|
1
|
Khurana S and Mills JC: The gastric mucosa
development and differentiation. Prog Mol Biol Transl Sci.
96:93–115. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dimaline R and Varro A: Attack and defence
in the gastric epithelium - a delicate balance. Exp Physiol.
92:591–601. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hoffmann W: Self-renewal of the gastric
ephitelium from stem and progenitor cells. Front Biosci.
S5:720–731. 2013. View
Article : Google Scholar
|
|
4
|
Mueller A, Merrell DS, Grimm J and Falkow
S: Profiling of microdissected gastric epithelial cells reveals a
cell type-specific response to Helicobacter pylori infection.
Gastroenterology. 127:1446–1462. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Silen W and Ito S: Mechanisms for rapid
re-epithelialization of the gastric mucosal surface. Annu Rev
Physiol. 47:217–229. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Menheniott TR, Kurklu B and Giraud AS:
Gastrokines: Stomach-specific proteins with putative homeostatic
and tumor suppressor roles. Am J Physiol Gastrointest Liver
Physiol. 304:G109–G121. 2013. View Article : Google Scholar
|
|
7
|
Rippa E, La Monica G, Allocca R, Romano
MF, De Palma M and Arcari P: Overexpression of gastrokine 1 in
gastric cancer cells induces Fas-mediated apoptosis. J Cell
Physiol. 226:2571–2578. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yoon JH, Choi YJ, Choi WS, Ashktorab H,
Smoot DT, Nam SW, Lee JY and Park WS: GKN1-miR-185-DNMT1 axis
suppresses gastric carcinogenesis through regulation of epigenetic
alteration and cell cycle. Clin Cancer Res. 19:4599–4610. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yoon JH, Cho ML, Choi YJ, Back JY, Park
MK, Lee SW, Choi BJ, Ashktorab H, Smoot DT, Nam SW, et al:
Gastrokine 1 regulates NF-κB signaling pathway and cytokine
expression in gastric cancers. J Cell Biochem. 114:1800–1809. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kim O, Yoon JH, Choi WS, Ashktorab H,
Smoot DT, Nam SW, Lee JY and Park WS: GKN2 contributes to the
homeostasis of gastric mucosa by inhibiting GKN1 activity. J Cell
Physiol. 229:762–771. 2014. View Article : Google Scholar
|
|
11
|
Yoon JH, Seo HS, Choi WS, Kim O, Nam SW,
Lee JY and Park WS: Gastrokine 1 induces senescence and apoptosis
through regulating telomere length in gastric cancer. Oncotarget.
5:11695–11708. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen P, Li YC and Toback FG: AMP-18
targets p21 to maintain epithelial homeostasis. PLoS One.
10:e01254902015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kim O, Yoon JH, Choi WS, Ashktorab H,
Smoot DT, Nam SW, Lee JY and Park WS: Gastrokine 1 inhibits
gastrin-induced cell proliferation. Gastric Cancer. 19:381–391.
2016. View Article : Google Scholar
|
|
14
|
Rippa E, Altieri F, Di Stadio CS, Miselli
G, Lamberti A, Federico A, Quagliariello V, Papale F, Guerra G and
Arcari P: Ectopic expression of gastrokine 1 in gastric cancer
cells up-regulates tight and adherens junction proteins network.
Pathol Res Pract. 211:577–583. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xing R, Cui JT, Xia N and Lu YY: GKN1
inhibits cell invasion in gastric cancer by inactivating the
NF-kappaB pathway. Discov Med. 19:65–71. 2015.PubMed/NCBI
|
|
16
|
Yoon JH, Choi WS, Kim O, Choi BJ, Nam SW,
Lee JY and Park WS: Gastrokine 1 inhibits gastric cancer cell
migration and invasion by downregulating RhoA expression. Gastric
Cancer. 20:274–285. 2017. View Article : Google Scholar
|
|
17
|
Nardone G, Martin G, Rocco A, Rippa E, La
Monica G, Caruso F and Arcari P: Molecular expression of Gastrokine
1 in normal mucosa and in Helicobacter pylori-related preneoplastic
and neoplastic gastric lesions. Cancer Biol Ther. 7:1890–1895.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
He QY, Cheung YH, Leung SY, Yuen ST, Chu
KM and Chiu JF: Diverse proteomic alterations in gastric
adenocarcinoma. Proteomics. 4:3276–3287. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Moss SF, Lee JW, Sabo E, Rubin AK, Rommel
J, Westley BR, May FE, Gao J, Meitner PA, Tavares R, et al:
Decreased expression of gastrokine 1 and the trefoil factor
interacting protein TFIZ1/GKN2 in gastric cancer: Influence of
tumor histology and relationship to prognosis. Clin Cancer Res.
14:4161–4167. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yoon JH, Song JH, Zhang C, Jin M, Kang YH,
Nam SW, Lee JY and Park WS: Inactivation of the Gastrokine 1 gene
in gastric adenomas and carcinomas. J Pathol. 223:618–625. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mao W, Chen J, Peng TL, Yin XF, Chen LZ
and Chen MH: Downregulation of gastrokine-1 in gastric cancer
tissues and restoration of its expression induced gastric cancer
cells to apoptosis. J Exp Clin Cancer Res. 31:49–58. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xiao JW, Chen JH, Ren MY, Tian XB and Wang
CS: Relationship between expression of gastrokine 1 and
clinicopathological characteristics in gastric cancer patients.
Asian Pac J Cancer Prev. 13:5897–5901. 2012. View Article : Google Scholar
|
|
23
|
Choi WS, Seo HS, Song KY, Yoon JH, Kim O,
Nam SW, Lee JY and Park WS: Gastrokine 1 expression in the human
gastric mucosa is closely associated with the degree of gastritis
and DNA methylation. J Gastric Cancer. 13:232–241. 2013. View Article : Google Scholar
|
|
24
|
Guo XY, Dong L, Qin B, Jiang J and Shi AM:
Decreased expression of gastrokine 1 in gastric mucosa of gastric
cancer patients. World J Gastroenterol. 20:16702–16706. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hasan AA, Igci M, Borazan E, Khailany RA,
Bayraktar E and Arslan A: Down-regulated gene expression of GKN1
and GKN2 as diagnostic markers for gastric cancer. WASET9. 532–535.
2015.
|
|
26
|
Altieri F, Di Stadio CS, Federico A,
Miselli G, De Palma M, Rippa E and Arcari P: Epigenetic alterations
of gastrokine 1 gene expression in gastric cancer. Oncotarget.
8:16899–16911. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang M, Jiang N, Cao QW, Ma MQ and Sun Q:
The E3 ligase UBR5 regulates gastric cancer cell growth by
destabilizing the tumor suppressor GKN1. Biochem Biophys Res
Commun. 478:1624–1629. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lu F, Wikramasinghe P, Norseen J, Tsai K,
Wang P, Showe L, Davuluri RV and Lieberman PM: Genome-wide analysis
of host-chromosome binding sites for Epstein-Barr virus nuclear
antigen 1 (EBNA1). Virol J. 7:2622010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lu F, Tempera I, Lee HT, Dewispelaere K
and Lieberman PM: EBNA1 binding and epigenetic regulation of
gastrokine tumor suppressor genes in gastric carcinoma cells. Virol
J. 11:122014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nardone G, Rippa E, Martin G, Rocco A,
Siciliano RA, Fiengo A, Cacace G, Malorni A, Budillon G and Arcari
P: Gastrokine 1 expression in patients with and without
Helicobacter pylori infection. Dig Liver Dis. 39:122–129. 2007.
View Article : Google Scholar
|
|
31
|
Matsushima K, Isomoto H, Inoue N, Nakayama
T, Hayashi T, Nakayama M, Nakao K, Hirayama T and Kohno S: MicroRNA
signatures in Helicobacter pylori-infected gastric mucosa. Int J
Cancer. 128:361–370. 2011. View Article : Google Scholar
|
|
32
|
Lario S, Ramírez-Lázaro MJ, Aransay AM,
Lozano JJ, Montserrat A, Casalots Á, Junquera F, Álvarez J, Segura
F, Campo R, et al: microRNA profiling in duodenal ulcer disease
caused by Helicobacter pylori infection in a Western population.
Clin Microbiol Infect. 18:E273–E282. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chang H, Kim N, Park JH, Nam RH, Choi YJ,
Lee HS, Yoon H, Shin CM, Park YS, Kim JM, et al: Different microRNA
expression levels in gastric cancer depending on Helicobacter
pylori infection. Gut Liver. 9:188–196. 2015. View Article : Google Scholar :
|
|
34
|
Zhu Y, Jiang Q, Lou X, Ji X, Wen Z, Wu J,
Tao H, Jiang T, He W, Wang C, et al: MicroRNAs up-regulated by CagA
of Helicobacter pylori induce intestinal metaplasia of gastric
epithelial cells. PLoS One. 7:e351472012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Santos JC, Brianti MT, Almeida VR, Ortega
MM, Fischer W, Haas R, Matheu A and Ribeiro ML: Helicobacter pylori
infection modulates the expression of miRNAs associated with DNA
mismatch repair pathway. Mol Carcinog. 56:1372–1379. 2017.
View Article : Google Scholar
|
|
36
|
Chung JW, Jeong SH, Lee SM, Pak JH, Lee
GH, Jeong JY and Kim JH: Expression of microRNA in host cells
infected with Helicobacter pylori. Gut Liver. 11:392–400. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sugihara H, Ishimoto T, Watanabe M,
Sawayama H, Iwatsuki M, Baba Y, Komohara Y, Takeya M and Baba H:
Identification of miR-30e* regulation of Bmi1 expression
mediated by tumor-associated macrophages in gastrointestinal
cancer. PLoS One. 8:e818392013. View Article : Google Scholar
|
|
38
|
Stumpfova Z, Hezova R, Meli AC, Slaby O
and Michalek J: MicroRNA profiling of activated and tolerogenic
human dendritic cells. Mediators Inflamm. 2014:259689–259699. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Teteloshvili N, Smigielska-Czepiel K,
Kroesen BJ, Brouwer E, Kluiver J, Boots AM and van den Berg A:
T-cell activation induces dynamic changes in miRNA expression
patterns in CD4 and CD8 T-cell subsets. MicroRNA. 4:117–122. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sánchez-Pulido L, Devos D and Valencia A:
BRICHOS: A conserved domain in proteins associated with dementia,
respiratory distress and cancer. Trends Biochem Sci. 27:329–332.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hedlund J, Johansson J and Persson B:
BRICHOS - a super-family of multidomain proteins with diverse
functions. BMC Res Notes. 2:180–189. 2009. View Article : Google Scholar
|
|
42
|
Pavone LM, Del Vecchio P, Mallardo P,
Altieri F, De Pasquale V, Rea S, Martucci NM, Di Stadio CS, Pucci
P, Flagiello A, et al: Structural characterization and biological
properties of human gastrokine 1. Mol Biosyst. 9:412–421. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yoon JH, Choi YJ, Choi WS, Nam SW, Lee JY
and Park WS: Functional analysis of the NH2-terminal hydrophobic
region and BRICHOS domain of GKN1. Biochem Biophys Res Commun.
440:689–695. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dokhaee F, Mazhari S, Galehdari M,
Bahadori Monfared A and Baghaei K: Evaluation of GKN1 and GKN2 gene
expression as a biomarker of gastric cancer. Gastroenterol Hepatol
Bed Bench. 11(Suppl 1): S140–S145. 2018.
|
|
45
|
Toback FG, Walsh-Reitz MM, Musch MW, Chang
EB, Del Valle J, Ren H, Huang E and Martin TE: Peptide fragments of
AMP-18, a novel secreted gastric antrum mucosal protein, are
mitogenic and motogenic. Am J Physiol Gastrointest Liver Physiol.
285:G344–G353. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xing R, Li W, Cui J, Zhang J, Kang B, Wang
Y, Wang Z, Liu S and Lu Y: Gastrokine 1 induces senescence through
p16/Rb pathway activation in gastric cancer cells. Gut. 61:43–52.
2012. View Article : Google Scholar
|
|
47
|
Conteduca V, Sansonno D, Lauletta G, Russi
S, Ingravallo G and Dammacco F: H. pylori infection and gastric
cancer: State of the art (review). Int J Oncol. 42:5–18. 2013.
View Article : Google Scholar
|
|
48
|
Yoon JH, Seo HS, Choi SS, Chae HS, Choi
WS, Kim O, Ashktorab H, Smoot DT, Nam SW, Lee JY, et al: Gastrokine
1 inhibits the carcinogenic potentials of Helicobacter pylori CagA.
Carcinogenesis. 35:2619–2629. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yoshikawa Y, Mukai H, Hino F, Asada K and
Kato I: Isolation of two novel genes, down-regulated in gastric
cancer. Jpn J Cancer Res. 91:459–463. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Shiozaki K, Nakamori S, Tsujie M, Okami J,
Yamamoto H, Nagano H, Dono K, Umeshita K, Sakon M, Furukawa H, et
al: Human stomach-specific gene, CA11, is down-regulated in gastric
cancer. Int J Oncol. 19:701–707. 2001.PubMed/NCBI
|
|
51
|
Oien KA, Vass JK, Downie I, Fullarton G
and Keith WN: Profiling, comparison and validation of gene
expression in gastric carcinoma and normal stomach. Oncogene.
22:4287–4300. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Oien KA, McGregor F, Butler S, Ferrier RK,
Downie I, Bryce S, Burns S and Keith WN: Gastrokine 1 is abundantly
and specifically expressed in superficial gastric epithelium,
down-regulated in gastric carcinoma, and shows high evolutionary
conservation. J Pathol. 203:789–797. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Koper-Lenkiewicz OM, Kamińska J, Gawrońska
B and Matowicka-Karna J: The role and diagnostic potential of
gastrokine 1 in gastric cancer. Cancer Manag Res. 11:1921–1931.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zamanian-Azodi M, Rezaei-Tavirani M,
Hasanzadeh H, Rahmati Rad S and Dalilan S: Introducing biomarker
panel in esophageal, gastric, and colon cancers; a proteomic
approach. Gastroenterol Hepatol Bed Bench. 8:6–18. 2015.PubMed/NCBI
|
|
55
|
Villano V, Di Stadio CS, Federico A,
Altieri F, Miselli G, De Palma M, Rippa E and Arcari P: Gastrokine
1 mRNA in human sera is not informative biomarker for gastric
cancer. J Negat Results Biomed. 15:142016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yoon JH, Ham IH, Kim O, Ashktorab H, Smoot
DT, Nam SW, Lee JY, Hur H and Park WS: Gastrokine 1 protein is a
potential theragnostic target for gastric cancer. Gastric Cancer.
21:956–967. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Noguchi T, Wirtz HC, Michaelis S, Gabbert
HE and Mueller W: Chromosomal imbalances in gastric cancer.
Correlation with histologic subtypes and tumor progression. Am J
Clin Pathol. 115:828–834. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Panani AD: Cytogenetic and molecular
aspects of gastric cancer: Clinical implications. Cancer Lett.
266:99–115. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Orphanides G and Reinberg D: A unified
theory of gene expression. Cell. 108:439–451. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jaenisch R and Bird A: Epigenetic
regulation of gene expression: How the genome integrates intrinsic
and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shilatifard A: Chromatin modifications by
methylation and ubiquitination: Implications in the regulation of
gene expression. Annu Rev Biochem. 75:243–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Catalanotto C, Cogoni C and Zardo G:
MicroRNA in control of gene expression: An overview of nuclear
functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar :
|
|
63
|
Levine M and Tjian R: Transcription
regulation and animal diversity. Nature. 424:147–151. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lambert SA, Jolma A, Campitelli LF, Das
PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT:
The human transcription factors. Cell. 175:598–599. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yoon JH, Choi WS, Kim O, Choi SS, Lee EK,
Nam SW, Lee JY and Park WS: NKX6.3 controls gastric differentiation
and tumorigenesis. Oncotarget. 6:28425–28439. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cartharius K, Frech K, Grote K, Klocke B,
Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M and Werner T:
MatInspector and beyond: Promoter analysis based on transcription
factor binding sites. Bioinformatics. 21:2933–2942. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Grabe N: AliBaba2: Context specific
identification of transcription factor binding sites. In Silico
Biol. 2:S1–S15. 2002.PubMed/NCBI
|
|
68
|
Ghosh D: Object-oriented transcription
factors database (ooTFD). Nucleic Acids Res. 28:308–310. 2000.
View Article : Google Scholar
|
|
69
|
Strowski MZ, Cramer T, Schäfer G, Jüttner
S, Walduck A, Schipani E, Kemmner W, Wessler S, Wunder C, Weber M,
et al: Helicobacter pylori stimulates host vascular endothelial
growth factor-A (vegf-A) gene expression via MEK/ERK-dependent
activation of Sp1 and Sp3. FASEB J. 18:218–220. 2004. View Article : Google Scholar
|
|
70
|
Mitsuno Y, Yoshida H, Maeda S, Ogura K,
Hirata Y, Kawabe T, Shiratori Y and Omata M: Helicobacter pylori
induced transactivation of SRE and AP-1 through the ERK signalling
pathway in gastric cancer cells. Gut. 49:18–22. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Han JC, Zhang KL, Chen XY, Jiang HF, Kong
QY, Sun Y, Wu ML, Huang L, Li H and Liu J: Expression of seven
gastric cancer-associated genes and its relevance for Wnt,
NF-kappaB and Stat3 signaling. APMIS. 115:1331–1343. 2007.
View Article : Google Scholar
|
|
72
|
Xiong H, Du W, Sun TT, Lin YW, Wang JL,
Hong J and Fang JY: A positive feedback loop between STAT3 and
cyclooxygenase-2 gene may contribute to Helicobacter
pylori-associated human gastric tumorigenesis. Int J Cancer.
134:2030–2040. 2014. View Article : Google Scholar
|
|
73
|
Hu TZ, Huang LH, Xu CX, Liu XM, Wang Y,
Xiao J, Zhou L, Luo L and Jiang XX: Expressional profiles of
transcription factors in the progression of Helicobacter
pylori-associated gastric carcinoma based on protein/DNA array
analysis. Med Oncol. 32:2652015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu X, Cao K, Xu C, Hu T, Zhou L, Cao D,
Xiao J, Luo L, Guo Y and Qi Y: GATA-3 augmentation down-regulates
Connexin43 in Helicobacter pylori associated gastric
carcinogenesis. Cancer Biol Ther. 16:987–996. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Qian J, Kong X, Deng N, Tan P, Chen H,
Wang J, Li Z, Hu Y, Zou W, Xu J, et al: OCT1 is a determinant of
synbindin-related ERK signalling with independent prognostic
significance in gastric cancer. Gut. 64:37–48. 2015. View Article : Google Scholar :
|
|
76
|
Xu G, Li K, Zhang N, Zhu B and Feng G:
Screening driving transcription factors in the processing of
gastric cancer. Gastroenterol Res Pract. 2016:84314802016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shakya A, Cooksey R, Cox JE, Wang V,
McClain DA and Tantin D: Oct1 loss of function induces a coordinate
metabolic shift that opposes tumorigenicity. Nat Cell Biol.
11:320–327. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kong Y, Ma LQ, Bai PS, Da R, Sun H, Qi XG,
Ma JQ, Zhao RM, Chen NZ and Nan KJ: Helicobacter pylori promotes
invasion and metastasis of gastric cancer cells through activation
of AP-1 and up-regulation of CACUL1. Int J Biochem Cell Biol.
45:2666–2678. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Regalo G, Resende C, Wen X, Gomes B,
Durães C, Seruca R, Carneiro F and Machado JC: C/EBP α expression
is associated with homeostasis of the gastric epithelium and with
gastric carcinogenesis. Lab Invest. 90:1132–1139. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jackson CB, Judd LM, Menheniott TR,
Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L and Giraud AS:
Augmented gp130-mediated cytokine signalling accompanies human
gastric cancer progression. J Pathol. 213:140–151. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
O'Reilly LA, Putoczki TL, Mielke LA, Low
JT, Lin A, Preaudet A, Herold MJ, Yaprianto K, Tai L, Kueh A, et
al: Loss of NF-κB1 causes gastric cancer with aberrant inflammation
and expression of immune checkpoint regulators in a STAT-1
dependent manner. Immunity. 48:570–583.e8. 2018. View Article : Google Scholar
|
|
82
|
Zhang J, Zhu ZG, Ji J, Yuan F, Yu YY, Liu
BY and Lin YZ: Transcription factor Sp1 expression in gastric
cancer and its relationship to long-term prognosis. World J
Gastroenterol. 11:2213–2217. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Jüttner S, Cramer T, Wessler S, Walduck A,
Gao F, Schmitz F, Wunder C, Weber M, Fischer SM, Schmidt WE, et al:
Helicobacter pylori stimulates host cyclooxygenase-2 gene
transcription: Critical importance of MEK/ERK-dependent activation
of USF1/-2 and CREB transcription factors. Cell Microbiol.
5:821–834. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lu H, Wu JY, Kudo T, Ohno T, Graham DY and
Yamaoka Y: Regulation of interleukin-6 promoter activation in
gastric epithelial cells infected with Helicobacter pylori. Mol
Biol Cell. 16:4954–4966. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bronte-Tinkew DM, Terebiznik M, Franco A,
Ang M, Ahn D, Mimuro H, Sasakawa C, Ropeleski MJ, Peek RM Jr and
Jones NL: Helicobacter pylori cytotoxin-associated gene A activates
the signal transducer and activator of transcription 3 pathway in
vitro and in vivo. Cancer Res. 69:632–639. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhao J, Dong Y, Kang W, Go MY, Tong JH, Ng
EK, Chiu PW, Cheng AS, To KF, Sung JJ, et al: Helicobacter
pylori-induced STAT3 activation and signalling network in gastric
cancer. Oncoscience. 1:468–475. 2014. View Article : Google Scholar
|
|
87
|
Piao JY, Lee HG, Kim SJ, Kim DH, Han HJ,
Ngo HK, Park SA, Woo JH, Lee JS, Na HK, et al: Helicobacter pylori
activates IL-6-STAT3 signaling in human gastric cancer cells:
Potential roles for reactive oxygen species. Helicobacter.
21:405–416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yokoyama K, Higashi H, Ishikawa S, Fujii
Y, Kondo S, Kato H, Azuma T, Wada A, Hirayama T, Aburatani H, et
al: Functional antagonism between Helicobacter pylori CagA and
vacuolating toxin VacA in control of the NFAT signaling pathway in
gastric epithelial cells. Proc Natl Acad Sci USA. 102:9661–9666.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen G, Tang N, Wang C, Xiao L, Yu M, Zhao
L, Cai H, Han L, Xie C and Zhang Y: TNF-α-inducing protein of
Helicobacter pylori induces epithelial-mesenchymal transition (EMT)
in gastric cancer cells through activation of IL-6/STAT3 signaling
pathway. Biochem Biophys Res Commun. 484:311–317. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mejías-Luque R, Peiró S, Vincent A, Van
Seuningen I and de Bolós C: IL-6 induces MUC4 expression through
gp130/STAT3 p athway in gastric cancer cell lines. Biochim Biophys
Acta. 1783:1728–1736. 2008. View Article : Google Scholar
|
|
91
|
Chang YJ, Wu MS, Lin JT and Chen CC:
Helicobacter pylori-Induced invasion and angiogenesis of gastric
cells is mediated by cyclooxy-genase-2 induction through TLR2/TLR9
and promoter regulation. J Immunol. 175:8242–8252. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee KS, Kalantzis A, Jackson CB, O'Connor
L, Murata-Kamiya N, Hatakeyama M, Judd LM, Giraud AS and Menheniott
TR: Helicobacter pylori CagA triggers expression of the
bactericidal lectin REG3γ via gastric STAT3 activation. PLoS One.
7:e307862012. View Article : Google Scholar
|
|
93
|
Yamaoka Y, Kudo T, Lu H, Casola A, Brasier
AR and Graham DY: Role of interferon-stimulated responsive
element-like element in interleukin-8p romoter in Helicobacter
pylori infection. Gastroenterology. 126:1030–1043. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Mitchell DJ, Huynh HQ, Ceponis PJM, Jones
NL and Sherman PM: Helicobacter pylori disrupts STAT1-mediated
gamma interferon-induced signal transduction in epithelial cells.
Infect Immun. 72:537–545. 2004. View Article : Google Scholar :
|
|
95
|
Lee HS, Park CK, Oh E, Erkin ÖC, Jung HS,
Cho MH, Kwon MJ, Chae SW, Kim SH, Wang LH, et al: Low SP1
expression differentially affects intestinal-type compared with
diffuse-type gastric adenocarcinoma. PLoS One. 8:e555222013.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Beishline K and Azizkhan-Clifford J: Sp1
and the 'hallmarks of cancer'. FEBS J. 282:224–258. 2015.
View Article : Google Scholar
|
|
97
|
Tomizawa M, Shinozaki F, Motoyoshi Y,
Sugiyama T, Yamamoto S and Ishige N: CCAAT/enhancer-binding protein
α decreases the viability of gastric cancer cells. Oncol Lett.
13:4322–4326. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Peterson CL and Laniel MA: Histones and
histone modifications. Curr Biol. 14:R546–R551. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
eLife. 4:e050052015. View Article : Google Scholar :
|
|
100
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human microRNA targets. PLoS Biol.
3:e2642005. View Article : Google Scholar
|
|
101
|
Wong N and Wang X: miRDB: An online
resource for microRNA target prediction and functional annotations.
Nucleic Acids Res. 43D:D146–D152. 2015. View Article : Google Scholar
|
|
102
|
Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK,
Lai LC and Chuang EY: miRSystem: An integrated system for
characterizing enriched functions and pathways of microRNA targets.
PLoS One. 7:e423902012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Maragkakis M, Reczko M, Simossis VA,
Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G,
Koukis E, Kourtis K, et al: DIANA-microT web server: Elucidating
microRNA functions through target prediction. Nucleic Acids Res.
37(Web Server): W273–6. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sethupathy P, Megraw M and Hatzigeorgiou
AG: A guide through present computational approaches for the
identification of mammalian microRNA targets. Nat Methods.
3:881–886. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Leitão AL, Costa MC and Enguita FJ: A
guide for miRNA target prediction and analysis using web-based
applications. Methods Mol Biol. 1182:265–277. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhi Q, Guo X, Guo L, Zhang R, Jiang J, Ji
J, Zhang J, Zhang J, Chen X, Cai Q, et al: Oncogenic miR-544 is an
important molecular target in gastric cancer. Anticancer Agents Med
Chem. 13:270–275. 2013. View Article : Google Scholar
|
|
107
|
Chaturvedi R, de Sablet T, Asim M,
Piazuelo MB, Barry DP, Verriere TG, Sierra JC, Hardbower DM,
Delgado AG, Schneider BG, et al: Increased Helicobacter
pylori-associated gastric cancer risk in the Andean region of
Colombia is mediated by spermine oxidase. Oncogene. 34:3429–3440.
2015. View Article : Google Scholar :
|
|
108
|
Ishimoto T, Sugihara H, Watanabe M,
Sawayama H, Iwatsuki M, Baba Y, Okabe H, Hidaka K, Yokoyama N,
Miyake K, et al: Macrophage-derived reactive oxygen species
suppress miR-328 targeting CD44 in cancer cells and promote redox
adaptation. Carcinogenesis. 35:1003–1011. 2014. View Article : Google Scholar
|
|
109
|
Libânio D, Dinis-Ribeiro M and
Pimentel-Nunes P: Helicobacter pylori and microRNAs: Relation with
innate immunity and progression of preneoplastic conditions. World
J Clin Oncol. 6:111–132. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang X, Peng Y, Jin Z, Huang W, Cheng Y,
Liu Y, Feng X, Yang M, Huang Y, Zhao Z, et al: Integrated miRNA
profiling and bioinformatics analyses reveal potential causative
miRNAs in gastric adenocarcinoma. Oncotarget. 6:32878–32889. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhang W, Dahlberg JE and Tam W: MicroRNAs
in tumori-genesis: A primer. Am J Pathol. 171:728–738. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Noto JM and Peek RM: The role of microRNAs
in Helicobacter pylori pathogenesis and gastric carcinogenesis.
Front Cell Infect Microbiol. 1:212012. View Article : Google Scholar :
|
|
113
|
Li N, Xu X, Xiao B, Zhu ED, Li BS, Liu Z,
Tang B, Zou QM, Liang HP and Mao XH: H. pylori related
proinflammatory cytokines contribute to the induction of miR-146a
in human gastric epithelial cells. Mol Biol Rep. 39:4655–4661.
2012. View Article : Google Scholar
|
|
114
|
Hayashi Y, Tsujii M, Wang J, Kondo J,
Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, et al:
CagA mediates epigenetic regulation to attenuate let-7 expression
in Helicobacter pylori-related carcinogenesis. Gut. 62:1536–1546.
2013. View Article : Google Scholar
|
|
115
|
Qi J and Ronai ZA: Dysregulation of
ubiquitin ligases in cancer. Drug Resist Updat. 23:1–11. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Cho CH, Yu J and Wu WKK: Identification of
pathogenic microRNAs in Helicobacter pylori-associated gastric
cancer using a combined approach of animal study and clinical
sample analysis. Hong Kong Med J. 22(Suppl 6): 13–18.
2016.PubMed/NCBI
|
|
117
|
Belair C, Baud J, Chabas S, Sharma CM,
Vogel J, Staedel C and Darfeuille F: Helicobacter pylori interferes
with an embryonic stem cell micro RNA cluster to block cell cycle
progression. Silence. 2:72011. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lauren P: The two histological main types
of gastric carcinoma: Diffuse and so-called intestinal-type
carcinoma. An attempt at a histo-clinical classification. Acta
Pathol Microbiol Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen
XH, Yu YY, Gu QL, Zhu ZG and Liu BY: microrna expression signature
of gastric cancer cells relative to normal gastric mucosa. Mol Med
Rep. 6:821–826. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Guo J, Miao Y, Xiao B, Huan R, Jiang Z,
Meng D and Wang Y: Differential expression of microRNA species in
human gastric cancer versus non-tumorous tissues. J Gastroenterol
Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ueda T, Volinia S, Okumura H, Shimizu M,
Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, et al:
Relation between microRNA expression and progression and prognosis
of gastric cancer: A microRNA expression analysis. Lancet Oncol.
11:136–146. 2010. View Article : Google Scholar
|
|
122
|
Tsukamoto Y, Nakada C, Noguchi T, Tanigawa
M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M, et
al: MicroRNA-375 is downregulated in gastric carcinomas and
regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer
Res. 70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J,
Yang Q, Xu Y and Li F: Aberrant expression of microRNAs in gastric
cancer and biological significance of miR-574-3p. Int
Immunopharmacol. 13:468–475. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Juzėnas S, Saltenienė V, Kupcinskas J,
Link A, Kiudelis G, Jonaitis L, Jarmalaite S, Kupcinskas L,
Malfertheiner P and Skieceviciene J: Correction: Analysis of
deregulated microRNAs and their target genes in gastric cancer.
PLoS One. 10:e01357622015. View Article : Google Scholar
|
|
125
|
Katada T, Ishiguro H, Kuwabara Y, Kimura
M, Mitui A, Mori Y, Ogawa R, Harata K and Fujii Y: MicroRNA
expression profile in undifferentiated gastric cancer. Int J Oncol.
34:537–542. 2009.PubMed/NCBI
|