Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation

  • Authors:
    • Dan‑Diem Thi Le
    • Samil Jung
    • Nguyen Thi Ngoc Quynh
    • Zolzaya Sandag
    • Beom Suk Lee
    • Subeen Kim
    • Hyegyeong Lee
    • Hyojeong Lee
    • Myeong‑Sok Lee
  • View Affiliations

  • Published online on: November 14, 2018     https://doi.org/10.3892/ijo.2018.4634
  • Pages: 702-712
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Simultaneous induction of other types of programmed cell death, alongside apoptosis, in cancer cells may be considered an attractive strategy for the development of more effective anticancer therapies. The present study aimed to investigate the role of AMP‑activated protein kinase (AMPK) in nutrient/serum starvation‑induced necroptosis, which is a programmed form of necrosis, in the presence or absence of p53. The present study detected higher cell proliferation and lower cell death rates in the HCT116 human colon cancer cell line containing a p53 null mutation (HCT116 p53‑/‑) compared with in HCT116 cells harboring wild‑type p53 (HCT116 p53+/+), as determined using a cell viability assay. Notably, western blot analysis revealed a relatively lower level of necroptosis in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Investigating the mechanism, it was revealed that necroptosis may be induced in HCT116 p53+/+ cells by significantly increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), whereas little alterations were detected in HCT116 p53‑/‑ cells. Unexpectedly, a much lower level of ATP was detected in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Accordingly, AMPK phosphorylation on the Thr172 residue was markedly increased in HCT116 p53‑/‑ cells. Furthermore, western blot analysis and ROS measurements indicated that AMPK inhibition, using dorsomorphin dihydrochloride, accelerated necroptosis by increasing ROS generation in HCT116 p53‑/‑ cells. However, AMPK activation by AICAR did not suppress necroptosis in HCT116 p53+/+ cells. In conclusion, these data strongly suggested that AMPK activation may be enhanced in HCT116 p53‑/‑ cells under serum‑depleted conditions via a drop in cellular ATP levels. In addition, activated AMPK may be at least partially responsible for the inhibition of necroptosis in HCT116 p53‑/‑ cells, but not in HCT116 p53+/+cells.

References

1 

Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135–147. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Vandenabeele P, Galluzzi L, Vanden Berghe T and Kroemer G: Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol. 11:700–714. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Teng X, Degterev A, Jagtap P, Xing X, Choi S, Denu R, Yuan J and Cuny GD: Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett. 15:5039–5044. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Moriwaki K, Bertin J, Gough PJ, Orlowski GM and Chan FK: Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6:e16362015. View Article : Google Scholar : PubMed/NCBI

6 

de Almagro MC and Vucic D: Necroptosis: Pathway diversity and characteristics. Semin Cell Dev Biol. 39:56–62. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Xu YZ, Kanagaratham C, Youssef M and Radzioch D: New Frontiers in Cancer Chemotherapy-Targeting Cell Death Pathways. In Cell Biology - New Insights. Najman S: IntechOpen. pp. 93–140. 2016

8 

Dondelinger Y, Hulpiau P, Saeys Y, Bertrand MJM and Vandenabeele P: An evolutionary perspective on the necroptotic pathway. Trends Cell Biol. 26:721–732. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Belizário J, Vieira-Cordeiro L and Enns S: Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice. Mediators Inflamm. 2015:1280762015. View Article : Google Scholar : PubMed/NCBI

10 

Chan FKM, Luz NF and Moriwaki K: Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. 33:79–106. 2015. View Article : Google Scholar :

11 

Avril T, Vauléon E and Chevet E: Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis. 6:e3732017. View Article : Google Scholar : PubMed/NCBI

12 

Palorini R, Votta G, Pirola Y, De Vitto H, De Palma S, Airoldi C, Vasso M, Ricciardiello F, Lombardi PP, Cirulli C, et al: Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genet. 12:e10059312016. View Article : Google Scholar : PubMed/NCBI

13 

Izuishi K, Kato K, Ogura T, Kinoshita T and Esumi H: Remarkable tolerance of tumor cells to nutrient deprivation: Possible new biochemical target for cancer therapy. Cancer Res. 60:6201–6207. 2000.PubMed/NCBI

14 

Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A and Esumi H: Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 67:9677–9684. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Esumi H, Izuishi K, Kato K, Hashimoto K, Kurashima Y, Kishimoto A, Ogura T and Ozawa T: Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5'-AMP-activated protein kinase-dependent manner. J Biol Chem. 277:32791–32798. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Kim SM, Nguyen TT, Ravi A, Kubiniok P, Finicle BT, Jayashankar V, Malacrida L, Hou J, Robertson J, Gao D, et al: PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov. 8:866–883. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Ranjan A and Iwakuma T: Non-Canonical Cell Death Induced by p53. Int J Mol Sci. 17:20682016. View Article : Google Scholar

18 

Liu X, Chhipa RR, Nakano I and Dasgupta B: The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther. 13:596–605. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Hardie DG: AMPK and autophagy get connected. EMBO J. 30:634–635. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Luo Z, Zang M and Guo W: AMPK as a metabolic tumor suppressor: Control of metabolism and cell growth. Future Oncol. 6:457–470. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Mihaylova MM and Shaw RJ: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Liang J and Mills GB: AMPK: A contextual oncogene or tumor suppressor? Cancer Res. 73:2929–2935. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, et al: AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17:113–124. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Hardie DG: AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes Dev. 25:1895–1908. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Li W, Saud SM, Young MR, Chen G and Hua B: Targeting AMPK for cancer prevention and treatment. Oncotarget. 6:7365–7378. 2015.PubMed/NCBI

26 

Jeon SM, Chandel NS and Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M and Esumi H: Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 21:6082–6090. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW and Vogelstein B: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 282:1497–1501. 1998. View Article : Google Scholar : PubMed/NCBI

29 

Christofferson DE and Yuan J: Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ. 17:1942–1943. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Lin Y, Choksi S, Shen H-M, Yang Q-F, Hur GM, Kim YS, Tran JH, Nedospasov SA and Liu ZG: Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem. 279:10822–10828. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Dashzeveg N and Yoshida K: Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett. 367:108–112. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S and Moll UM: p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 149:1536–1548. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Montero J, Dutta C, van Bodegom D, Weinstock D and Letai A: p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ. 20:1465–1474. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Tsujimoto Y and Shimizu S: Role of the mitochondrial membrane permeability transition in cell death. Apoptosis. 12:835–840. 2007. View Article : Google Scholar

35 

Eguchi Y, Shimizu S and Tsujimoto Y: Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 57:1835–1840. 1997.PubMed/NCBI

36 

Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki S, Fliss H and Nakagawa M: Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res. 59:428–440. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Liou G-Y and Storz P: Reactive oxygen species in cancer. Free Radic Res. 44:479–496. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Redza-Dutordoir M and Averill-Bates DA: Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 1863:2977–2992. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, et al: Mitochondriaros crosstalk in the control of cell death and aging. J Signal Transduct. 2012:3296352012. View Article : Google Scholar

40 

Fulda S: The mechanism of necroptosis in normal and cancer cells. Cancer Biol Ther. 14:999–1004. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Kaczmarek A, Vandenabeele P and Krysko DV: Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 38:209–223. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Dasgupta A, Nomura M, Shuck R and Yustein J: Cancer's Achilles' Heel: Apoptosis and Necroptosis to the Rescue. Int J Mol Sci. 18:232016. View Article : Google Scholar

43 

González-Juarbe N, Gilley RP, Hinojosa CA, Bradley KM, Kamei A, Gao G, Dube PH, Bergman MA and Orihuela CJ: Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia. PLoS Pathog. 11:e10053372015. View Article : Google Scholar : PubMed/NCBI

44 

Steinberg GR and Kemp BE: AMPK in Health and Disease. Physiol Rev. 89:1025–1078. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Oakhill JS, Chen Z-P, Scott JW, Steel R, Castelli LA, Ling N, Macaulay SL and Kemp BE: β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci USA. 107:19237–19241. 2010. View Article : Google Scholar

46 

Yung MMH, Ngan HYS and Chan DW: Targeting AMPK signaling in combating ovarian cancers: Opportunities and challenges. Acta Biochim Biophys Sin (Shanghai). 48:301–317. 2016. View Article : Google Scholar

47 

Wang W, Yang X, López de Silanes I, Carling D and Gorospe M: Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem. 278:27016–27023. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Grahame Hardie D: Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 6:1–19. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Smith AC, Bruce CR and Dyck DJ: AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle. J Physiol. 565:537–546. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Tu HC, Ren D, Wang GX, Chen DY, Westergard TD, Kim H, Sasagawa S, Hsieh JJD and Cheng EHY: The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci USA. 106:1093–1098. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Koo MJ, Rooney KT, Choi ME, Ryter SW, Choi AMK and Moon JS: Impaired oxidative phosphorylation regulates necroptosis in human lung epithelial cells. Biochem Biophys Res Commun. 464:875–880. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F and Hue L: Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 526:38–42. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, Koda T, Kamijo T, Nakagawara A and Kizaki H: Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 283:3979–3987. 2008. View Article : Google Scholar

54 

Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC and Favre C: AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget. 7:17815–17828. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Huang SW, Wu CY, Wang YT, Kao JK, Lin CC, Chang CC, Mu SW, Chen YY, Chiu HW, Chang CH, et al: p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells. Toxicol Appl Pharmacol. 267:113–124. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO and Ching YP: AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 72:4394–404. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA and Kroemer G: Autophagy regulation by p53. Curr Opin Cell Biol. 22:181–185. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z and Oren M: p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci USA. 107:18511–18516. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, Cecconi F, Tavernarakis N and Kroemer G: A dual role of p53 in the control of autophagy. Autophagy. 4:810–814. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Fitzwalter BE and Thorburn A: Recent insights into cell death and autophagy. FEBS J. 282:4279–4288. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Boya P, González-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, et al: Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 25:1025–1040. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Nikoletopoulou V, Markaki M, Palikaras K and Tavernarakis N: Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 1833:3448–3459. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Nugues AL, El Bouazzati H, Hétuin D, Berthon C, Loyens A, Bertrand E, Jouy N, Idziorek T and Quesnel B: RIP3 is down-regulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis. 5:e13842014. View Article : Google Scholar

64 

Koo G-B, Morgan MJ, Lee D-G, Kim W-J, Yoon J-H, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, et al: Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25:707–725. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Yang C, Li J, Yu L, Zhang Z, Xu F, Jiang L, Zhou X and He S: Regulation of RIP3 by the transcription factor Sp1 and the epigenetic regulator UHRF1 modulates cancer cell necroptosis. Cell Death Dis. 8:e30842017. View Article : Google Scholar : PubMed/NCBI

66 

Su Z, Yang Z, Xie L, DeWitt JP and Chen Y: Cancer therapy in the necroptosis era. Cell Death Differ. 23:748–756. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Wang Z, Jiang H, Chen S, Du F and Wang X: The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 148:228–243. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Brown MF, Leibowitz BJ, Chen D, He K, Zou F, Sobol RW, Beer-Stolz D, Zhang L and Yu J: Loss of caspase-3 sensitizes colon cancer cells to genotoxic stress via RIP1-dependent necrosis. Cell Death Dis. 6:e17292015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2019
Volume 54 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Le, D.T., Jung, S., Quynh, N.N., Sandag, Z., Lee, B., Kim, S. ... Lee, M. (2019). Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation. International Journal of Oncology, 54, 702-712. https://doi.org/10.3892/ijo.2018.4634
MLA
Le, D. T., Jung, S., Quynh, N. N., Sandag, Z., Lee, B., Kim, S., Lee, H., Lee, H., Lee, M."Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation". International Journal of Oncology 54.2 (2019): 702-712.
Chicago
Le, D. T., Jung, S., Quynh, N. N., Sandag, Z., Lee, B., Kim, S., Lee, H., Lee, H., Lee, M."Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation". International Journal of Oncology 54, no. 2 (2019): 702-712. https://doi.org/10.3892/ijo.2018.4634