol Cell Biol. 27:2486–2498. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, et al: Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest. 124:564–579. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Arora R, Yates C, Gary BD, McClellan S, Tan M, Xi Y, Reed E, Piazza GA, Owen LB and Dean-Colomb W: Panepoxydone targets NF-kB and FOXM1 to inhibit proliferation, induce apoptosis and reverse epithelial to mesenchymal transition in breast cancer. PLoS One. 9:e983702014. View Article : Google Scholar : PubMed/NCBI

41 

Li X, Roslan S, Johnstone CN, Wright JA, Bracken CP, Anderson M, Bert AG, Selth LA, Anderson RL, Goodall GJ, et al: MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene. 33:4077–4088. 2014. View Article : Google Scholar

42 

Park MY, Kim KR, Park HS, Park BH, Choi HN, Jang KY, Chung MJ, Kang MJ, Lee DG and Moon WS: Expression of the serum response factor in hepatocellular carcinoma: Implications for epithelial-mesenchymal transition. Int J Oncol. 31:1309–1315. 2007.PubMed/NCBI

43 

Shankar J and Nabi IR: Correction: Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS One. 10:e01327592015. View Article : Google Scholar : PubMed/NCBI

44 

Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X, Yu L and Tan Y: FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett. 340:104–112. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Halasi M and Gartel AL: Targeting FOXM1 in cancer. Biochem Pharmacol. 85:644–652. 2013. View Article : Google Scholar

46 

Song X, Fiati Kenston SS, Zhao J, Yang D and Gu Y: Roles of FoxM1 in cell regulation and breast cancer targeting therapy. Med Oncol. 34:412017. View Article : Google Scholar : PubMed/NCBI

47 

Ahn H, Sim J, Abdul R, Chung MS, Paik SS, Oh YH, Park CK and Jang K: Increased expression of forkhead box M1 is associated with aggressive phenotype and poor prognosis in estrogen receptor-positive breast cancer. J Korean Med Sci. 30:390–397. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Wierstra I: FOXM1 (Forkhead box M1) in tumorigenesis: Overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 119:191–419. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Bayraktar R, Ivan C, Bayraktar E, Kanlikilicer P, Kabil NN, Kahraman N, Mokhlis HA, Karakas D, Rodriguez-Aguayo C, Arslan A, et al: Dual Suppressive Effect of miR-34a on the FOXM1/eEF2-Kinase Axis Regulates Triple-Negative Breast Cancer Growth and Invasion. Clin Cancer Res. 24:4225–4241. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Yersal O and Barutca S: Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 5:412–424. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Krøigård AB, Larsen MJ, Thomassen M and Kruse TA: Molecular concordance between primary breast cancer and matched metastases. Breast J. 22:420–430. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Wierstra I and Alves J: FOXM1, a typical proliferation-associated transcription factor. Biol Chem. 388:1257–1274. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Lv C, Zhao G, Sun X, Wang P, Xie N, Luo J and Tong T: Acetylation of FOXM1 is essential for its transactivation and tumor growth stimulation. Oncotarget. 7:60366–60382. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Shang R, Pu M, Li Y and Wang D: FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression. Oncol Rep. 37:2261–2269. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Lei T and Ling X: IGF-1 promotes the growth and metastasis of hepatocellular carcinoma via the inhibition of proteasome-mediated cathepsin B degradation. World J Gastroenterol. 21:10137–10149. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Hegde NS, Sanders DA, Rodriguez R and Balasubramanian S: The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 3:725–731. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Rahman MA, Amin AR and Shin DM: Chemopreventive potential of natural compounds in head and neck cancer. Nutr Cancer. 62:973–987. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Tolcher AW, Peng W and Calvo E: Rational Approaches for Combination Therapy Strategies Targeting the MAP Kinase Pathway in Solid Tumors. Mol Cancer Ther. 17:3–16. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Yang N, Wang C, Wang Z, Zona S, Lin SX, Wang X, Yan M, Zheng FM, Li SS, Xu B, et al: FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 36:3428–3440. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Ahmed M, Hussain AR, Siraj AK, Uddin S, Al-Sanea N, Al-Dayel F, Al-Assiri M, Beg S and Al-Kuraya KS: Co-targeting of Cyclooxygenase-2 and FoxM1 is a viable strategy in inducing anticancer effects in colorectal cancer cells. Mol Cancer. 14:1312015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, Yang Y and Zhang B: Identification of FOXM1 as a specific marker for triple‑negative breast cancer. Int J Oncol 54: 87-97, 2019.
APA
Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y. ... Zhang, B. (2019). Identification of FOXM1 as a specific marker for triple‑negative breast cancer. International Journal of Oncology, 54, 87-97. https://doi.org/10.3892/ijo.2018.4598
MLA
Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y., Yang, Y., Zhang, B."Identification of FOXM1 as a specific marker for triple‑negative breast cancer". International Journal of Oncology 54.1 (2019): 87-97.
Chicago
Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y., Yang, Y., Zhang, B."Identification of FOXM1 as a specific marker for triple‑negative breast cancer". International Journal of Oncology 54, no. 1 (2019): 87-97. https://doi.org/10.3892/ijo.2018.4598
Copy and paste a formatted citation
x
Spandidos Publications style
Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, Yang Y and Zhang B: Identification of FOXM1 as a specific marker for triple‑negative breast cancer. Int J Oncol 54: 87-97, 2019.
APA
Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y. ... Zhang, B. (2019). Identification of FOXM1 as a specific marker for triple‑negative breast cancer. International Journal of Oncology, 54, 87-97. https://doi.org/10.3892/ijo.2018.4598
MLA
Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y., Yang, Y., Zhang, B."Identification of FOXM1 as a specific marker for triple‑negative breast cancer". International Journal of Oncology 54.1 (2019): 87-97.
Chicago
Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y., Yang, Y., Zhang, B."Identification of FOXM1 as a specific marker for triple‑negative breast cancer". International Journal of Oncology 54, no. 1 (2019): 87-97. https://doi.org/10.3892/ijo.2018.4598
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team