|
1
|
Belov AA and Mohammadi M: Molecular
mechanisms of fibroblast growth factor signaling in physiology and
pathology. Cold Spring Harb Perspect Biol. 5:52013. View Article : Google Scholar
|
|
2
|
Böttcher RT and Niehrs C: Fibroblast
growth factor signaling during early vertebrate development. Endocr
Rev. 26:63–77. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Estienne A and Price CA: The fibroblast
growth factor 8 family in the female reproductive tract.
Reproduction. 155:R53–R62. 2018. View Article : Google Scholar
|
|
4
|
Liu R, Huang S, Lei Y, Zhang T, Wang K,
Liu B, Nice EC, Xiang R, Xie K, Li J, et al: FGF8 promotes
colorectal cancer growth and metastasis by activating YAP1.
Oncotarget. 6:935–952. 2015.
|
|
5
|
Mattila MM and Härkönen PL: Role of
fibroblast growth factor 8 in growth and progression of hormonal
cancer. Cytokine Growth Factor Rev. 18:257–266. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Katoh M and Katoh M: Comparative genomics
on FGF8, FGF17, and FGF18 orthologs. Int J Mol Med. 16:493–496.
2005.PubMed/NCBI
|
|
7
|
Gemel J, Gorry M, Ehrlich GD and MacArthur
CA: Structure and sequence of human FGF8. Genomics. 35:253–257.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hoshikawa M, Ohbayashi N, Yonamine A,
Konishi M, Ozaki K, Fukui S and Itoh N: Structure and expression of
a novel fibroblast growth factor, FGF-17, preferentially expressed
in the embryonic brain. Biochem Biophys Res Commun. 244:187–191.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Eswarakumar VP, Lax I and Schlessinger J:
Cellular signaling by fibroblast growth factor receptors. Cytokine
Growth Factor Rev. 16:139–149. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Popovici C, Roubin R, Coulier F and
Birnbaum D: An evolutionary history of the FGF superfamily.
BioEssays. 27:849–857. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Itoh N and Ornitz DM: Functional
evolutionary history of the mouse Fgf gene family. Dev Dyn.
237:18–27. 2008. View Article : Google Scholar
|
|
12
|
Beenken A and Mohammadi M: The FGF family:
Biology, pathophysiology and therapy. Nat Rev Drug Discov.
8:235–253. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang X, Ibrahimi OA, Olsen SK, Umemori H,
Mohammadi M and Ornitz DM: Receptor specificity of the fibroblast
growth factor family. The complete mammalian FGF family. J Biol
Chem. 281:15694–15700. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Olsen SK, Li JY, Bromleigh C, Eliseenkova
AV, Ibrahimi OA, Lao Z, Zhang F, Linhardt RJ, Joyner AL and
Mohammadi M: Structural basis by which alternative splicing
modulates the organizer activity of FGF8 in the brain. Genes Dev.
20:185–198. 2006. View Article : Google Scholar :
|
|
15
|
Cretekos CJ, Deng JM, Green ED and
Rasweiler JJ: Isolation, genomic structure and developmental
expression of Fgf8 in the short-tailed fruit bat, Carollia
perspicillata. Int J Dev Biol. 51:333–338. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Crossley PH and Martin GR: The mouse Fgf8
gene encodes a family of polypeptides and is expressed in regions
that direct outgrowth and patterning in the developing embryo.
Development. 121:439–451. 1995.PubMed/NCBI
|
|
17
|
Xu J, Lawshe A, MacArthur CA and Ornitz
DM: Genomic structure, mapping, activity and expression of
fibroblast growth factor 17. Mech Dev. 83:165–178. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Haque T, Nakada S and Hamdy RC: A review
of FGF18: Its expression, signaling pathways and possible functions
during embryogenesis and post-natal development. Histol
Histopathol. 22:97–105. 2007.
|
|
19
|
Goetz R and Mohammadi M: Exploring
mechanisms of FGF signalling through the lens of structural
biology. Nat Rev Mol Cell Biol. 14:166–180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kouhara H, Hadari YR, Spivak-Kroizman T,
Schilling J, Bar-Sagi D, Lax I and Schlessinger J: A lipid-anchored
Grb2-binding protein that links FGF-receptor activation to the
Ras/MAPK signaling pathway. Cell. 89:693–702. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sternberg PW and Alberola-Ila J:
Conspiracy theory: RAS and RAF do not act alone. Cell. 95:447–450.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Thisse B and Thisse C: Functions and
regulations of fibroblast growth factor signaling during embryonic
development. Dev Biol. 287:390–402. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Turner N and Grose R: Fibroblast growth
factor signalling: From development to cancer. Nat Rev Cancer.
10:116–129. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Haugsten EM, Wiedlocha A, Olsnes S and
Wesche J: Roles of fibroblast growth factor receptors in
carcinogenesis. Mol Cancer Res. 8:1439–1452. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jin YR, Turcotte TJ, Crocker AL, Han XH
and Yoon JK: The canonical Wnt signaling activator, R-spondin2,
regulates cranio-facial patterning and morphogenesis within the
branchial arch through ectodermal-mesenchymal interaction. Dev
Biol. 352:1–13. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xu J, Liu H, Lan Y, Aronow BJ,
Kalinichenko VV and Jiang R: A Shh-Foxf-Fgf18-Shh molecular circuit
regulating palate development. PLoS Genet. 12:e10057692016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Laestander C and Engström W: Role of
fibroblast growth factors in elicitation of cell responses. Cell
Prolif. 47:3–11. 2014. View Article : Google Scholar
|
|
28
|
Jaskoll T, Witcher D, Toreno L, Bringas P,
Moon AM and Melnick M: FGF8 dose-dependent regulation of embryonic
submandibular salivary gland morphogenesis. Dev Biol. 268:457–469.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cormier S, Leroy C, Delezoide AL and Silve
C: Expression of fibroblast growth factors 18 and 23 during human
embryonic and fetal development. Gene Expr Patterns. 5:569–573.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Itoh N and Ornitz DM: Fibroblast growth
factors: From molecular evolution to roles in development,
metabolism and disease. J Biochem. 149:121–130. 2011. View Article : Google Scholar :
|
|
31
|
Nie X, Luukko K and Kettunen P: FGF
signalling in craniofacial development and developmental disorders.
Oral Dis. 12:102–111. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Trumpp A, Depew MJ, Rubenstein JL, Bishop
JM and Martin GR: Cre-mediated gene inactivation demonstrates that
FGF8 is required for cell survival and patterning of the first
branchial arch. Genes Dev. 13:3136–3148. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Haworth KE, Wilson JM, Grevellec A,
Cobourne MT, Healy C, Helms JA, Sharpe PT and Tucker AS: Sonic
hedgehog in the pharyngeal endoderm controls arch pattern via
regulation of Fgf8 in head ectoderm. Dev Biol. 303:244–258. 2007.
View Article : Google Scholar
|
|
34
|
Schmotzer CL and Shehata BM: Two cases of
agnathia (otocephaly): With review of the role of fibroblast growth
factor (FGF8) and bone morphogenetic protein (BMP4) in patterning
of the first branchial arch. Pediatr Dev Pathol. 11:321–324. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Du W, Prochazka J, Prochazkova M and Klein
OD: Expression of FGFs during early mouse tongue development. Gene
Expr Patterns. 20:81–87. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Swarup N, Nayak MT, Chowdhary Z,
Mehendiratta M, Khatana S, Choi SJ and Sagolsem C: Evaluation and
immunolocalization of BMP4 and FGF8 in odontogenic cyst and tumors.
Anal Cell Pathol. 2018:12045492018. View Article : Google Scholar
|
|
37
|
Li CY, Prochazka J, Goodwin AF and Klein
OD: Fibroblast growth factor signaling in mammalian tooth
development. Odontology. 102:1–13. 2014. View Article : Google Scholar
|
|
38
|
Jernvall J and Thesleff I: Reiterative
signaling and patterning during mammalian tooth morphogenesis. Mech
Dev. 92:19–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Baba O, Ota MS, Terashima T, Tabata MJ and
Takano Y: Expression of transcripts for fibroblast growth factor 18
and its possible receptors during postnatal dentin formation in rat
molars. Odontology. 103:136–142. 2015. View Article : Google Scholar
|
|
40
|
St Amand TR, Zhang Y, Semina EV, Zhao X,
Hu Y, Nguyen L, Murray JC and Chen Y: Antagonistic signals between
BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse
tooth-forming anlage. Dev Biol. 217:323–332. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mucchielli ML, Mitsiadis TA, Raffo S,
Brunet JF, Proust JP and Goridis C: Mouse Otlx2/RIEG expression in
the odontogenic epithelium precedes tooth initiation and requires
mesenchyme-derived signals for its maintenance. Dev Biol.
189:275–284. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tucker AS, Matthews KL and Sharpe PT:
Transformation of tooth type induced by inhibition of BMP
signaling. Science. 282:1136–1138. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lu MF, Pressman C, Dyer R, Johnson RL and
Martin JF: Function of Rieger syndrome gene in left-right asymmetry
and craniofacial development. Nature. 401:276–278. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lin CR, Kioussi C, O'Connell S, Briata P,
Szeto D, Liu F, Izpisúa-Belmonte JC and Rosenfeld MG: Pitx2
regulates lung asymmetry, cardiac positioning and pituitary and
tooth morphogenesis. Nature. 401:279–282. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tsikandelova R, Mladenov P, Planchon S,
Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V,
Renaut J and Ishkitiev N: Proteome response of dental pulp cells to
exogenous FGF8. J Proteomics. 183:14–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shao M, Liu C, Song Y, Ye W, He W, Yuan G,
Gu S, Lin C, Ma L, Zhang Y, et al: FGF8 signaling sustains
progenitor status and multipotency of cranial neural crest-derived
mesenchymal cells in vivo and in vitro. J Mol Cell Biol. 7:441–454.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lin D, Huang Y, He F, Gu S, Zhang G, Chen
Y and Zhang Y: Expression survey of genes critical for tooth
development in the human embryonic tooth germ. Dev Dyn.
236:1307–1312. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Porntaveetus T, Otsuka-Tanaka Y, Basson
MA, Moon AM, Sharpe PT and Ohazama A: Expression of fibroblast
growth factors (Fgfs) in murine tooth development. J Anat.
218:534–543. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Agarwal A, Gundappa M, Miglani S and Nagar
R: Asyndromic hypodontia associated with tooth morphology
alteration: A rare case report. J Conserv Dent. 16:269–271. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Neubüser A, Peters H, Balling R and Martin
GR: Antagonistic interactions between FGF and BMP signaling
pathways: A mechanism for positioning the sites of tooth formation.
Cell. 90:247–255. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tucker AS, Yamada G, Grigoriou M, Pachnis
V and Sharpe PT: Fgf-8 determines rostral-caudal polarity in the
first branchial arch. Development. 126:51–61. 1999.
|
|
52
|
Bae JM, Clarke JC, Rashid H, Adhami MD,
McCullough K, Scott JS, Chen H, Sinha KM, de Crombrugghe B and
Javed A: Specificity protein 7 is required for proliferation and
differentiation of ameloblasts and odontoblasts. J Bone Miner Res.
33:1126–1140. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jung HS, Oropeza V and Thesleff I: Shh,
Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and
patterning of mouse tongue papillae. Mech Dev. 81:179–182. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Paulson RB, Hayes TG and Sucheston ME:
Scanning electron microscope study of tongue development in the
CD-1 mouse fetus. J Craniofac Genet Dev Biol. 5:59–73.
1985.PubMed/NCBI
|
|
55
|
Nagata J and Yamane A: Progress of cell
proliferation in striated muscle tissues during development of the
mouse tongue. J Dent Res. 83:926–929. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nie X: Apoptosis, proliferation and gene
expression patterns in mouse developing tongue. Anat Embryol
(Berl). 210:125–132. 2005. View Article : Google Scholar
|
|
57
|
Liu Z, Xu J, Colvin JS and Ornitz DM:
Coordination of chondrogenesis and osteogenesis by fibroblast
growth factor 18. Genes Dev. 16:859–869. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ohbayashi N, Shibayama M, Kurotaki Y,
Imanishi M, Fujimori T, Itoh N and Takada S: FGF18 is required for
normal cell proliferation and differentiation during osteogenesis
and chondrogenesis. Genes Dev. 16:870–879. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ellsworth JL, Berry J, Bukowski T, Claus
J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond
F, et al: Fibroblast growth factor-18 is a trophic factor for
mature chondrocytes and their progenitors. Osteoarthritis
Cartilage. 10:308–320. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
MacArthur CA, Lawshé A, Xu J,
Santos-Ocampo S, Heikinheimo M, Chellaiah AT and Ornitz DM: FGF-8
isoforms activate receptor splice forms that are expressed in
mesenchymal regions of mouse development. Development.
121:3603–3613. 1995.PubMed/NCBI
|
|
61
|
Jaskoll T and Melnick M: Embryonic
salivary gland branching morphogenesis. Branching Morphogenesis.
Springer; Boston, MA: pp. 160–175. 2011
|
|
62
|
Kang Y and Massagué J:
Epithelial-mesenchymal transitions: Twist in development and
metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tanaka A, Furuya A, Yamasaki M, Hanai N,
Kuriki K, Kamiakito T, Kobayashi Y, Yoshida H, Koike M and Fukayama
M: High frequency of fibroblast growth factor (FGF) 8 expression in
clinical prostate cancers and breast tissues, immunohistochemically
demonstrated by a newly established neutralizing monoclonal
antibody against FGF 8. Cancer Res. 58:2053–2056. 1998.PubMed/NCBI
|
|
64
|
Ishibe T, Nakayama T, Okamoto T, Aoyama T,
Nishijo K, Shibata KR, Shima Y, Nagayama S, Katagiri T, Nakamura Y,
et al: Disruption of fibroblast growth factor signal pathway
inhibits the growth of synovial sarcomas: Potential application of
signal inhibitors to molecular target therapy. Clin Cancer Res.
11:2702–2712. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Weng M and Chen Z, Xiao Q, Li R and Chen
Z: A review of FGF signaling in palate development. Biomed
Pharmacother. 103:240–247. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Goudy S, Law A, Sanchez G, Baldwin HS and
Brown C: Tbx1 is necessary for palatal elongation and elevation.
Mech Dev. 127:292–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Riley BM, Mansilla MA, Ma J, Daack-Hirsch
S, Maher BS, Raffensperger LM, Russo ET, Vieira AR, Dodé C,
Mohammadi M, et al: Impaired FGF signaling contributes to cleft lip
and palate. Proc Natl Acad Sci USA. 104:4512–4517. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Arnold JS, Werling U, Braunstein EM, Liao
J, Nowotschin S, Edelmann W, Hebert JM and Morrow BE: Inactivation
of Tbx1 in the pharyngeal endoderm results in 22q11DS
malformations. Development. 133:977–987. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Juriloff DM and Harris MJ: Mouse genetic
models of cleft lip with or without cleft palate. Birth Defects Res
A Clin Mol Teratol. 82:63–77. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kasberg AD, Brunskill EW and Potter SS:
SP8 regulates signaling centers during craniofacial development.
Dev Biol. 381:312–323. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rice R, Connor E and Rice DP: Expression
patterns of Hedgehog signalling pathway members during mouse palate
development. Gene Expr Patterns. 6:206–212. 2006. View Article : Google Scholar
|
|
72
|
Taneyhill LA, Hoover-Fong J, Lozanoff S,
Marcucio R, Richtsmeier JT and Trainor PA: The society for
craniofacial genetics and developmental biology 38th annual
meeting. Am J Med Genet A. 170:1732–1753. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tabler JM, Barrell WB, Szabo-Rogers HL,
Healy C, Yeung Y, Perdiguero EG, Schulz C, Yannakoudakis BZ,
Mesbahi A, Wlodarczyk B, et al: Fuz mutant mice reveal shared
mechanisms between ciliopathies and FGF-related syndromes. Dev
Cell. 25:623–635. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gray RS, Abitua PB, Wlodarczyk BJ,
Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM,
Wallingford JB, et al: The planar cell polarity effector Fuz is
essential for targeted membrane trafficking, ciliogenesis and mouse
embryonic development. Nat Cell Biol. 11:1225–1232. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ferrante MI, Zullo A, Barra A, Bimonte S,
Messaddeq N, Studer M, Dollé P and Franco B: Oral-facial-digital
type I protein is required for primary cilia formation and
left-right axis specification. Nat Genet. 38:112–117. 2006.
View Article : Google Scholar
|
|
76
|
Stottmann RW, Anderson RM and Klingensmith
J: The BMP antagonists Chordin and Noggin have essential but
redundant roles in mouse mandibular outgrowth. Dev Biol.
240:457–473. 2001. View Article : Google Scholar
|
|
77
|
Liu W, Selever J, Murali D, Sun X, Brugger
SM, Ma L, Schwartz RJ, Maxson R, Furuta Y and Martin JF:
Threshold-specific requirements for Bmp4 in mandibular development.
Dev Biol. 283:282–293. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mackenzie BA, Wolff R, Lowe N, Billington
CJ Jr, Peterson A, Schmidt B, Graf D, Mina M, Gopalakrishnan R and
Petryk A: Twisted gastrulation limits apoptosis in the distal
region of the mandibular arch in mice. Dev Biol. 328:13–23. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kumamoto H: Molecular pathology of
odontogenic tumors. Oral Pathol Med. 35:65–74. 2006. View Article : Google Scholar
|
|
80
|
El-Naggar AK, Chan J, Takata T, Grandis JR
and Slootweg PJ: The fourth edition of the head and neck World
Health Organization blue book: Editors' perspectives. Hum Pathol.
66:10–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kallioniemi A: Bone morphogenetic protein
4-a fascinating regulator of cancer cell behavior. Cancer Genet.
205:267–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hallor K, Sciot RJ, Staaf J, Heidenblad M,
Rydholm A, Bauer HC, Aström K, Domanski HA, Meis JM, Kindblom LG,
et al: Two genetic pathways, t (1;10) and amplification of 3p11-12,
in myxoinflammatory fibroblastic sarcoma, haemosiderotic
fibrolipomatous tumour, and morphologically similar lesions. J
Pathol. 217:716–727. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xie X, Wang Z, Chen F, Yuan Y, Wang J, Liu
R and Chen Q: Roles of FGFR in oral carcinogenesis. Cell Prolif.
49:261–269. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yuan Y, Xie X, Jiang Y, Wei Z, Wang P,
Chen F, Li X, Sun C, Zhao H, Zeng X, et al: LRP6 is identified as a
potential prognostic marker for oral squamous cell carcinoma via
MALDI-IMS. Cell Death Dis. 8:e3035. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bryja V, Andersson ER, Schambony A, Esner
M, Bryjová L, Biris KK, Hall AC, Kraft B, Cajanek L, Yamaguchi TP,
et al: The extracellular domain of Lrp5/6 inhibits noncanonical Wnt
signaling in vivo. Mol Biol Cell. 20:924–936. 2009. View Article : Google Scholar :
|
|
86
|
Canning CA, Lee L, Irving C, Mason I and
Jones CM: Sustained interactive Wnt and FGF signaling is required
to maintain isthmic identity. Dev Biol. 305:276–286. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Patel SA, Barnes A, Loftus N, Martin R,
Sloan P, Thakker N and Goodacre R: Imaging mass spectrometry using
chemical inkjet printing reveals differential protein expression in
human oral squamous cell carcinoma. Analyst. 134:301–307. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lemieux E, Cagnol S, Beaudry K, Carrier J
and Rivard N: Oncogenic KRAS signalling promotes the Wnt/β-catenin
pathway through LRP6 in colorectal cancer. Oncogene. 34:4914–4927.
2015. View Article : Google Scholar
|
|
89
|
Bryja V, Andersson ER, Schambony A, et al:
The extracellular domain of Lrp5/6 inhibits noncanonical Wnt
signaling in vivo. Mol Biol Cell. 20:924–936. 2009. View Article : Google Scholar :
|
|
90
|
Guo Y, Ren MS, Shang C, Zhu L and Zhong M:
MTSS1 gene regulated by miR-96 inhibits cell proliferation and
metastasis in tongue squamous cellular carcinoma Tca8113 cell line.
Int J Clin Exp Med. 8:15441–15449. 2015.PubMed/NCBI
|
|
91
|
Ceasar SA, Rajan V, Prykhozhij SV, Berman
JN and Ignacimuthu S: Insert, remove or replace: A highly advanced
genome editing system using CRISPR/Cas9. Biochim Biophys Acta.
1863:2333–2344. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Square T, Romášek M, Jandzik D, Cattell
MV, Klymkowsky M and Medeiros DM: CRISPR/Cas9-mediated mutagenesis
in the sea lamprey, Petromyzon marinus: a powerful tool for
understanding ancestral gene functions in vertebrates. Development.
142:4180–4187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Webber BL, Raghu S and Edwards OR:
Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or
global conservation threat. Proc Natl Acad Sci USA.
112:10565–10567. 2015. View Article : Google Scholar
|