|
1
|
Halstedt WS: Surgical Papers. Burket WC:
2. Baltimore: 1924
|
|
2
|
Fisher B and Wolmark N: The current status
of systemic adjuvant therapy in the management of primary breast
cancer. Surg Clin North Am. 61:1347–1360. 1981. View Article : Google Scholar
|
|
3
|
Mukherjee S: The Emperor of All Maladies:
A Biography of Cancer. Scribner, a Division of Simon and Schuster
Inc.; New York: 2010
|
|
4
|
Schirrmacher V: Quo Vadis Cancer Therapy?
Fascinating discoveries of the last 60 years. Lambert Academic
Publishing; pp. 1–353. 2017
|
|
5
|
Koeppen BM and Stanton BA: Berne and Levy
Physiology. 7th edition. Elsevier; Amsterdam: pp. 8802018
|
|
6
|
Seeber S and Schütte J: Therapiekonzepte
Onkologie. Springer-Verlag; Berlin, Heidelberg: 1993, View Article : Google Scholar
|
|
7
|
Morgan G, Ward R and Barton M: The
contribution of cytotoxic chemotherapy to 5-year survival in adult
malignancies. Clin Oncol (R Coll Radiol). 16:549–560. 2004.
View Article : Google Scholar
|
|
8
|
Steward BW and Wild CW: World Cancer
Report. pp. 2014IARC Press; Lyon: 2014
|
|
9
|
American Cancer Society: Cancer Facts and
Figures 2018. American Cancer Society, Inc.; Atlanta, GA: 2018
|
|
10
|
Niraula S, Seruga B, Ocana A, Shao T,
Goldstein R, Tannock IF and Amir E: The price we pay for progress A
meta-analysis of harms of newly approved anticancer drugs. J Clin
Oncol. 30:3012–3019. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Niraula S, Amir E, Vera-Badillo F, Seruga
B, Ocana A and Tannock IF: Risk of incremental toxicities and
associated costs of new anticancer drugs: A meta-analysis. J Clin
Oncol. 32:3634–3642. 2014. View Article : Google Scholar
|
|
12
|
Barnes TA, Amir E, Templeton AJ,
Gomez-Garcia S, Navarro B, Seruga B and Ocana A: Efficacy, safety,
tolerability and price of newly approved drugs in solid tumors.
Cancer Treat Rev. 56:1–7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Reid E, Suneja G, Ambinder RF, Ard K,
Baiocchi R, Barta SK, Carchman E, Cohen A, Gupta N, Johung KL, et
al: Cancer in people living with HIV, version 1.2018, NCCN clinical
practice guidelines in oncology. J Natl Compr Canc Netw.
16:986–1017. 2018. View Article : Google Scholar
|
|
14
|
Gutierrez-Dalmau A and Campistol JM:
Immunosuppressive therapy and malignancy in organ transplant
recipients: A systematic review. Drugs. 67:1167–1198. 2007.
View Article : Google Scholar
|
|
15
|
Zhang L, Conejo-Garcia JR, Katsaros D,
Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H,
Schlienger K, Liebman MN, et al: Intratumoral T cells, recurrence,
and survival in epithelial ovarian cancer. N Engl J Med.
348:203–213. 2003. View Article : Google Scholar
|
|
16
|
Clemente CG, Mihm MC Jr, Bufalino R,
Zurrida S, Collini P and Cascinelli N: Prognostic value of tumor
infiltrating lymphocytes in the vertical growth phase of primary
cutaneous melanoma. Cancer. 77:1303–1310. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lipponen PK, Eskelinen MJ, Jauhiainen K,
Harju E and Terho R: Tumour infiltrating lymphocytes as an
independent prognostic factor in transitional cell bladder cancer.
Eur J Cancer. 29A:69–75. 1992.PubMed/NCBI
|
|
18
|
Naito Y, Saito K, Shiiba K, Ohuchi A,
Saigenji K, Nagura H and Ohtani H: CD8+ T cells
infiltrated within cancer cell nests as a prognostic factor in
human colorectal cancer. Cancer Res. 58:3491–3494. 1998.
|
|
19
|
Sommerfeldt N, Schütz F, Sohn C, Förster
J, Schirrmacher V and Beckhove P: The shaping of a polyvalent and
highly individual T-cell repertoire in the bone marrow of breast
cancer patients. Cancer Res. 66:8258–8265. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Feuerer M, Beckhove P, Bai L, Solomayer
EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V
and Umansky V: Therapy of human tumors in NOD/SCID mice with
patient-derived reactivated memory T cells from bone marrow. Nat
Med. 7:452–458. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Böhle A and Brandau S: Immune mechanisms
in bacillus Calmette-Guerin immunotherapy for superficial bladder
cancer. J Urol. 170:964–969. 2003. View Article : Google Scholar
|
|
22
|
Khong HT and Restifo NP: Natural selection
of tumor variants in the generation of ‘tumor escape’ phenotypes.
Nat Immunol. 3:999–1005. 2002. View Article : Google Scholar
|
|
23
|
Teng MW, Galon J, Fridman WH and Smyth MJ:
From mice to humans: Developments in cancer immunoediting. J Clin
Invest. 125:3338–3346. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang AW, McPherson A, Milne K, Kroeger
DR, Hamilton PT, Miranda A, Funnell T, Little N, de Souza CPE, Laan
S, et al: Interfaces of malignant and immunologic clonal dynamics
in ovarian cancer. Cell. 173:1755–1769. e222018. View Article : Google Scholar
|
|
25
|
Bäumler E and Ehrlich Paul: Forscher für
das Leben. Bastei-Lübbe-Taschenbuch. 61:1631989.
|
|
26
|
Pauling L and Delbrück M: The nature of
the intermolecular forces operative in biological processes.
Science. 92:77–79. 1940. View Article : Google Scholar
|
|
27
|
Rudolph MG, Stanfield RL and Wilson IA:
How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol.
24:419–466. 2006. View Article : Google Scholar
|
|
28
|
Manz BN, Jackson BL, Petit RS, Dustin ML
and Groves J: T-cell triggering thresholds are modulated by the
number of antigen within individual T-cell receptor clusters. Proc
Natl Acad Sci USA. 108:9089–9094. 2011. View Article : Google Scholar
|
|
29
|
Reinherz EL: αβ TCR-mediated recognition:
Relevance to tumor-antigen discovery and cancer immunotherapy.
Cancer Immunol Res. 3:305–312. 2015. View Article : Google Scholar
|
|
30
|
Crespo J, Sun H, Welling TH, Tian Z and
Zou W: T cell anergy, exhaustion, senescence, and stemness in the
tumor microenvironment. Curr Opin Immunol. 25:214–221. 2013.
View Article : Google Scholar
|
|
31
|
Boissonnas A, Fetler L, Zeelenberg IS,
Hugues S and Amigorena S: In vivo imaging of cytotoxic T cell
infiltration and elimination of a solid tumor. J Exp Med.
204:345–356. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Otto L, Zelinskyy G, Schuster M, Dittmer U
and Gunzer M: Imaging of cytotoxic antiviral immunity while
considering the 3R principle of animal research. J Mol Med (Berl).
96:349–360. 2018. View Article : Google Scholar
|
|
33
|
Vasaturo A, Di Blasio S, Peeters DG, de
Koning CC, de Vries JM, Figdor CG and Hato SV: Clinical
implications of co-inhibitory molecule expression in the tumor
microenvironment for DC vaccination: A game of stop and go. Front
Immunol. 4:4172013. View Article : Google Scholar :
|
|
34
|
Teng MW, Ngiow SF, Ribas A and Smyth MJ:
Classifying cancers based on T-cell infiltration and PD-L1. Cancer
Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lindenmann J: Viral oncolysis with host
survival. Proc Soc Exp Biol Med. 113:85–91. 1963. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cassel WA and Garrett RE: Tumor immunity
after viral oncolysis. J Bacteriol. 92:7921966.
|
|
37
|
Heicappell R, Schirrmacher V, von Hoegen
P, Ahlert T and Appelhans B: Prevention of metastatic spread by
postoperative immunotherapy with virally modified autologous tumor
cells. I. Parameters for optimal therapeutic effects. Int J Cancer.
37:569–577. 1986. View Article : Google Scholar
|
|
38
|
Ertel C, Millar NS, Emmerson PT,
Schirrmacher V and von Hoegen P: Viral hemagglutinin augments
peptide-specific cytotoxic T cell responses. Eur J Immunol.
23:2592–2596. 1993. View Article : Google Scholar
|
|
39
|
Schirrmacher V, Haas C, Bonifer R and
Ertel C: Virus potentiation of tumor vaccine T-cell stimulatory
capacity requires cell surface binding but not infection. Clin
Cancer Res. 3:1135–1148. 1997.
|
|
40
|
Khazaie K, Prifti S, Beckhove P, Griesbach
A, Russell S, Collins M and Schirrmacher V: Persistence of dormant
tumor cells in the bone marrow of tumor cell-vaccinated mice
correlates with long-term immunological protection. Proc Natl Acad
Sci USA. 91:7430–7434. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Müller M, Gounari F, Prifti S, Hacker HJ,
Schirrmacher V and Khazaie K: EblacZ tumor dormancy in bone marrow
and lymph nodes: Active control of proliferating tumor cells by
CD8+ immune T cells. Cancer Res. 58:5439–5446. 1998.
|
|
42
|
Klug F, Prakash H, Huber PE, Seibel T,
Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et
al: Low-dose irradiation programs macrophage differentiation to an
iNOS+/M1 phenotype that orchestrates effective T cell
immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gires O and Seliger B: Tumor-Associated
Antigens. Wiley-Blackwell; Hoboken, NJ: 2009
|
|
44
|
Tokuyasu TA and Huang JD: A primer on the
recent developments in cancer immunotherapy, with a focus on
neoantigen vaccines. J Cancer Metastasis Treat. 4:2–24. 2018.
View Article : Google Scholar
|
|
45
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar
|
|
46
|
Flavahan WA, Gaskell E and Bernstein BE:
Epigenetic plasticity and the hallmarks of cancer. Science.
357:23802017. View Article : Google Scholar
|
|
47
|
Coulie PG, Lehmann F, Lethé B, Herman J,
Lurquin C, Andrawiss M and Boon T: A mutated intron sequence codes
for an antigenic peptide recognized by cytolytic T lymphocytes on a
human melanoma. Proc Natl Acad Sci USA. 92:7976–7980. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Derbinski J and Kyewski B: How thymic
antigen presenting cells sample the body’s self-antigens. Curr Opin
Immunol. 22:592–600. 2010. View Article : Google Scholar
|
|
49
|
Kyewski B and Peterson P: Aire, master of
many trades. Cell. 140:24–26. 2010. View Article : Google Scholar
|
|
50
|
Delacher M, Imbusch CD, Weichenhan D,
Breiling A, Hotz-Wagenblatt A, Träger U, Hofer AC, Kägebein D, Wang
Q, Frauhammer F, et al: Genome-wide DNA-methylation landscape
defines specialization of regulatory T cells in tissues. Nat
Immunol. 18:1160–1172. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sallusto F, Geginat J and Lanzavecchia A:
Central memory and effector memory T cell subsets: Function,
generation, and maintenance. Annu Rev Immunol. 22:745–763. 2004.
View Article : Google Scholar
|
|
52
|
Di Rosa F and Pabst R: The bone marrow: A
nest for migratory memory T cells. Trends Immunol. 26:360–366.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Han SJ, Glatman Zaretsky A,
Andrade-Oliveira V, Collins N, Dzutsev A, Shaik J, Morais da
Fonseca D, Harrison OJ, Tamoutounour S, Byrd AL, et al: White
adipose tissue is a reservoir for memory T cells and promotes
protective memory responses to infection. Immunity.
47:1154–1168.e6. 2017. View Article : Google Scholar
|
|
54
|
Durek P, Nordström K, Gasparoni G, Salhab
A, Kressler C, de Almeida M, Bassler K, Ulas T, Schmidt F, Xiong J,
et al: DEEP Consortium: Epigenomic profiling of human
CD4+ T cells supports a linear differentiation model and
highlights molecular regulators of memory development. Immunity.
45:1148–1161. 2016. View Article : Google Scholar
|
|
55
|
Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos
CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al: A
human memory T cell subset with stem cell-like properties. Nat Med.
17:1290–1297. 2011. View Article : Google Scholar
|
|
56
|
Luckey CJ, Bhattacharya D, Goldrath AW,
Weissman IL, Benoist C and Mathis D: Memory T and memory B cells
share a transcriptional program of self-renewal with long-term
hematopoietic stem cells. Proc Natl Acad Sci USA. 103:3304–3309.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gattinoni L, Speiser DE, Lichterfeld M and
Bonini C: T memory stem cells in health and disease. Nat Med.
23:18–27. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Akondy RS, Fitch M, Edupuganti S, Yang S,
Kissick HT, Li KW, Youngblood BA, Abdelsamed HA, McGuire DJ, Cohen
KW, et al: Origin and differentiation of human memory CD8 T cells
after vaccination. Nature. 552:362–367. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wolchok JD, Kluger H, Callahan MK, Postow
MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K,
et al: Nivolumab plus ipilimumab in advanced melanoma. N Engl J
Med. 369:122–133. 2013. View Article : Google Scholar
|
|
60
|
Fehrenbacher L, Spira A, Ballinger M,
Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D,
Artal-Cortes A, Lewanski C, et al POPLAR Study Group: Atezolizumab
versus docetaxel for patients with previously treated
non-small-cell lung cancer (POPLAR): A multicentre, open-label,
phase 2 randomised controlled trial. Lancet. 387:1837–1846. 2016.
View Article : Google Scholar
|
|
61
|
Allison JP: Checkpoints. Cell.
162:1202–1205. 2015. View Article : Google Scholar
|
|
62
|
Oiseth SJ and Aziz MS: Cancer
immunotherapy: A brief review of the history, possibilities, and
challenges ahead. J Cancer Metastasis Treat. 3:250–261. 2017.
View Article : Google Scholar
|
|
63
|
Chamoto K, Al-Habsi M and Honjo T: Role of
PD-1 in immunity and diseases. Curr Top Microbiol Immunol.
410:75–97. 2017.PubMed/NCBI
|
|
64
|
Kumar P, Bhattacharya P and Prabhakar BS:
A comprehensive review on the role of co-signaling receptors and
Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun.
Aug 30–2018.Epub ahead of print. View Article : Google Scholar
|
|
65
|
Schirrmacher V, Beckhove P, Krüger A,
Rocha M, Umansky V, Fichtner K, Hull W, Zangemeisterwittke U,
Griesbach A, Jurianz K, et al: Effective immune rejection of
advanced metastasized cancer. Int J Oncol. 6:505–521.
1995.PubMed/NCBI
|
|
66
|
Schirrmacher V, Beckhove P, Choi C,
Griesbach A and Mahnke Y: Tumor-immune memory T cells from the bone
marrow exert GvL without GvH reactivity in advanced metastasized
cancer. Int J Oncol. 27:1141–1149. 2005.PubMed/NCBI
|
|
67
|
Schirrmacher V: Complete remission of
cancer in late-stage disease by radiation and transfer of
allogeneic MHC-matched immune T cells: Lessons from GvL studies in
animals. Cancer Immunol Immunother. 63:535–543. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Feuerer M, Beckhove P, Garbi N, Mahnke Y,
Limmer A, Hommel M, Hämmerling GJ, Kyewski B, Hamann A, Umansky V,
et al: Bone marrow as a priming site for T-cell responses to
blood-borne antigen. Nat Med. 9:1151–1157. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Schirrmacher V, Feuerer M, Fournier P,
Ahlert T, Umansky V and Beckhove P: T-cell priming in bone marrow:
The potential for long-lasting protective anti-tumor immunity.
Trends Mol Med. 9:526–534. 2003. View Article : Google Scholar
|
|
70
|
Newick K, O’Brien S, Moon E and Albelda
SM: CAR T cell therapy of solid tumors. Annu Rev Med. 68:139–152.
2017. View Article : Google Scholar
|
|
71
|
Chmielewski M, Hombach AA and Abken H: Of
CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered
with an inducible cytokine to modulate the tumor stroma. Immunol
Rev. 257:83–90. 2014. View Article : Google Scholar
|
|
72
|
Ahlert T, Sauerbrei W, Bastert G, Ruhland
S, Bartik B, Simiantonaki N, Schumacher J, Häcker B, Schumacher M
and Schirrmacher V: Tumor-cell number and viability as quality and
efficacy parameters of autologous virus-modified cancer vaccines in
patients with breast or ovarian cancer. J Clin Oncol. 15:1354–1366.
1997. View Article : Google Scholar
|
|
73
|
Schirrmacher V: Fifty years of clinical
application of Newcastle disease virus: Time to celebrate.
Biomedicines. 4:E162016. View Article : Google Scholar
|
|
74
|
Ch’ng WC, Stanbridge EJ, Yusoff K and
Shafee N: The oncolytic activity of Newcastle disease virus in
clear cell carcinoma cells in normoxic and hypoxic conditions: The
interplay between VHL and interferon beta signaling. J Interferon
Cytokine Res. 33:346–354. 2013. View Article : Google Scholar
|
|
75
|
Schirrmacher V: Oncolytic Newcastle
disease virus as a prospective anti-cancer therapy. A biological
agent with potential to break therapy resistance. Exp Opon Biol
Ther. 15:1–15. 2015.
|
|
76
|
Steiner HH, Bonsanto MM, Beckhove P,
Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie
G, Matejic D, et al: Antitumor vaccination of patients with
glioblastoma multiforme: A pilot study to assess feasibility,
safety, and clinical benefit. J Clin Oncol. 22:4272–4281. 2004.
View Article : Google Scholar
|
|
77
|
Schulze T, Kemmner W, Weitz J, Wernecke
KD, Schirrmacher V and Schlag PM: Efficiency of adjuvant active
specific immunization with Newcastle disease virus modified tumor
cells in colorectal cancer patients following resection of liver
metastases: Results of a prospective randomized trial. Cancer
Immunol Immunother. 58:61–69. 2009. View Article : Google Scholar
|
|
78
|
Schirrmacher V, Fournier P and Schlag P:
Autologous tumor cell vaccines for post-operative active-specific
immunotherapy of colorectal carcinoma: Long-term patient survival
and mechanism of function. Expert Rev Vaccines. 13:117–130. 2014.
View Article : Google Scholar
|
|
79
|
Schirrmacher V, Lorenzen D, Van Gool SW
and Stuecker W: A new strategy of cancer immunotherapy combining
hyper-thermia/oncolytic virus pretreatment with specific autologous
anti-tumor vaccination - A review. Austin Oncol Case Rep.
2:10062017.
|
|
80
|
Yagawa Y, Tanigawa K, Kobayashi Y and
Yamamoto M: Cancer immunity and therapy using hyperthermia with
immunotherapy, radiotherapy, chemotherapy, and surgery. J Cancer
Metastasis Treat. 3:218–230. 2017. View Article : Google Scholar
|
|
81
|
Desjardins A, Gromeier M, Herndon JE,
Beaubier N II, Bolognesi DP, Friedman AH, Friedman HS, McSherry F,
Muscat AM, Nair S, et al: Recurrent glioblastoma treated with
recombinant poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar :
|
|
82
|
VanGool SW, Makalowsky J, Feyen O, Prix L,
Schirrmacher V and Stuecker W: The induction of immunogenic cell
death (ICD) during maintenance chemotherapy and subsequent
multimodal immunotherapy for glioblastoma (GBM). Austin Oncol Case
Rep. 3:10102018.
|
|
83
|
Watanabe D and Goshima F: Oncolytic
Virotherapy by HSV. Adv Exp Med Biol. 1045:63–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Russell SJ: RNA viruses as virotherapy
agents. Cancer Gene Ther. 9:961–966. 2002. View Article : Google Scholar
|
|
85
|
Cassel WA and Garrett RE: Newcastle
disease virus as an anti-neoplastic agent. Cancer. 18:863–868.
1965. View Article : Google Scholar
|
|
86
|
Kroemer G, Galluzzi L, Kepp O and Zitvogel
L: Immunogenic cell death in cancer therapy. Annu Rev Immunol.
31:51–72. 2013. View Article : Google Scholar
|
|
87
|
Koks CA, Garg AD, Ehrhardt M, Riva M,
Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N and
Van Gool SW: Newcastle disease virotherapy induces long-term
survival and tumor-specific immune memory in orthotopic glioma
through the induction of immunogenic cell death. Int J Cancer.
136:E313–E325. 2015. View Article : Google Scholar
|
|
88
|
Jarahian M, Watzl C, Fournier P, Arnold A,
Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V and
Momburg F: Activation of natural killer cells by newcastle disease
virus hemagglutinin-neuraminidase. J Virol. 83:8108–8121. 2009.
View Article : Google Scholar
|
|
89
|
Zamarin D, Holmgaard RB, Subudhi SK, Park
JS, Mansour M, Palese P, Merghoub T, Wolchok JD and Allison JP:
Localized oncolytic virotherapy overcomes systemic tumor resistance
to immune checkpoint blockade immunotherapy. Sci Transl Med.
6:226ra322014. View Article : Google Scholar
|
|
90
|
Sampath P, Li J, Hou W, Chen H, Bartlett
DL and Thorne SH: Crosstalk between immune cell and oncolytic
vaccinia therapy enhances tumor trafficking and antitumor effects.
Mol Ther. 21:620–628. 2013. View Article : Google Scholar
|
|
91
|
Fournier P and Schirrmacher V: Bispecific
antibodies and trispecific immunocytokines for targeting the immune
system against cancer: Preparing for the future. BioDrugs.
27:35–53. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ribas A, Dummer R, Puzanov I, VanderWalde
A, Andtbacka RH, Michielin O, Olszanski AJ, Malvehy J, Cebon J,
Fernandez E, et al: Oncolytic virotherapy promotes intratumoral T
cell infiltration and improves anti-PD1 immunotherapy. Cell.
170:1109–1119.e10. 2017. View Article : Google Scholar
|
|
93
|
Harrington KJ, Puzanov I, Hecht JR, Hodi
FS, Szabo Z, Murugappan S and Kaufman HL: Clinical development of
talimogene laherparepvec (T-VEC): A modified herpes simplex virus
type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther.
15:1389–1403. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Stojdl DF, Lichty B, Knowles S, Marius R,
Atkins H, Sonenberg N and Bell JC: Exploiting tumor-specific
defects in the interferon pathway with a previously unknown
oncolytic virus. Nat Med. 6:821–825. 2000. View Article : Google Scholar
|
|
95
|
Fournier P, Wilden H and Schirrmacher V:
Importance of retinoic acid-inducible gene I and of receptor for
type I interferon for cellular resistance to infection by Newcastle
disease virus. Int J Oncol. 40:287–298. 2012.
|
|
96
|
Schirrmacher V: Signaling through RIG-I
and type I interferon receptor: Immune activation by Newcastle
disease virus in man versus immune evasion by Ebola virus (Review).
Int J Mol Med. 36:3–10. 2015. View Article : Google Scholar
|
|
97
|
Ivashkiv LB and Donlin LT: Regulation of
type I interferon responses. Nat Rev Immunol. 14:36–49. 2014.
View Article : Google Scholar :
|
|
98
|
Zaslavsky E, Hershberg U, Seto J, Pham AM,
Marquez S, Duke JL, Wetmur JG, Tenoever BR, Sealfon SC and
Kleinstein SH: Antiviral response dictated by choreographed cascade
of transcription factors. J Immunol. 184:2908–2917. 2010.
View Article : Google Scholar :
|
|
99
|
Tough DF: Type I interferon as a link
between innate and adaptive immunity through dendritic cell
stimulation. Leuk Lymphoma. 45:257–264. 2004. View Article : Google Scholar
|
|
100
|
Lattanzi L, Rozera C, Marescotti D,
D'Agostino G, Santodonato L, Cellini S, Belardelli F, Gavioli R and
Ferrantini M: IFN-α boosts epitope cross-presentation by dendritic
cells via modulation of proteasome activity. Immunobiology.
216:537–547. 2011. View Article : Google Scholar
|
|
101
|
Bommareddy PK, Shettigar M and Kaufman HL:
Integrating oncolytic viruses in combination cancer immunotherapy.
Nat Rev Immunol. 18:498–513. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Collins JM, Redman JM and Gulley JL:
Combining vaccines and immune checkpoint inhibitors to prime,
expand, and facilitate effective tumor immunotherapy. Expert Rev
Vaccines. 17:697–705. 2018. View Article : Google Scholar
|
|
103
|
van Willigen WW, Bloemendal M, Gerritsen
WR, Schreibelt G, de Vries IJ and Bol KF: Dendritic cell cancer
therapy: Vaccinating the right patient at the right time. Front
Immunol. 9:22652018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Abbas KA, Lichtman AH and Pillai S:
Cellular and Molecular Immunology. 6th Edition. Saunders Elsevier;
Oxford: pp. 2612010
|