Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
February-2019 Volume 54 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 54 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Oncological hyperthermia: The correct dosing in clinical applications

  • Authors:
    • Sun-Young Lee
    • Gyula Peter Szigeti
    • Attila Marcell Szasz
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, Chonbuk National University Hospital-Chonbuk National University Medical School, Jeonju, Jeonbuk 561-712, Republic of Korea, Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, 1083 Budapest, Hungary, Cancer Center, Semmelweis University, 1083 Budapest, Hungary
    Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Pages: 627-643
    |
    Published online on: November 23, 2018
       https://doi.org/10.3892/ijo.2018.4645
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The problem with the application of conventional hyperthermia in oncology is firmly connected to the dose definition, which conventionally uses the concept of the homogeneous (isothermal) temperature of the target. Its imprecise control and complex evaluation is the primary barrier to the extensive clinical applications. The aim of this study was to show the basis of the problems of the misleading dose concept. A clear clarification of the proper dose concept must begin with the description of the limitations of the present doses in conventional hyperthermia applications. The surmounting of the limits the dose of oncologic hyperthermia has to be based on the applicability of the Eyring transition state theory on thermal effects. In order to avoid the countereffects of thermal homeostasis, the use of precise heating on the nanoscale with highly efficient energy delivery is recommended. The nano‑scale heating allows for an energy‑based dose to control the process. The main aspects of the method are the following: i) It is not isothermal (no homogeneous heating); ii) malignant cells are heated selectively; and iii) it employs high heating efficacy, with less energy loss. The applied rigorous thermodynamical considerations show the proper terminology and dose concept of hyperthermia, which is based on the energy‑absorption (such as in the case of ionizing radiation) instead of the temperature‑based ideas. On the whole, according to the present study, the appropriate dose in oncological hyperthermia must use an energy‑based concept, as it is well‑known in all the ionizing radiation therapies. We propose the use of Gy (J/kg) in cases of non‑ionizing radiation (hyperthermia) as well.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Nielsen OS, Horsman M and Overgaard J: A future for hyper-thermia in cancer treatment. Eur J Cancer. 37:1587–1589. 2001. View Article : Google Scholar : PubMed/NCBI

2 

van der Zee J: Heating the patient: A promising approach. Ann Oncol. 13:1173–1184. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Roussakow S: The History Of Hyperthermia Rise And Decline Hindawi Publishing Corporation. Conference Papers in Medicine 2013; pp. 34280272013;

4 

Oncology Encyclopedia: 2008, MedicineNet Hyperthermia definition, Answers. http://www.answers.com/topic/hyper-thermia. Accessed May 23, 2018.

5 

Medicine.net: 2008, Hyperthermia definition. http://www.medterms.com/script/main/art.asp?articlekey=3848. Accessed May 23, 2018.

6 

National Cancer Institute Hyperthermia definition. http://www.cancer.gov/about-cancer/treatment/types/surgery/hyperthermia-fact-sheet. Accessed May 23, 2018.

7 

Wikipedia: Hyperthermia definition. https://en.wikipedia.org/wiki/Hyperthermia_therapy. Accessed May 23, 2018.

8 

Medical Dictionary Hyperthermia definition. http://medical-dictionary.thefreedictionary.com/hyperthermia. Accessed May 23, 2018.

9 

The Americal Cancer Society: Hyperthermia definition. http://www.cancer.org/treatment/treatmentsandsideeffects/treat-menttypes/hyperthermia. Accessed May 23, 2018.

10 

Arrhenius S: On the reaction rate of the inversion of non-refined sugar upon souring. Z Phys Chem. 4:226–248. 1889.

11 

Peleg M, Normand MD and Corradini MG: The Arrhenius equation revisited. Crit Rev Food Sci Nutr. 52:830–851. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Pollak E and Talkner P: Reaction rate theory: What it was, where is it today, and where is it going. Chaos. 15:0261162005. View Article : Google Scholar

13 

Thomson WH: Quantum mechanical transition state theory and tunneling corrections. J Chem Phys. 110:4221–4231. 1999. View Article : Google Scholar

14 

Urano M: Thermochemotherapy: From in vitro and in vivo experiments to potential clinical application. Hyperthermia and Oncology. Urano M and Douple E: VSP Utrecht; Tokyo: pp. 169–204. 1994

15 

Lin R, Chang DC and Lee YK: Study of temperature effect on single-cell fluid-phase endocytosis using micro cell chips and thermoelectric devices. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences; 3-7 October 2010; Groningen. pp. 962–965. 2010

16 

Rosemeyer H, Körnig E and Seela F: Dextran-linked purine nucleosides as substrates and inhibitors of adenosine deaminase. Eur J Biochem. 127:185–191. 1982. View Article : Google Scholar : PubMed/NCBI

17 

Antov Y, Barbul A, Mantsur H and Korenstein R: Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake o. macromolecules = Biophys J. 88:2206–2223. 2005.

18 

Dewey WC, Hopwood LE, Sapareto SA and Gerweck LE: Cellular responses to combinations of hyperthermia and radiation. Radiology. 123:463–474. 1977. View Article : Google Scholar : PubMed/NCBI

19 

O'Neill DP, Peng T, Stiegler P, Mayrhauser U, Koestenbauer S, Tscheliessnigg K and Payne SJ: A three-state mathematical model of hyperthermic cell death. Ann Biomed Eng. 39:570–579. 2011. View Article : Google Scholar

20 

Szasz A and Vincze G: Dose concept of oncological hyper-thermia: Heat-equation considering the cell destruction. J Cancer Res Ther. 2:171–181. 2006. View Article : Google Scholar

21 

Jones E, Thrall D, Dewhirst MW and Vujaskovic Z: Prospective thermal dosimetry: The key to hyperthermia's future. Int J Hyperthermia. 22:247–253. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M and Hoopes PJ: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 19:267–294. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Dewey WC: Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 10:457–483. 1994. View Article : Google Scholar : PubMed/NCBI

24 

Perez CA and Sapareto SA: Thermal dose expression in clinical hyperthermia and correlation with tumor response/control. Cancer Res. 44(Suppl 10): 4818s–4825s. 1984.PubMed/NCBI

25 

Sapareto SA and Dewey WC: Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 10:787–800. 1984. View Article : Google Scholar : PubMed/NCBI

26 

Maguire PD, Samulski TV, Prosnitz LR, Jones EL, Rosner GL, Powers B, Layfield LW, Brizel DM, Scully SP, Harrelson JM, et al: A phase II trial testing the thermal dose parameter CEM43 degrees T90 as a predictor of response in soft tissue sarcomas treated with pre-operative thermoradiotherapy. Int J Hyperthermia. 17:283–290. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Dewhirst MW, Vujaskovic Z, Jones E and Thrall D: Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 21:779–790. 2005. View Article : Google Scholar : PubMed/NCBI

28 

de Bruijne M, van der Holt B, van Rhoon GC and van der Zee J: Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: A retrospective analysis. Strahlenther Onkol. 186:436–443. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Assi H: A New CEM43 Thermal Dose Model Based On Vogel - Tammann-Fulcher Behaviour in Thermal Damage Processes. Ryerson University; Toronto: 2009

30 

Thrall DE, Prescott DM, Samulski TV, Rosner GL, Denman DL, Legorreta RL, Dodge RK, Page RL, Cline JM, Lee J, et al: Radiation plus local hyperthermia versus radiation plus the combination of local and whole-body hyperthermia in canine sarcomas. Int J Radiat Oncol Biol Phys. 34:1087–1096. 1996. View Article : Google Scholar : PubMed/NCBI

31 

Franckena M: Hyperthermia for the Treatment of Locally Advanced Cervix Cancer. Erasmus University; Rotterdam: 2010

32 

Van der Zee J: Radiotherapy and Hyperthermia in Cervical Cancer, ESTRO/TMH, presentation. Mumbai: March 2–2005

33 

Franckena M, Fatehi D, de Bruijne M, Canters RA, van Norden Y, Mens JW, van Rhoon GC and van der Zee J: Hyperthermia dose- effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 45:1969–1978. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Schooneveldt G, Bakker A, Balidemaj E, Chopra R, Crezee J, Geijsen ED, Hartmann J, Hulshof MC, Kok HP, Paulides MM, et al: Thermal dosimetry for bladder hyperthermia treatment. An overview Int J Hyperthermia. 32:417–433. 2016. View Article : Google Scholar

35 

Fotopoulou C, Cho CH, Kraetschell R, Gellermann J, Wust P, Lichtenegger W and Sehouli J: Sehoul: Regional abdominal hyperthermia combined with systemic chemotherapy for the treatment of patients with ovarian cancer relapse: Results of a pilot study. Int J Hyp. 26:118–126. 2009. View Article : Google Scholar

36 

Thrall DE, LaRue SM, Yu D, Samulski T, Sanders L, Case B, Rosner G, Azuma C, Poulson J, Pruitt AF, et al: Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res. 11:5206–5214. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Blank M and Goodman R: Electromagnetic fields stress living cells. Pathophysiology. 16:71–78. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Giuliani L and Soffritti M: Non-Thermal Effects And Mechanisms Of Interaction Between Electromagnetic Fields and Living Matter. An ICEMS Monograph; National Institute for the Study and Control of Cancer and Environmental Diseases ‘Bernardino Ramazzini’. 5. Fidenza Publication; Bologna: 2010

39 

Vincze G and Szasz A: Critical analysis of the thermodynamics of reaction kinetics. J Adv Phys. 10:2538–2559. 2015. View Article : Google Scholar

40 

Dewey WC: Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 25:3–20. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Lindholm CE: Hyperthermia and Radiotherapy PhD Thesis. Lund University; Malmö: 1992

42 

Hafström L, Rudenstam CM, Blomquist E, Ingvar C, Jönsson PE, Lagerlöf B, Lindholm C, Ringborg U, Westman G and Ostrup L; Swedish Melanoma Study Group: Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities. J Clin Oncol. 9:2091–2094. 1991. View Article : Google Scholar

43 

Bhowmick P, Coad JE, Bhowmick S, Pryor JL, Larson T, De La Rosette J and Bischof JC: In vitro assessment of the efficacy of thermal therapy in human benign prostatic hyperplasia. Int J Hyperthermia. 20:421–439. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Urano M and Douple E: Chemopotentiation by Hyperthermia. Hyperthermia in Oncology. 4. VSP Utrecht; Tokyo: pp. 1731994

45 

Digel I, Maggakis-Kelemen Ch, Zerlin KF, Linder P, Kasischke N, Kayser P, Porst D, Temiz Artmann A and Artmann GM: Body temperature-related structural transitions of monotremal and human hemoglobin. Biophys J. 91:3014–3021. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Lindegaard JC: Winner of the Lund Science Award 1992 Thermosensitization induced by step-down heating. A review on heat-induced sensitization to hyperthermia alone or hyperthermia combined with radiation. Int J Hyperthermia. 8:561–586. 1992. View Article : Google Scholar : PubMed/NCBI

47 

van Rijn J, van den Berg J, Wiegant FA and van Wijk R: Time-temperature relationships for step-down heating in normal and thermotolerant cells. Int J Hyperthermia. 10:643–652. 1994. View Article : Google Scholar : PubMed/NCBI

48 

Henle KJ and RotiRoti JL: Response of cultured mammalian cells to hyperthermia. Hyperthermia and Oncology. Urano M and Douple E: 1. VSP, Utrecht; Tokyo: pp. 57–82. 1988

49 

Konings AW: Interaction of heat and radiation in vitro and in vivo. Thermo-radiotherapy and Thermo-chemotherapy Biology, Physiology and Physics. 1. Seegenschmiedt MH, Fessenden P and Vernon CC: Springer Verlag; Berlin: pp. 89–102. 1995

50 

Hasegawa T, Gu YH, Takahashi T, Hasegawa T and Yamamoto I: Enhancement of hyperthermic effects using rapid heating. Thermotherapy for Neoplasia, Inflammation, and Pain. Kosaka M, Sugahara T and Schmidt KL: Springer Verlag; Tokyo-Berlin: pp. 439–444. 2001, View Article : Google Scholar

51 

Biosca JA, Travers F and Barman TE: A jump in an Arrhenius plot can be the consequence of a phase transition. The binding of ATP to myosin subfragment 1. FEBS Lett. 153:217–220. 1983. View Article : Google Scholar : PubMed/NCBI

52 

Watson K, Bertoli E and Griffiths DE: Phase transitions in yeast mitochondrial membranes. The effect of temperature on the energies of activation of the respiratory enzymes o. Saccharomyces cerevisiae = Biochem J. 146:401–407. 1975.

53 

Szigeti, GyP, Szasz O and Hegyi G: Personalised dosing of hyperthermia. J Cancer Diagn. 1:1072016. View Article : Google Scholar

54 

Erdmann B, Lang J and Seebass M: Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model. Ann NY Acad Sci. 858:36–46. 1998. View Article : Google Scholar

55 

Vincze G, Szasz O and Szasz A: Generalization of the thermal dose of hyperthermia in oncology. Open J Biophys. 5:97–114. 2015. View Article : Google Scholar

56 

Pearce JA: Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia. 29:262–280. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Geiser F and McMurchie EJ: Arrhenius parameters of mitochondrial membrane respiratory enzymes in relation to thermoregulation in endotherms. J Comp Physiol B. 155:711–715. 1985. View Article : Google Scholar : PubMed/NCBI

58 

Geiser F and McMurchie EJ: Differences in the thermotropic behavior of mitochondrial membrane respiratory enzymes from homeothermic and heterothermic endotherms. J Comp Physiol B. 155:125–133. 1984. View Article : Google Scholar

59 

Oleson JR, Calderwood SK, Coughlin CT, Dewhirst MW, Gerweck LE, Gibbs FA Jr and Kapp DS: Biological and clinical aspects of hyperthermia in cancer therapy. Am J Clin Oncol. 11:368–380. 1988. View Article : Google Scholar : PubMed/NCBI

60 

Laider KJ: The development of the Arrhenius equation. J Chem Educ. 61:494–498. 1984. View Article : Google Scholar

61 

Gardiner WC Jr: Temperature dependence of bimolecular gas reaction rates. Acc Chem Res. 10:326–331. 1977. View Article : Google Scholar

62 

Petrou AL, Roulia M and Tampouris K: The use of the Arrhenius equation in the study of deterioration and of cooking of foods - some scientific and pedagogic aspects. Chem Educ Res And Pract In Eur. 3:87–97. 2002. View Article : Google Scholar

63 

Qin Z, Balasubramanian SK, Wolkers WF, Pearce JA and Bischof JC: Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells. Ann Biomed Eng. 42:2392–2404. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Whitney J, Carswell W and Rylander N: Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis. Int J Hyperthermia. 29:281–295. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Scalley ML and Baker D: Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability. Proc Natl Acad Sci USA. 94:10636–10640. 1997. View Article : Google Scholar : PubMed/NCBI

66 

Abney JR and Owicki JC: Theories of protein-lipid and protein-protein interactions in membranes. Progress in Protein-Lipid Interactions. Watts A and de Pont JJ: 1. Elsevier Biomedical Press; Amsterdam: pp. 1–60. 1985

67 

Evans MG and Polanyi M: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc. 31:875–894. 1935. View Article : Google Scholar

68 

Eyring H: The activated complex in chemical reactions. J Chem Phys. 3:107–115. 1935. View Article : Google Scholar

69 

Laidler KJ and King MC: The development of transition-state theory. J Phys Chem. 87:2657–2664. 1983. View Article : Google Scholar

70 

McRae DA and Esrick MA: Changes in electrical impedance of skeletal muscle measured during hyperthermia. Int J Hyperthermia. 9:247–261. 1993. View Article : Google Scholar : PubMed/NCBI

71 

Pearce JA: Improving accuracy in arrhenius models of cell death: Adding a temperature-dependent time delay. Transactions of the ASME. J Biomech Eng. 137:1210062015. View Article : Google Scholar

72 

Eyring H, Gershinowitz H and Sun CE: The absolute rate of homogeneous atomic reactions. J Chem Phys. 3:786–796. 1935. View Article : Google Scholar

73 

Wynne-Jones WF and Eyring H: The absolute rate of reactions in condensed phases. J Chem Phys. 3:492–502. 1935. View Article : Google Scholar

74 

Eyring H and Polanyi M: Über Einfache Gasreaktionen. Z Phys Chem B. 12:279–311. 1931.In German.

75 

Eyring H and Stearn AE: The application of the theory of absolute reaction rates to proteins. Chem Rev. 24:253–270. 1939. View Article : Google Scholar

76 

Crawford BL Jr: Quantum Chemistry. Eyring Henry, Walter John and Kimball George E.: J Phys Chem. 49:168. 1945. View Article : Google Scholar

77 

Szasz A, Szasz N and Szasz O: Oncothermia - Principles principles and practices. Springer; Science, Heidelberg: 2010

78 

Wright NT: On a relationship between the Arrhenius parameters from thermal damage studies. J Biomech Eng. 125:300–304. 2003. View Article : Google Scholar : PubMed/NCBI

79 

He X: Thermostability of biological systems: Fundamentals, challenges, and quantification. Open Biomed Eng J. 5:47–73. 2011. View Article : Google Scholar : PubMed/NCBI

80 

He X and Bischof JC: Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng. 31:355–422. 2003. View Article : Google Scholar

81 

Jacques SL: Ratio of entropy to enthalpy in thermal transitions in biological tissues. J Biomed Opt. 11:0411082006. View Article : Google Scholar : PubMed/NCBI

82 

Rosenberg B, Kemeny G, Switzer RC and Hamilton TC: Quantitative evidence for protein denaturation as the cause of thermal death. Nature. 232:471–473. 1971. View Article : Google Scholar : PubMed/NCBI

83 

Low PS, Bada JL and Somero GN: Temperature adaptation of enzymes: Roles of the free energy, the enthalpy, and the entropy of activation. Proc Natl Acad Sci USA. 70:430–432. 1973. View Article : Google Scholar : PubMed/NCBI

84 

Pearce JA: Thermal dose models: Irreversible alterations in tissues. Physics of Thermal Therapy, Fundamentals and Clinical Applications. Moros EG: CRC Press Taylor and Francis Group; Boca Raton, FL: 2013

85 

Lee SY, Kim JH, Han YH and Cho DH: The effect of modulated electro-hyperthermia on temperature and blood flow in human cervical carcinoma. Int J Hyperthermia. 34:953–960. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Lee SY, Lee NR, Cho DH and Kim JS: Treatment outcome analysis of chemotherapy combined with modulated electro- hyperthermia compared with chemotherapy alone for recurrent cervical cancer, following irradiation. Oncol Lett. 14:73–78. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Szasz O, Szasz MA, Minnaar C and Szasz A: Heating preciosity: Trends in modern oncological hyperthermia. Open J Biophys. 7:116–144. 2017. View Article : Google Scholar

88 

Szent-Gyoergyi A: Cell division and cancer. Science. 149:34–37. 1965. View Article : Google Scholar : PubMed/NCBI

89 

Davies PC, Demetrius L and Tuszynski JA: Cancer as a dynamical phase transition. Theor Biol Med Model. 8:302011. View Article : Google Scholar : PubMed/NCBI

90 

Alfarouk KO, Shayoub ME, Muddathir AK, Elhassan GO and Bashir AH: Evolution of tumor metabolism might reflect carcinogenesis as a reverse evolution process (dismantling of multi-cellularity). Cancers (Basel). 3:3002–3017. 2011. View Article : Google Scholar

91 

Greaves M: Evolutionary determinants of cancer. Cancer Discov. 5:806–820. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Bussey KJ, Cisneros LH, Lineweaver CH and Davies PC: Ancestral gene regulatory networks drive cancer. Proc Natl Acad Sci USA. 114:6160–6162. 2015. View Article : Google Scholar

93 

Davies PC and Lineweaver CH: Cancer tumors as Metazoa 1.0: Tapping genes of ancient ancestors. Phys Biol. 8:0150012011. View Article : Google Scholar : PubMed/NCBI

94 

Warburg O: Oxygen, the Creator of Differentiation, Biochemical Energetics. Academic Press; New York NY: 1966, Warburg O: The Prime Cause and Prevention of Cancer, Revised lecture at the meeting of the Nobel-Laureates on June 30, 1966 at Lindau, Lake Constance, Germany, 1966.

95 

Oehr P, Biersack HJ and Coleman RE: PET and PET-CT in Oncology. Springer Verlag; Berlin, Heidelberg: 2004, View Article : Google Scholar

96 

Mikac U, Demsar F, Beravs K and Sersa I: Magnetic resonance imaging of alternating electric currents. Magn Reson Imaging. 19:845–856. 2001. View Article : Google Scholar : PubMed/NCBI

97 

Szasz A, Vincze Gy, Szasz O and Szasz N: An energy analysis of extracellular hyperthermia. Electromagn Biol Med. 22:103–115. 2003. View Article : Google Scholar

98 

Szentgyorgyi A: Bioelectronics: A Study on Cellular Regulations, Defense and Cancer. Academic Press; London: pp. 1968

99 

Foster KR and Schepps JL: Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J Microw Power. 16:107–119. 1981. View Article : Google Scholar : PubMed/NCBI

100 

Blad B and Baldetorp B: Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electric impedance tomography. Physiol Meas. 17(Suppl 4A): A105–A115. 1996. View Article : Google Scholar

101 

Babaeizadeh S, Brooks DH and Isaacson D: 3-D electrical impedance tomography for piecewise constant domains with known internal boundaries. IEEE Trans Biomed Eng. 54:2–10. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Scholz B and Anderson R: On electrical impedance scanning - Principles and simulations. Electromedica. 68:35–44. 2000.

103 

Musha T and Sawada Y: Physics of the Living Atate. IOS Press; Amsterdam: 1994

104 

West BJ: Fractal Physiology and Chaos in Medicine. World Scientific; London: 1990, View Article : Google Scholar

105 

Lovelady DC, Richmond TC, Maggi AN, Lo CM and Rabson DA: Distinguishing cancerous from noncancerous cells through analysis of electrical noise. Phys Rev E Stat Nonlin Soft Matter Phys. 76:0419082007. View Article : Google Scholar : PubMed/NCBI

106 

Szasz O, Andocs G and Meggyeshazi N: Modulation effect in oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine. 2013.e3956782013.

107 

Szasz A, Szasz N and Szasz O: Oncothermia - Principles and practices. Springer Science; Heidelberg: pp. 2202010

108 

Yang KL, Huang CC, Chi MS, Chiang HC, Wang YS, Andocs G, et al: In vitro comparison of conventional hyper-thermia and modulated electro-hyperthermia. Oncotarget. 7:84082–84092. 2016.PubMed/NCBI

109 

Pethig R: Dielectric properties of biological materials: Biophysical and medical applications. IEEE Transactions on Electrical Insulation. E1–19. 453–474. 1984.

110 

Schwan HP: Determination of biological impedances. Physical Techniques in Biological Research. 6. Academic Press; New York NY: pp. 323–406. 1963

111 

Pennock BE and Schwan HP: Further observations on the electrical properties of hemoglobin-bound water. J Phys Chem. 73:2600–2610. 1969. View Article : Google Scholar : PubMed/NCBI

112 

Szasz O and Szasz A: Oncothermia - nano-heating paradigm. J Cancer Sci Ther. 6:42014. View Article : Google Scholar

113 

Vincze Gy, Szigeti Gy, Andocs G and Szasz A: Nanoheating without artificial nanoparticles. Biol Med (Aligarh). 7:2492015.

114 

Szasz A: Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications. Shimizu T and Kondo T: Nova Science Publishers Inc.; Hauppauge, NY: 2013

115 

Andocs G, Rehman MU, Zhao QL, Papp E, Kondo T and Szasz A: Nanoheating without artificial nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro- hyperthermia method, using U937 cell suspension model. Biol Med (Aligarh). 7:1–9. 2015. View Article : Google Scholar

116 

Andocs G, Rehman MU, Zhao QL, Tabuchi Y, Kanamori M and Kondo T: Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells. Cell Death Discov. 2:160392016. View Article : Google Scholar : PubMed/NCBI

117 

Andocs G, Renner H, Balogh L, Fonyad L, Jakab C and Szasz A: Strong synergy of heat and modulated electro-magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model. Strahlenther Onkol. 185:120–126. 2009. View Article : Google Scholar : PubMed/NCBI

118 

Andocs G, Okamoto Y, Osaki T, Tsuka T, Imagawa T, Minami S, Balogh L, Meggyeshazi N and Szasz O: Oncothermia research at preclinical level. Hindawi Publishing Corporation Conference Papers in Medicine; 2013, pp. e2724672013

119 

Szasz A: Current status of oncothermia therapy for lung cancer. Korean J Thorac Cardiovasc Surg. 47:77–93. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Meggyeshazi N: Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model. PhD Theses. Pathological Sciences Doctoral School, Semmelweis University; Budapest: 2015

121 

Meggyeshazi N, Andocs G, Balogh L, Balla P, Kiszner G, Teleki I, Jeney A and Krenacs T: DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol. 190:815–822. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Andocs G, Meggyeshazi N, Balogh L, Spisak S, Maros ME, Balla P, Kiszner G, Teleki I, Kovago C and Krenacs T: Upregulation of heat shock proteins and the promotion of damage- associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress Chaperones. 20:37–46. 2015. View Article : Google Scholar

123 

Qin W, Akutsu Y, Andocs G, Suganami A, Hu X, Yusup G, Komatsu-Akimoto A, Hoshino I, Hanari N, Mori M, et al: Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep. 32:2373–2379. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Tsang YW, Huang CC, Yang KL, Chi MS, Chiang HC, Wang YS, Andocs G, Szasz A, Li WT and Chi KH: Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. BMC Cancer. 15:7082015. View Article : Google Scholar : PubMed/NCBI

125 

Szasz O and Szasz A: Heating, efficacy and dose of local hyperthermia. Open J Biophys. 6:10–18. 2016. View Article : Google Scholar

126 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Chang LK, Putcha GV, Deshmukh M and Johnson EM Jr: Mitochondrial involvement in the point of no return in neuronal apoptosis. Biochimie. 84:223–231. 2002. View Article : Google Scholar : PubMed/NCBI

128 

Langdon BB, Kastantin M and Schwartz DK: Apparent activation energies associated with protein dynamics on hydrophobic and hydrophilic surfaces. Biophys J. 102:2625–2633. 2012. View Article : Google Scholar : PubMed/NCBI

129 

Melnick RL, Hanson RM and Morris HP: Membranous effects on adenosine triphosphatase activities of mitochondria from rat liver and Morris hepatoma 3924A. Cancer Res. 37:4395–4399. 1977.PubMed/NCBI

130 

Kushnareva Y, Andreyev AY, Kuwana T and Newmeyer DD: Bax activation initiates the assembly of a multimeric catalyst that facilitates Bax pore formation in mitochondrial outer membranes. PLoS Biol. 10:e10013942012. View Article : Google Scholar : PubMed/NCBI

131 

Pouliquen D, Bellot G, Guihard G, Fichet P, Meflah K and Vallette FM: Mitochondrial membrane permeabilization produced by PTP, Bax and apoptosis: A 1H-NMR relaxation study. Cell Death Differ. 13:301–310. 2006. View Article : Google Scholar

132 

De Virville JD, Cantrel C, Bousquet AL, Hoffelt M, Tenreiro AM, Vaz Pinto V, Arrabaca JD, Caiveau O, Moreau F and Zachowski A: Homeoviscous and functional adaptations of mitochondrial membranes to growth temperature in soybean seedlings. Plant Cell Environ. 25:1289–1297. 2002. View Article : Google Scholar

133 

Lenaz G, Sechi AM, Parenti-Castelli G, Landi L and Bertoli E: Activation energies of different mitochondrial enzymes: Breaks in Arrhenius plots of membrane-bound enzymes occur at different temperatures. Biochem Biophys Res Commun. 49:536–542. 1972. View Article : Google Scholar : PubMed/NCBI

134 

Lee M and Vasioukhin V: Cell polarity and cancer - cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci. 121:1141–1150. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Litovitz TA, Krause D, Penafiel M, Elson EC and Mullins JM: The role of coherence time in the effect of microwaves on ornithine decarboxylase activity. Bioelectromagnetics. 14:395–403. 1993. View Article : Google Scholar : PubMed/NCBI

136 

Kim EK and Choi EJ: Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 1802.396–405. 2010.

137 

Leszczynski D, Joenväärä S, Reivinen J and Kuokka R: Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 70:120–129. 2002. View Article : Google Scholar : PubMed/NCBI

138 

Cuesta-López S, Errami J, Falo F and Peyrard M: Can we model DNA at the mesoscale. J Biol Phys. 31:273–301. 2005. View Article : Google Scholar

139 

Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki K, et al: Evidence for the involvement of double-strand breaks in heat- induced cell killing. Cancer Res. 64:8839–8845. 2004. View Article : Google Scholar : PubMed/NCBI

140 

Kim JK, Prasad B and Kim S: Temperature mapping and thermal dose calculation in combined radiation therapy and 1356 MHz radiofrequency hyperthermia for tumor treatment Proc SPIE 10047. Opt Methods Tumor Treat Detect Mech Tech Photodynamic Ther. 26:10047182017.

141 

Szasz O, Andocs G and Meggyeshazi N: Oncothermia as Personalized Treatment Option. Hindawi Publishing Corporation Conference Papers in Medicine 2013. e29413642013.

142 

Fowler JF: The first James Kirk memorial lecture. What next in fractionated radiotherapy. Br J Cancer. 6:285–300. 1984.

143 

Wang JZ, Li XA, D'Souza WD and Stewart RD: Impact of prolonged fraction delivery times on tumor control: A note of caution for intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys. 57:543–552. 2003. View Article : Google Scholar : PubMed/NCBI

144 

Angus SD and Piotrowska MJ: A matter of timing: identifying significant multi-dose radiotherapy improvements by numerical simulation and genetic algorithm search. PLoS One. 9:e1140982014. View Article : Google Scholar : PubMed/NCBI

145 

Andocs G, Okamoto Y, Kawamoto K, Osaki T, Tsuka T, Imagawa T, Miniami S, Balogh L, Meggysházi N and Szasz O: Oncothermia basic research at in vivo level The first results in Japan. Hindawi Publishing Corporation Conference Papers in Medicine 2013. e1973282013.

146 

Kim W, Kim MS, Kim HJ, Lee E, Jeong JH, Park I, Jeong YK and Jang WI: Role of HIF-1α in response of tumors to a combination of hyperthermia and radiation in vivo. Int J Hyperthermia. 28:1–8. 2017.

147 

Lee SY and Kim MG: The effect of modulated electro-hyperthermia on the pharmacokinetic properties of nefopam in healthy volunteers: A randomised, single-dose, crossover open-label study. Int J Hyperthermia. 31:869–874. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Meggyeshazi N, Andocs G and Krenacs T: Programmed cell death induced by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine 2013. e187835.2013.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lee S, Szigeti GP and Szasz AM: Oncological hyperthermia: The correct dosing in clinical applications. Int J Oncol 54: 627-643, 2019.
APA
Lee, S., Szigeti, G.P., & Szasz, A.M. (2019). Oncological hyperthermia: The correct dosing in clinical applications. International Journal of Oncology, 54, 627-643. https://doi.org/10.3892/ijo.2018.4645
MLA
Lee, S., Szigeti, G. P., Szasz, A. M."Oncological hyperthermia: The correct dosing in clinical applications". International Journal of Oncology 54.2 (2019): 627-643.
Chicago
Lee, S., Szigeti, G. P., Szasz, A. M."Oncological hyperthermia: The correct dosing in clinical applications". International Journal of Oncology 54, no. 2 (2019): 627-643. https://doi.org/10.3892/ijo.2018.4645
Copy and paste a formatted citation
x
Spandidos Publications style
Lee S, Szigeti GP and Szasz AM: Oncological hyperthermia: The correct dosing in clinical applications. Int J Oncol 54: 627-643, 2019.
APA
Lee, S., Szigeti, G.P., & Szasz, A.M. (2019). Oncological hyperthermia: The correct dosing in clinical applications. International Journal of Oncology, 54, 627-643. https://doi.org/10.3892/ijo.2018.4645
MLA
Lee, S., Szigeti, G. P., Szasz, A. M."Oncological hyperthermia: The correct dosing in clinical applications". International Journal of Oncology 54.2 (2019): 627-643.
Chicago
Lee, S., Szigeti, G. P., Szasz, A. M."Oncological hyperthermia: The correct dosing in clinical applications". International Journal of Oncology 54, no. 2 (2019): 627-643. https://doi.org/10.3892/ijo.2018.4645
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team