You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, et al: MAGIC Trial Participants: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 355:11–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Marin JJ, Al-Abdulla R, Lozano E, Briz O, Bujanda L, Banales JM and Macias RI: Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer Agents Med Chem. 16:318–334. 2016. View Article : Google Scholar | |
|
Ruffell B and Coussens LM: Macrophages and therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Garrido M, Fonseca PJ, Vieitez JM, Frunza M and Lacave AJ: Challenges in first line chemotherapy and targeted therapy in advanced gastric cancer. Expert Rev Anticancer Ther. 14:887–900. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng T, Wang J, Chen X and Liu L: Role of microRNA in anticancer drug resistance. Int J Cancer. 126:2–10. 2010. View Article : Google Scholar | |
|
Dembinski JL and Krauss S: Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 26:611–623. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Saxena M, Stephens MA, Pathak H and Rangarajan A: Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2:e1792011. View Article : Google Scholar : PubMed/NCBI | |
|
Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I and Nieto MA: Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18:1131–1143. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP and Chouaib S: New insights into the role of EMT in tumor immune escape. Mol Oncol. 11:824–846. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M and Ortiz-Sánchez E: Cancer stem cell impact on clinical oncology. World J Stem Cells. 10:183–195. 2018. View Article : Google Scholar | |
|
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Catalano V, Di Franco S, Iovino F, Dieli F, Stassi G and Todaro M: CD133 as a target for colon cancer. Expert Opin Ther Targets. 16:259–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Abdullah LN and Chow EK: Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2:32013. View Article : Google Scholar : PubMed/NCBI | |
|
Eyre R, Harvey I, Stemke-Hale K, Lennard TW, Tyson-Capper A and Meeson AP: Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumour Biol. 35:9879–9892. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y and Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 15:4234–4241. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J: Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther. 160:145–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sahu A, Singhal U and Chinnaiyan AM: Long noncoding RNAs in cancer: From function to translation. Trends Cancer. 1:93–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q, Zhang RW, Sui PC, He HT and Ding L: Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol. 21:10956–10981. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ayers D and Vandesompele J: Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes (Basel). 8:82017. View Article : Google Scholar | |
|
Farazi TA, Hoell JI, Morozov P and Tuschl T: MicroRNAs in human cancer. Adv Exp Med Biol. 774:1–20. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Riquelme I, Letelier P, Riffo-Campos AL, Brebi P and Roa JC: Emerging role of miRNAs in the drug resistance of gastric cancer. Int J Mol Sci. 17:4242016. View Article : Google Scholar : PubMed/NCBI | |
|
Matuszcak C, Haier J, Hummel R and Lindner K: MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol. 20:13658–13666. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Geisler S and Coller J: RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 14:699–712. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Delás MJ and Hannon GJ: lncRNAs in development and disease: From functions to mechanisms. Open Biol. 7:72017. View Article : Google Scholar | |
|
Heery R, Finn SP, Cuffe S and Gray SG: Long non-coding RNAs: Key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel). 9. pp. 92017, View Article : Google Scholar | |
|
Yuan L, Xu B, Yuan P, Zhou J, Qin P, Han L, Chen G, Wang Z, Run Z, Zhao P, et al: Tumor-infiltrating CD4+ T cells in patients with gastric cancer. Cancer Cell Int. 17:1142017. View Article : Google Scholar | |
|
Wang LL, Zhang XH, Zhang X and Chu JK: MiR-30a increases cisplatin sensitivity of gastric cancer cells through suppressing epithelial-to-mesenchymal transition (EMT). Eur Rev Med Pharmacol Sci. 20:1733–1739. 2016.PubMed/NCBI | |
|
Archie V, Kauh J, Jones DV Jr, Cruz V, Karpeh MS Jr and Thomas CR Jr: Gastric cancer: Standards for the 21st century. Crit Rev Oncol Hematol. 57:123–131. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C and Gottesman MM: Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5:219–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XL, Shi HJ, Wang JP, Tang HS and Cui SZ: MiR-218 inhibits multidrug resistance (MDR) of gastric cancer cells by targeting Hedgehog/smoothened. Int J Clin Exp Pathol. 8:6397–6406. 2015.PubMed/NCBI | |
|
An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, Nie Y and Zhao Q: miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 6:e17662015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Lu Q and Cai X: MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 587:3069–3075. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kondo T, Wakayama T, Naiki T, Matsumoto K and Sugimoto K: Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science. 294:867–870. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Özeş AR, Miller DF, Özeş ON, Fang F, Liu Y, Matei D, Huang T and Nephew KP: NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 35:5350–5361. 2016. View Article : Google Scholar | |
|
Lin CT, Lyu YL, Xiao H, Lin WH and Whang-Peng J: Suppression of gene amplification and chromosomal DNA integration by the DNA mismatch repair system. Nucleic Acids Res. 29:3304–3310. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ferguson DO and Alt FW: DNA double strand break repair and chromosomal translocation: Lessons from animal models. Oncogene. 20:5572–5579. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S and Paz-Ares L: Current challenges in cancer treatment. Clin Ther. 38:1551–1566. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schlösser HA, Drebber U, Kloth M, Thelen M, Rothschild SI, Haase S, Garcia-Marquez M, Wennhold K, Berlth F, Urbanski A, et al: Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma. OncoImmunology. 5:e11007892015. View Article : Google Scholar | |
|
Jabbour E, Kantarjian H and Cortes J: Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: An evolving treatment paradigm. Clin Lymphoma Myeloma Leuk. 15:323–334. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Szakács G, Jakab K, Antal F and Sarkadi B: Diagnostics of multidrug resistance in cancer. Pathol Oncol Res. 4:251–257. 1998. View Article : Google Scholar | |
|
Tan B, Li Y, Zhao Q, Fan L and Wang D: ZNF139 increases multidrug resistance in gastric cancer cells by inhibiting miR-185. Biosci Rep. 38:382018. View Article : Google Scholar | |
|
Li Q, Wang JX, He YQ, Feng C, Zhang XJ, Sheng JQ and Li PF: MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis. 5:e11972014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XL, Shi HJ, Wang JP, Tang HS, Wu YB, Fang ZY, Cui SZ and Wang LT: MicroRNA-218 is upregulated in gastric cancer after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy and increases chemosensitivity to cisplatin. World J Gastroenterol. 20:11347–11355. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng JF, Ma XQ, Wang LP and Wang W: MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J Gastroenterol. 23:2337–2345. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Yang F, Gu S, Li Z and Xue M: MicroRNA-101 induces apoptosis in cisplatin-resistant gastric cancer cells by targeting VEGF-C. Mol Med Rep. 13:572–578. 2016. View Article : Google Scholar | |
|
Bao J, Xu Y, Wang Q, Zhang J, Li Z, Li D and Li J: miR-101 alleviates chemoresistance of gastric cancer cells by targeting ANXA2. Biomed Pharmacother. 92:1030–1037. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Z, Zou R, Zong D, Shi Y, Chen J, Huang J, Zhu J, Chen L, Bao X, Liu Y, et al: miR-495 sensitizes MDR cancer cells to the combination of doxorubicin and taxol by inhibiting MDR1 expression. J Cell Mol Med. 21:1929–1943. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Li Z, Liu H, Zhou D, Fu A and Zhang E: MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem Biophys Res Commun. 479:91–96. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li K, Zhou L, Sun Y, Li M, Zhou J, et al: miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene. 33:3267–3276. 2014. View Article : Google Scholar | |
|
Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, et al: The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 7:538–549. 2016. View Article : Google Scholar : | |
|
Du X, Liu B, Luan X, Cui Q and Li L: miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Exp Ther Med. 15:599–605. 2018.PubMed/NCBI | |
|
Li C, Zou J, Zheng G and Chu J: miR-30a decreases multidrug resistance (MDR) of gastric cancer cells. Med Sci Monit. 22:4509–4515. 2016. View Article : Google Scholar : | |
|
Teng R, Hu Y, Zhou J, Seifer B, Chen Y, Shen J and Wang L: Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part vi a microRNA-107. PLoS One. 10:e01437162015. View Article : Google Scholar | |
|
Kim H, Choi H and Lee SK: Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett. 356:733–742. 2015. View Article : Google Scholar | |
|
Wu Q, Yang Z, Xia L, Nie Y, Wu K, Shi Y and Fan D: Methylation of miR-129-5p-CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget. 5:11552–11563. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y and Zou X: Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci. 109:1044–1054. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Du Y, Zhu M, Zhou X, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, et al: miR-20a enhances cisplatin resistance of human gastric cancer cell line by targeting NFKBIB. Tumour Biol. 37:1261–1269. 2016. View Article : Google Scholar | |
|
Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, et al: miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol Med Rep. 14:1742–1750. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhang Z, Yu M, Li L, Du G, Xiao W and Yang H: Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int J Mol Sci. 14:16226–16239. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang PF, Sheng LL, Wang G, Tian M, Zhu LY, Zhang R, Zhang J and Zhu JS: miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget. 7:35284–35292. 2016.PubMed/NCBI | |
|
Fang Y, Shen H, Li H, Cao Y, Qin R, Long L, Zhu X, Xie C and Xu W: miR-106a confers cisplatin resistance by regulating PTEN/Akt pathway in gastric cancer cells. Acta Biochim Biophys Sin (Shanghai). 45:963–972. 2013. View Article : Google Scholar | |
|
Danza K, Silvestris N, Simone G, Signorile M, Saragoni L, Brunetti O, Monti M, Mazzotta A, De Summa S, Mangia A, et al: Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol Ther. 17:400–406. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Li Y, Tan BB, Fan LQ, Yang PG and Tian Y: HIF-1α induces multidrug resistance in gastric cancer cells by inducing miR-27a. PLoS One. 10:e01327462015. View Article : Google Scholar | |
|
Zhao X, Yang L and Hu J: Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res. 30:552011. View Article : Google Scholar : PubMed/NCBI | |
|
Huang D, Wang H, Liu R, Li H, Ge S, Bai M, Deng T, Yao G and Ba Y: miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J Cell Biochem. 115:549–556. 2014. View Article : Google Scholar | |
|
Zhou X, Jin W, Jia H, Yan J and Zhang G: MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. J Exp Clin Cancer Res. 34:282015. View Article : Google Scholar : PubMed/NCBI | |
|
Eto K, Iwatsuki M, Watanabe M, Ishimoto T, Ida S, Imamura Y, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, et al: The sensitivity of gastric cancer to trastuzumab is regulated by the miR-223/FBXW7 pathway. Int J Cancer. 136:1537–1545. 2015. View Article : Google Scholar | |
|
Yang SM, Huang C, Li XF, Yu MZ, He Y and Li J: miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology. 306:162–168. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin B, Liu Y and Wang H: Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem Biophys. 72:275–282. 2015. View Article : Google Scholar | |
|
Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, et al: The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 21:343–350. 2014. View Article : Google Scholar | |
|
Chen QN, Wei CC, Wang ZX and Sun M: Long non-coding RNAs in anti-cancer drug resistance. Oncotarget. 8:1925–1936. 2017. | |
|
Shang C, Sun L, Zhang J, Zhao B, Chen X, Xu H and Huang B: Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget. 8:15393–15398. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang D, Wu K, Zhao Q, Nie Y and Fan D: Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol. 34:3182–3193. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, He L, Li Y, Tan Y, Zhang F and Xu H: Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Biosci Biotechnol Biochem. 82:456–465. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C, Ende C, XiZhou L and Yanfan C: Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 16:1742017. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Q, Chen X and Zhi X: Long Non-Coding RNA (LncRNA) Urothelial Carcinoma Associated 1 (UCA1) Increases Multi-Drug Resistance of Gastric Cancer via Downregulating miR-27b. Med Sci Monit. 22:3506–3513. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shang C, Guo Y, Zhang J and Huang B: Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother Pharmacol. 77:1061–1067. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lan WG, Xu DH, Xu C, Ding CL, Ning FL, Zhou YL, Ma LB, Liu CM and Han X: Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep. 36:263–270. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Florea AM and Büsselberg D: Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 3. pp. 1351–1371. 2011, View Article : Google Scholar | |
|
Zhang Y, Xu W, Ni P, Li A, Zhou J and Xu S: MiR-99a and MiR-491 regulate cisplatin resistance in human gastric cancer cells by targeting CAPNS1. Int J Biol Sci. 12:1437–1447. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Yao J, Guo K, Huang H, Huai S, Ye R, Niu B, Ji T, Han W and Li J: The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget. 9:2105–2119. 2017. | |
|
Wang Z and Ji F: Downregulation of microRNA-17-5p inhibits drug resistance of gastric cancer cells partially through targeting p21. Oncol Lett. 15:4585–4591. 2018.PubMed/NCBI | |
|
Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, Jiang Z, Feng L, Wang X, Zhou J, et al: Enolase 1 stimulates glycolysis to promote chemore-sistance in gastric cancer. Oncotarget. 8:47691–47708. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C, Shan Z, Li C and Yang L: MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomed Pharmacother. 86:450–456. 2017. View Article : Google Scholar | |
|
Li B, Wang W, Li Z, Chen Z, Zhi X, Xu J, Li Q, Wang L, Huang X, Wang L, et al: MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett. 410:212–227. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ge X, Cui H, Zhou Y, Yin D, Feng Y, Xin Q, Xu X, Liu W, Liu S and Zhang Q: miR-320a modulates cell growth and chemosensitivity via regulating ADAM10 in gastric cancer. Mol Med Rep. 16:9664–9670. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Nie Y, Wang H and Lin Y: MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 576:828–833. 2016. View Article : Google Scholar | |
|
You HY, Xie XM, Zhang WJ, Zhu HL and Jiang FZ: Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In Vitro Cell Dev Biol Anim. 52:857–863. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Liang J, Liu YX, Wang Y, Yang XH, Luan BH, Zhang GL, Du J and Wu XH: miR-149 reverses cisplatin resistance of gastric cancer SGC7901/DDP cells by targeting FoxM1. Pharmazie. 71:640–643. 2016.PubMed/NCBI | |
|
Zhuang M, Shi Q, Zhang X, Ding Y, Shan L, Shan X, Qian J, Zhou X, Huang Z, Zhu W, et al: Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumour Biol. 36:2737–2745. 2015. View Article : Google Scholar | |
|
Wen L, Cheng F, Zhou Y and Yin C: MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi J Gastroenterol. 21:313–319. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Shan X, Zhou X, Qiu T, Zhu W, Ding Y, Shu Y and Liu P: miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2. Anticancer. Agents Med Chem. 14:884–891. 2014. View Article : Google Scholar | |
|
Wang T, Ge G, Ding Y, Zhou X, Huang Z, Zhu W, Shu Y and Liu P: MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin Med J (Engl). 127:2357–2362. 2014. | |
|
He J, Qi H, Chen F and Cao C: MicroRNA-25 contributes to cisplatin resistance in gastric cancer cells by inhibiting forkhead box O3a. Oncol Lett. 14:6097–6102. 2017.PubMed/NCBI | |
|
Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G and Ba Y: Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther. 26:774–783. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jia X, Li N, Peng C, Deng Y, Wang J, Deng M, Lu M, Yin J, Zheng G, Liu H, et al: miR-493 mediated DKK1 down-regulation confers proliferation, invasion and chemo-resistance in gastric cancer cells. Oncotarget. 7:7044–7054. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ge X, Liu X, Lin F, Li P, Liu K, Geng R, Dai C, Lin Y, Tang W, Wu Z, et al: MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 7:24466–24482. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen DD, Feng LC, Ye R, He YQ and Wang YD: miR-29b reduces cisplatin resistance of gastric cancer cell by targeting PI3K/Akt pathway. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 37:514–519. 2015.In Chinese. PubMed/NCBI | |
|
Zhou X, Su J, Zhu L and Zhang G: Helicobacter pylori modulates cisplatin sensitivity in gastric cancer by down-regulating miR-141 expression. Helicobacter. 19:174–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Guo X, Zhang D, Fan Y, Qin L, Dong S and Zhang L: Upregulated miR-132 in Lgr5+ gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol Carcinog. 56:2022–2034. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Xue X, Hong H, Qin M, Zhou J, Sun Q, Liang H and Gao L: Upregulation of microRNA-524-5p enhances the cisplatin sensitivity of gastric cancer cells by modulating proliferation and metastasis via targeting SOX9. Oncotarget. 8:574–582. 2017. | |
|
Zhang Z, Kong Y, Yang W, Ma F, Zhang Y, Ji S, Ma EM, Liu H, Chen Y and Hua Y: Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting MET. Oncol Rep. 36:2391–2397. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang T, Dong P, Li L, Ma X, Xu P, Zhu H, Wang Y, Yang B, Liu K, Liu J, et al: MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol Rep. 38:151–158. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chang L, Guo F, Wang Y, Lv Y, Huo B, Wang L and Liu W: MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol Oncol Res. 20:93–98. 2014. View Article : Google Scholar | |
|
Chen Y, Zuo J, Liu Y, Gao H and Liu W: Inhibitory effects of miRNA-200c on chemotherapy-resistance and cell proliferation of gastric cancer SGC7901/DDP cells. Chin J Cancer. 29:1006–1011. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng C, Qin Y, Zhi Q, Wang J and Qin C: Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/β-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol. 107:2620–2629. 2018. View Article : Google Scholar | |
|
Yan J, Dang Y, Liu S, Zhang Y and Zhang G: LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes. Tumour Biol. 37:16345–16355. 2016. View Article : Google Scholar | |
|
Zhou DD, Liu XF, Lu CW, Pant OP and Liu XD: Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer. Cell Prolif. 50:502017. View Article : Google Scholar | |
|
Zhang XW, Bu P, Liu L, Zhang XZ and Li J: Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 462:227–232. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Bo P, Liu L, Zhang X and Li J: Overexpression of long non-coding RNA GHET1 promotes the development of multidrug resistance in gastric cancer cells. Biomed Pharmacother. 92:580–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Chunyan Q, Zhou Y, He Q, Ma Y, Ga Y and Wang X: BCAR4 increase cisplatin resistance and predicted poor survival in gastric cancer patients. Eur Rev Med Pharmacol Sci. 21:4064–4070. 2017.PubMed/NCBI | |
|
Hang Q, Sun R, Jiang C and Li Y: Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anticancer Drugs. 26:632–640. 2015.PubMed/NCBI | |
|
Li Y, Lv S, Ning H, Li K, Zhou X, Xv H and Wen H: Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed Pharmacother. 108:1775–1782. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li LQ, Pan D, Chen Q, Zhang SW, Xie DY, Zheng XL and Chen H: Sensitization of gastric cancer cells to 5-FU by microRNA-204 through targeting the TGFBR2-mediated epithelial to mesenchymal transition. Cell Physiol Biochem. 47:1533–1545. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, Weng HW, Xie D and Ye S: Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer. 16:182017. View Article : Google Scholar : PubMed/NCBI | |
|
Korourian A, Roudi R, Shariftabrizi A and Madjd Z: MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MKN-45 gastric adenocarcinoma cells. Exp Biol Med (Maywood). 242:1842–1847. 2017. View Article : Google Scholar | |
|
Choi H and Lee SK: TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol. 162:369–377. 2017. View Article : Google Scholar | |
|
Xiong HL, Zhou SW, Sun AH, He Y, Li J and Yuan X: MicroRNA 197 reverses the drug resistance of fluorouracil induced SGC7901 cells by targeting mitogen activated protein kinase 1. Mol Med Rep. 12:5019–5025. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jian B, Li Z, Xiao D, He G, Bai L and Yang Q: Downregulation of microRNA-193-3p inhibits tumor proliferation migration and chemoresistance in human gastric cancer by regulating PTEN gene. Tumour Biol. 37:8941–8949. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Ye J, Wu D, Wu P, Chen Z, Chen J, Gao S and Huang J: LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC Cancer. 14:9322014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Qu X, Li C, Fan Y, Che X, Wang X, Cai Y, Hu X and Liu Y: miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumour Biol. 36:2277–2285. 2015. View Article : Google Scholar | |
|
Shen Q, Yao Q, Sun J, Feng L, Lu H, Ma Y, Liu L, Wang F, Li J, Yue Y, et al: Downregulation of histone deacetylase 1 by microRNA-520h contributes to the chemotherapeutic effect of doxorubicin. FEBS Lett. 588:184–191. 2014. View Article : Google Scholar | |
|
Chen J, Zhou C, Li J, Xiang X, Zhang L, Deng J and Xiong J: miR-21-5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int J Mol Med. 41:1855–1866. 2018.PubMed/NCBI | |
|
Zou J and Xu Y: MicroRNA-140 inhibits cell proliferation in gastric cancer cell line HGC-27 by suppressing SOX4. Med Sci Monit. 22:2243–2252. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Y, Ren F, Zhang W, Liu G, Yang D, Hu J, Feng K and Feng Y: Regulation of BGC-823 cell sensitivity to adriamycin via miRNA-135a-5p. Oncol Rep. 32:2549–2556. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Li T, Zhang B, Li H, Wu Q, Yang L, Nie Y, Wu K, Shi Y and Fan D: MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun. 434:688–694. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Lin Z, He Y, Pang X, Wang Y, Ponnusamy M, Ao X, Shan P, Tariq MA, Li P, et al: The long noncoding RNA D63785 regulates chemotherapy sensitivity in human gastric cancer by targeting miR-422a. Mol Ther Nucleic Acids. 12:405–419. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhao B, Chen X, Wang Z, Xu H and Huang B: Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric cancer. Pathol Oncol Res. 24:109–113. 2018. View Article : Google Scholar | |
|
Cao W, Wei W, Zhan Z, Xie D, Xie Y and Xiao Q: Regulation of drug resistance and metastasis of gastric cancer cells via the microRNA647-ANK2 axis. Int J Mol Med. 41:1958–1966. 2018.PubMed/NCBI | |
|
Cao W, Wei W, Zhan Z, Xie Y and Xiao Q: MiR-1284 modulates multidrug resistance of gastric cancer cells by targeting EIF4A1. Oncol Rep. 35:2583–2591. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, Shu Y and Liu P: miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol. 29:384–391. 2012. View Article : Google Scholar | |
|
Zhu W, Shan X, Wang T, Shu Y and Liu P: miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer. 127:2520–2529. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J and Fan D: miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J, Jiang B, Shu Y and Liu P: miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol. 69:723–731. 2012. View Article : Google Scholar | |
|
Yan LH, Chen ZN, Li-Li, Chen J, Wei WE, Mo XW, Qin YZ, Lin Y and Chen JS: miR-135a promotes gastric cancer progression and resistance to oxaliplatin. Oncotarget. 7:70699–70714. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Zheng Y, Han B and Dong X: Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother. 99:832–838. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yared JA and Tkaczuk KH: Update on taxane development: New analogs and new formulations. Drug Des Devel Ther. 6:371–384. 2012.PubMed/NCBI | |
|
Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P and Liu P: Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol. 71:1159–1171. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tian L, Zhao Z, Xie L and Zhu J: MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway. Oncotarget. 9:4886–4896. 2017. | |
|
Kang YK, Ryoo BY, Yoon S, Shen L, Lee J, Wei C, Zhou Y and Ryu MH: A Phase I study of cabazitaxel in patients with advanced gastric cancer who have failed prior chemotherapy (GASTANA). Cancer Chemother Pharmacol. 75:309–318. 2015. View Article : Google Scholar | |
|
Ju C, Wen Y, Zhang L, Wang Q, Xue L, Shen J and Zhang C: Neoadjuvant chemotherapy based on abraxane/human neutrophils cytopharmaceuticals with radiotherapy for gastric cancer. Small. 15:e18041912018. View Article : Google Scholar : PubMed/NCBI | |
|
Simón-Gracia L, Hunt H, Scodeller PD, Gaitzsch J, Braun GB, Willmore AM, Ruoslahti E, Battaglia G and Teesalu T: Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther. 15:670–679. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Harada K, Mizrak Kaya D, Shimodaira Y and Ajani JA: Global chemotherapy development for gastric cancer. Gastric Cancer. 20(Suppl 1): 92–101. 2017. View Article : Google Scholar | |
|
Venturutti L, Cordo Russo RI, Rivas MA, Mercogliano MF, Izzo F, Oakley RH, Pereyra MG, De Martino M, Proietti CJ, Yankilevich P, et al: MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene. 35:6189–6202. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Abril-Rodriguez G and Ribas A: SnapShot: Immune checkpoint inhibitors. Cancer Cell. 31:848–848.e841. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kamath SD, Kalyan A and Benson AB III: Pembrolizumab for the treatment of gastric cancer. Expert Rev Anticancer Ther. 18:1177–1187. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Smolle MA, Calin HN, Pichler M and Calin GA: Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 284:1952–1966. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Nduom EK, Kong LY, Hashimoto Y, Xu S, Gabrusiewicz K, Ling X, Huang N, Qiao W, Zhou S, et al: MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro Oncol. 18:639–648. 2016. View Article : Google Scholar : | |
|
Fujita Y, Yagishita S, Hagiwara K, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Tsuta K, Nokihara H, Tamura T, et al: The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther. 23:717–727. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bullock MD, Silva AM, Kanlikilicer-Unaldi P, Filant J, Rashed MH, Sood AK, Lopez-Berestein G and Calin GA: Exosomal non-coding RNAs: Diagnostic, prognostic and therapeutic applications in cancer. Noncoding RNA. 1:53–68. 2015.PubMed/NCBI | |
|
Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, et al: Characterization of the 13q14 tumor suppressor locus in CLL: Identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res. 61:6640–6648. 2001.PubMed/NCBI | |
|
Bader AG, Brown D and Winkler M: The promise of microRNA replacement therapy. Cancer Res. 70:7027–7030. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gandellini P, Profumo V, Folini M and Zaffaroni N: MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets. 15:265–279. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, Kootstra NA and Reesink HW: Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther. 43:102–113. 2016. View Article : Google Scholar | |
|
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Wang L, Wu Z, Sun R, Jin H, Ma J, Liu L, Ling R, Yi J, Wang L, et al: Three dysregulated microRNAs in serum as novel biomarkers for gastric cancer screening. Med Oncol. 31:2982014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O, Choi IJ, Munroe DJ and Green JE: miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics. 4:792011. View Article : Google Scholar : PubMed/NCBI | |
|
Dehghanzadeh R, Jadidi-Niaragh F, Gharibi T and Yousefi M: MicroRNA-induced drug resistance in gastric cancer. Biomed Pharmacother. 74:191–199. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baumann V and Winkler J: miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonu-cleotide agents. Future Med Chem. 6:1967–1984. 2014. View Article : Google Scholar | |
|
Boudreau RL, Martins I and Davidson BL: Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 17:169–175. 2009. View Article : Google Scholar | |
|
Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W and Howell SB: Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 4:1595–1604. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della Mina P, Menard S, et al: Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 227:658–667. 2012. View Article : Google Scholar | |
|
Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhu LP, Wang DD, Zhou SY, Yang SJ, Wang JY, Zhang Q, et al: Exosome: A novel mediator in drug resistance of cancer cells. Epigenomics. 10:1499–1509. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shuwen H, Qing Z, Yan Z and Xi Y: Competitive endogenous RNA in colorectal cancer: A systematic review. Gene. 645:157–162. 2018. View Article : Google Scholar | |
|
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al: Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 29:653–668. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Yang S, Wang H, Wang J, Zhang Q, Zhou S, He Y, Zhang H, Deng F, Xu H, et al: The progress of circular RNAs in various tumors. Am J Transl Res. 10:1571–1582. 2018.PubMed/NCBI | |
|
Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar : PubMed/NCBI |