Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2020 Volume 56 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2020 Volume 56 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review)

  • Authors:
    • Xiumei Wang
    • Yao Fang
    • Wenbo Sun
    • Zhi Xu
    • Yanyan Zhang
    • Xiaowei Wei
    • Xuansheng Ding
    • Yong Xu
  • View Affiliations / Copyright

    Affiliations: Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China, Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
  • Pages: 1064-1074
    |
    Published online on: February 19, 2020
       https://doi.org/10.3892/ijo.2020.4990
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) and breast cancer (BCa) are two common sex hormone‑related cancer types with high rates of morbidity, and are leading causes of cancer death globally in men and women, respectively. The biological function of androgen or estrogen is a key factor for PCa or BCa tumorigenesis, respectively. Nevertheless, after hormone deprivation therapy, the majority of patients ultimately develop hormone‑independent malignancies that are resistant to endocrinotherapy. It is widely recognized, therefore, that understanding of the mechanisms underlying the process from hormone dependence towards hormone independence is critical to discover molecular targets for the control of advanced PCa and BCa. This review aimed to dissect the important mechanisms involved in the therapeutic resistance of PCa and BCa. It was concluded that activation of the NF‑κB pathway is an important common mechanism for metastasis and therapeutic resistance of the two types of cancer; in particular, the RelB‑activated noncanonical NF‑κB pathway appears to be able to lengthen and strengthen NF‑κB activity, which has been a focus of recent investigations.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Feldman BJ and Feldman D: The development of androgen-independent prostate cancer. Nat Rev Cancer. 1:34–45. 2001. View Article : Google Scholar

4 

Rhodes LV, Short SP, Neel NF, Salvo VA, Zhu Y, Elliott S, Wei Y, Yu D, Sun M, Muir SE, et al: Cytokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer. Cancer Res. 71:603–613. 2011. View Article : Google Scholar :

5 

Debes JD and Tindall DJ: The role of androgens and the androgen receptor in prostate cancer. Cancer Lett. 187:1–7. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Duffy MJ: Estrogen receptors: Role in breast cancer. Crit Rev Clin Lab Sci. 43:325–347. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Balk SP and Knudsen KE: AR, the cell cycle, and prostate cancer. Nucl Recept Signal. 6:e0012008. View Article : Google Scholar : PubMed/NCBI

8 

Lamb AD, Massie CE and Neal DE: The transcriptional programme of the androgen receptor (AR) in prostate cancer. BJU Int. 113:358–366. 2014. View Article : Google Scholar

9 

Russo J and Russo IH: The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol. 102:89–96. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Yue W, Wang JP, Li Y, Fan P, Liu G, Zhang N, Conaway M, Wang H, Korach KS, Bocchinfuso W, et al: Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int J Cancer. 127:1748–1757. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Samavat H and Kurzer MS: Estrogen metabolism and breast cancer. Cancer Lett. 356:231–243. 2015. View Article : Google Scholar :

12 

DeMichele A and Chodosh LA: 'Braking' the cycle of resistance in endocrine therapy for breast cancer. Clin Cancer Res. 21:4999–5001. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Horwich A, Parker C, de Reijke T and Kataja V; ESMO Guidelines Working Group: Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 24(Suppl 6): vi106–vi114. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al European Association of Urology: EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 65:124–137. 2014. View Article : Google Scholar

15 

Mohler JL, Armstrong AJ, Bahnson RR, D'Amico AV, Davis BJ, Eastham JA, Enke CA, Farrington TA, Higano CS, Horwitz EM, et al: Prostate cancer, version 1.2016. J Natl Compr Canc Netw. 14:19–30. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al European Association of Urology: EAU guidelines on prostate cancer: Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 65:467–479. 2014. View Article : Google Scholar

17 

Wise HM, Hermida MA and Leslie NR: Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond). 131:197–210. 2017. View Article : Google Scholar

18 

Bilusic M, Madan RA and Gulley JL: Immunotherapy of prostate cancer: Facts and hopes. Clin Cancer Res. 23:6764–6770. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Kim YJ, Jung SY and Kim K: Survival benefit of radiotherapy after surgery in de novo stage IV breast cancer: A population-based propensity-score matched analysis. Sci Rep. 9:85272019. View Article : Google Scholar : PubMed/NCBI

20 

Yao Y, Chu Y, Xu B, Hu Q and Song Q: Radiotherapy after surgery has significant survival benefits for patients with triple-negative breast cancer. Cancer Med. 8:554–563. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, Fallowfield L, Fowble B, Ingle JN, Jahanzeb M, et al: Endocrine therapy for hormone receptor-positive metastatic breast cancer: American society of clinical oncology guideline. J Clin Oncol. 34:3069–3103. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Alvarez Lopez I, de la Haba Rodriguez J, Ruiz Simon A, Bellet Ezquerra M, Calvo Martinez L, Garcia Estevez L, Rodriguez Lescure A and Isla Casado D: SEOM (Spanish Society for Medical Oncology): SEOM clinical guidelines for the treatment of metastatic breast cancer. Clin Transl Oncol. 12:719–723. 2010. View Article : Google Scholar

23 

Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, Zackrisson S and Cardoso F; Committee EG: ESMO Guidelines Committee: Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 26(Suppl 5): v8–v30. 2015. View Article : Google Scholar

24 

Goetz Mp, Gradishar WJ, Anderson BO, Abraham J, Aft R, Allison Kh, Blair SL, Burstein HJ, Dang C, Elias ad, et al: NCCN guidelines insights: Breast cancer, version 3.2018. J Natl Compr Canc Netw. 17:118–126. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Ahmed S, Sami A and Xiang J: HER2-directed therapy: Current treatment options for HER2-positive breast cancer. Breast Cancer. 22:101–116. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Esteva FJ, Hubbard-Lucey VM, Tang J and Pusztai L: Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 20:e175–e186. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Tremont-Lukats IW, Bobustuc G, Lagos GK, Lolas K, Kyritsis AP and Puduvalli VK: Brain metastasis from prostate carcinoma: The M.D. Anderson Cancer Center experience. Cancer. 98:363–368. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Lee GT, Kang DI, Ha YS, Jung YS, Chung J, Min K, Kim TH, Moon KH, Chung JM, Lee DH, et al: Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction. Br J Cancer. 110:1634–1644. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Bergen ES, Berghoff AS, Medjedovic M, Rudas M, Fitzal F, Bago-Horvath Z, Dieckmann K, Mader RM, Exner R, Gnant M, et al: Continued endocrine therapy is associated with improved survival in patients with breast cancer brain metastases. Clin Cancer Res. 25:2737–2744. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Yao B, Wang J, Qu S, Liu Y, Jin Y, Lu J, Bao Q, Li L, Yuan H and Ma C: Upregulated osterix promotes invasion and bone metastasis and predicts for a poor prognosis in breast cancer. Cell Death Dis. 10:282019. View Article : Google Scholar : PubMed/NCBI

31 

Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al: The nuclear receptor superfamily: The second decade. Cell. 83:835–839. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Girdler F and Brotherick I: The oestrogen receptors (ER alpha and ER beta) and their role in breast cancer: A review. Breast. 9:194–200. 2000. View Article : Google Scholar

33 

Suzuki H, Ueda T, Ichikawa T and Ito H: Androgen receptor involvement in the progression of prostate cancer. Endocr Relat Cancer. 10:209–216. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Carroll JS: Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur J Endocrinol. 175:R41–R49. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Russell DW and Wilson JD: Steroid 5 alpha-reductase: Two genes/two enzymes. Annu Rev Biochem. 63:25–61. 1994. View Article : Google Scholar : PubMed/NCBI

36 

Marcelli M and Cunningham GR: Hormonal signaling in prostatic hyperplasia and neoplasia. J Clin Endocrinol Metab. 84:3463–3468. 1999.PubMed/NCBI

37 

Sommer S and Fuqua SA: Estrogen receptor and breast cancer. Semin Cancer Biol. 11:339–352. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Alluri PG, Speers C and Chinnaiyan AM: Estrogen receptor mutations and their role in breast cancer progression. Breast Cancer Res. 16:4942014. View Article : Google Scholar : PubMed/NCBI

39 

Mc Cormack O, Chung WY, Fitzpatrick P, Cooke F, Flynn B, Harrison M, Fox E, Gallagher E, McGoldrick A, Dervan PA, et al: Progesterone receptor B (PRB) promoter hypermethylation in sporadic breast cancer: Progesterone receptor B hypermethylation in breast cancer. Breast Cancer Res Treat. 111:45–53. 2008. View Article : Google Scholar

40 

Wang H, Lee EW, Zhou L, Leung PC, Ross DD, Unadkat JD and Mao Q: Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol Pharmacol. 73:845–854. 2008. View Article : Google Scholar

41 

Wu X, Zhang X, Zhang H, Su P, Li W, Li L, Wang Y, Liu W, Gao P and Zhou G: Progesterone receptor downregulates breast cancer resistance protein expression via binding to the progesterone response element in breast cancer. Cancer Sci. 103:959–967. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Grimm SL, Hartig SM and Edwards DP: Progesterone receptor signaling mechanisms. J Mol Biol. 428:3831–3849. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Dowsett M: Overexpression of HER-2 as a resistance mechanism to hormonal therapy for breast cancer. Endocr Relat Cancer. 8:191–195. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Kurokawa H and Arteaga CL: ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res. 9:511S–515S. 2003.PubMed/NCBI

45 

Hsu JL and Hung MC: The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 35:575–588. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Järvinen TAH, Pelto-Huikko M, Holli K and Isola J: Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol. 156:29–35. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Fan W, Chang J and Fu P: Endocrine therapy resistance in breast cancer: Current status, possible mechanisms and overcoming strategies. Future Med Chem. 7:1511–1519. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Ding J, Wang X, Zhang Y, Sang X, Yi J, Liu C, Liu Z, Wang M, Zhang N, Xue Y, et al: Inhibition of BTF3 sensitizes luminal breast cancer cells to PI3Ka inhibition through the transcriptional regulation of ERa. Cancer Lett. 440-441:54–63. 2019. View Article : Google Scholar

49 

Blessing AM, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Cortes CJ, Cheung E, et al: Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy. 13:506–521. 2017. View Article : Google Scholar :

50 

McCartan D, Bolger jC, Fagan A, Byrne C, Hao Y, Qin L, McIlroy M, Xu J, Hill AD, Gaora pO, et al: Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast cancer. Cancer Res. 72:220–229. 2012. View Article : Google Scholar

51 

Sahin I, Mega AE and Carneiro BA: Androgen receptor-independent prostate cancer: An emerging clinical entity. Cancer Biol Ther. 19:347–348. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Chen CD and Sawyers CL: NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 22:2862–2870. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Zhou Y, Eppenberger-Castori S, Eppenberger U and Benz CC: The NFkappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer. 12(Suppl 1): S37–S46. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Oida K, Matsuda A, Jung K, Xia Y, Jang H, Amagai Y, Ahn G, Nishikawa S, Ishizaka S, Jensen-Jarolim E, et al: Nuclear factor-KB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells. Sci Rep. 4:40572014. View Article : Google Scholar

55 

Malinen M, Niskanen EA, Kaikkonen MU and Palvimo JJ: Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res. 45:619–630. 2017. View Article : Google Scholar

56 

Péant B, Diallo JS, Lessard L, Delvoye N, Le Page C, Saad F and Mes-Masson AM: Regulation of IkappaB kinase epsilon expression by the androgen receptor and the nuclear factor-kappaB transcription factor in prostate cancer. Mol Cancer Res. 5:87–94. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Yuan X, Cai C, Chen S, Chen S, Yu Z and Balk SP: Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 33:2815–2825. 2014. View Article : Google Scholar

58 

Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, Korets R, Wenske S, Lilja HG, Chang C, et al: NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol. 175:489–499. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Jin R, Yamashita H, Yu X, Wang J, Franco OE, Wang Y, Hayward SW and Matusik RJ: Inhibition of NF-kappa B signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression. Oncogene. 34:3700–3710. 2015. View Article : Google Scholar

60 

Nadiminty N, Tummala R, Liu C, Yang J, Lou W, Evans CP and Gao AC: NF-κB2/p52 induces resistance to enzalutamide in prostate cancer: Role of androgen receptor and its variants. Mol Cancer Ther. 12:1629–1637. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Staal J and Beyaert R: Inflammation and NF-kappaB signaling in prostate cancer: Mechanisms and clinical implications. Cells. 7:72018. View Article : Google Scholar

62 

Sas L, Lardon F, Vermeulen PB, Hauspy J, Van Dam P, Pauwels P, Dirix LY and Van Laere SJ: The interaction between ER and NFkB in resistance to endocrine therapy. Breast Cancer Res. 14:2122012. View Article : Google Scholar

63 

Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z, Wang S and Lin Y: Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway. Cancer Lett. 364:165–172. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Nakshatri H Jr, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr and Sledge GW Jr: Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 17:3629–3639. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Belguise K and Sonenshein GE: PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest. 117:4009–4021. 2007.PubMed/NCBI

66 

Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D and Sonenshein GE: Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol. 9:470–478. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Wang X, Belguise K, O'Neill CF, Sanchez-Morgan N, Romagnoli M, Eddy SF, Mineva ND, Yu Z, Min C, Trinkaus-Randall V, et al: RelB NF-kappaB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol. 29:3832–3844. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Pradhan M, Baumgarten SC, Bembinster LA and Frasor J: CBP mediates NF-κB-dependent histone acetylation and estrogen receptor recruitment to an estrogen response element in the BIRC3 promoter. Mol Cell Biol. 32:569–575. 2012. View Article : Google Scholar :

69 

Frasor J, El-Shennawy L, Stender JD and Kastrati I: NFkB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol Cell Endocrinol. 418:235–239. 2015. View Article : Google Scholar

70 

Zeligs KP, Neuman MK and Annunziata CM: Molecular pathways: The balance between cancer and the immune system challenges the therapeutic specificity of targeting nuclear factor-kB signaling for cancer treatment. Clin Cancer Res. 22:4302–4308. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Sun SC: Non-canonical NF-κB signaling pathway. Cell Res. 21:71–85. 2011. View Article : Google Scholar

72 

Kastrati I, Siklos MI, Calderon-Gierszal EL, El-Shennawy L, Georgieva G, Thayer EN, Thatcher GR and Frasor J: Dimethyl fumarate inhibits the nuclear factor kB pathway in breast cancer cells by covalent modification of p65 protein. J Biol Chem. 291:3639–3647. 2016. View Article : Google Scholar

73 

Vrábel D, Pour L and Ševčíková S: The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 34:56–66. 2019. View Article : Google Scholar

74 

Park MH and Hong JT: Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 5:52016. View Article : Google Scholar

75 

Maubach G, Feige MH, Lim MCC and Naumann M: NF-kappaB-inducing kinase in cancer. Biochim Biophys Acta Rev Cancer. 1871:40–49. 2019. View Article : Google Scholar

76 

Gray CM, Remouchamps C, McCorkell KA, Solt LA, Dejardin E, Orange JS and May MJ: Noncanonical NF-κB signaling is limited by classical NF-κB activity. Sci Signal. 7:ra132014. View Article : Google Scholar

77 

Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Macconaill LE, Beroukhim R, et al: An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med. 16:286–294. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Ammirante M, Luo JL, Grivennikov S, Nedospasov S and Karin M: B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature. 464:302–305. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Mendonca MS, Turchan WT, Alpuche ME, Watson CN, Estabrook NC, Chin-Sinex H, Shapiro JB, Imasuen-Williams IE, Rangel G, Gilley DP, et al: DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo. Free Radic Biol Med. 112:318–326. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Kendellen MF, Bradford JW, Lawrence CL, Clark KS and Baldwin AS: Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene. 33:1297–1305. 2014. View Article : Google Scholar

81 

Streicher KL, Willmarth NE, Garcia J, Boerner JL, Dewey TG and Ethier SP: Activation of a nuclear factor kappaB/interleukin-1 positive feedback loop by amphiregulin in human breast cancer cells. Mol Cancer Res. 5:847–861. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Saha S, Mukherjee S, Khan P, Kajal K, Mazumdar M, Manna A, Mukherjee S, De S, Jana D, Sarkar DK, et al: Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFkappaB-IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Res. 76:2000–2012. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Watson PA, Arora VK and Sawyers CL: Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 15:701–711. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Stender JD, Nwachukwu JC, Kastrati I, Kim Y, Strid T, Yakir M, Srinivasan S, Nowak J, Izard T and Rangarajan ES: et al Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell. 65:1122–1135.e1125. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Osborne CK and Schiff R: Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 62:233–247. 2011. View Article : Google Scholar

86 

Karantanos T, Evans CP, Tombal B, Thompson TC, Montironi R and Isaacs WB: Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol. 67:470–479. 2015. View Article : Google Scholar

87 

Crona DJ and Whang YE: Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers (Basel). 9:92017. View Article : Google Scholar

88 

Lee JW, Kim GY and Kim JH: Androgen receptor is up-regulated by a BLT2-linked pathway to contribute to prostate cancer progression. Biochem Biophys Res Commun. 420:428–433. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Penney RB and Roy D: Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta. 1836:60–79. 2013.PubMed/NCBI

90 

Bakin RE, Gioeli D, Bissonette EA and Weber MJ: Attenuation of Ras signaling restores androgen sensitivity to hormone-refractory C4-2 prostate cancer cells. Cancer Res. 63:1975–1980. 2003.PubMed/NCBI

91 

Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Heckler MM, Thakor H, Schafer CC and Riggins RB: ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer. FEBS J. 281:2431–2442. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Hong SK, Jeong JH, Chan AM and Park JI: AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion. Exp Cell Res. 319:1732–1743. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Wang H, Zhang L, Fu Y, Fang F, Jiang Y, Dong Y and Zhu W: CSL regulates AKT to mediate androgen independence in prostate cancer progression. Prostate. 76:140–150. 2016. View Article : Google Scholar

95 

Lu S, Ren C, Liu Y and Epner DE: PI3K-Akt signaling is involved in the regulation of p21(WAF/CIP) expression and androgen-independent growth in prostate cancer cells. Int J Oncol. 28:245–251. 2006.

96 

Lee SO, Lou W, Nadiminty N, Lin X and Gao AC: Requirement for NF-(kappa)B in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate. 64:160–167. 2005. View Article : Google Scholar : PubMed/NCBI

97 

Rodriguez M, Luo W, Weng J, Zeng L, Yi Z, Siwko S and Liu M: PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-κB. Oncogenesis. 3:e1142014. View Article : Google Scholar

98 

Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, et al: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 19:575–586. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK and Chi SG: Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene. 22:4314–4332. 2003. View Article : Google Scholar : PubMed/NCBI

100 

Holloway JN, Murthy S and El-Ashry D: A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells: The role of nuclear factor-kappaB. Mol Endocrinol. 18:1396–1410. 2004. View Article : Google Scholar : PubMed/NCBI

101 

Tian M and Schiemann WP: TGF-beta stimulation of EMT programs elicits non-genomic ER-alpha activity and anti-estrogen resistance in breast cancer cells. J Cancer Metastasis Treat. 3:150–160. 2017. View Article : Google Scholar :

102 

Penninkhof F, Grootegoed JA and Blok LJ: Identification of REPS2 as a putative modulator of NF-kappaB activity in prostate cancer cells. Oncogene. 23:5607–5615. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Brown NE, Paluch AM, Nashu MA, Komurov K and Waltz SE: Tumor cell autonomous RON receptor expression promotes prostate cancer growth under conditions of androgen deprivation. Neoplasia. 20:917–929. 2018. View Article : Google Scholar : PubMed/NCBI

104 

House CD, Jordan E, Hernandez L, Ozaki M, James JM, Kim M, Kruhlak MJ, Batchelor E, Elloumi F, Cam MC, et al: NFkappaB promotes ovarian tumorigenesis via classical pathways that support proliferative cancer cells and alternative pathways that support ALDH(+) cancer stem-like cells. Cancer Res. 77:6927–6940. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Han B, Zhou B, Qu Y, Gao B, Xu Y, Chung S, Tanaka H, Yang W, Giuliano AE and Cui X: FOXC1-induced non-canonical WNT5A-MMP7 signaling regulates invasiveness in triple-negative breast cancer. Oncogene. 37:1399–1408. 2018. View Article : Google Scholar :

106 

Litchfield LM, Appana SN, Datta S and Klinge CM: COUP-TFII inhibits NFkappaB activation in endocrine-resistant breast cancer cells. Mol Cell Endocrinol. 382:358–367. 2014. View Article : Google Scholar

107 

Rwigemera A, Mamelona J and Martin LJ: Inhibitory effects of fucoxanthinol on the viability of human breast cancer cell lines MCF-7 and MDA-MB-231 are correlated with modulation of the NF-kappaB pathway. Cell Biol Toxicol. 30:157–167. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Vogel CF, Li W, Wu D, Miller JK, Sweeney C, Lazennec G, Fujisawa Y and Matsumura F: Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys. 512:78–86. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Bekki K, Vogel H, Li W, Ito T, Sweeney C, Haarmann- Stemmann T, Matsumura F and Vogel CF: The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. Pestic Biochem Physiol. 120:5–13. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Shah KN, Wilson EA, Malla R, Elford HL and Faridi JS: Targeting ribonucleotide reductase M2 and NF-kappaB activation with didox to circumvent tamoxifen resistance in breast cancer. Mol Cancer Ther. 14:2411–2421. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Yde CW, Emdal KB, Guerra B and Lykkesfeldt AE: NFkB signaling is important for growth of antiestrogen resistant breast cancer cells. Breast Cancer Res Treat. 135:67–78. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Catz SD and Johnson JL: Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene. 20:7342–7351. 2001. View Article : Google Scholar : PubMed/NCBI

113 

Srinivasan S, Kumar R, Koduru S, Chandramouli A and Damodaran C: Inhibiting TNF-mediated signaling: A novel therapeutic paradigm for androgen independent prostate cancer. Apoptosis. 15:153–161. 2010. View Article : Google Scholar :

114 

Liu VWS, Yau WL, Tam CW, Yao KM and Shiu SY: Melatonin inhibits androgen receptor splice variant-7 (AR-V7)-induced nuclear factor-kappa B (NF-kappaB) activation and NF-kappaB activator-induced AR-V7 expression in prostate cancer cells: Potential implications for the use of melatonin in castration-resistant prostate cancer (CRPC) therapy. Int J Mol Sci. 18:182017. View Article : Google Scholar

115 

Zerbini LF, Wang Y, Cho JY and Libermann TA: Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res. 63:2206–2215. 2003.PubMed/NCBI

116 

Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, Lokeshwar VB and Lokeshwar BL: Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67:6854–6862. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Lee SO, Pinder E, Chun JY, Lou W, Sun M and Gao AC: Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate. 68:85–91. 2008. View Article : Google Scholar

118 

Jeong JH, Park SJ, Dickinson SI and Luo JL: A constitutive intrinsic inflammatory signaling circuit composed of miR-196b, Meis2, PPP3CC, and p65 drives prostate cancer castration resistance. Mol Cell. 65:154–167. 2017. View Article : Google Scholar : PubMed/NCBI

119 

McCall P, Bennett L, Ahmad I, Mackenzie LM, Forbes IW, Leung HY, Sansom OJ, Orange C, Seywright M, Underwood MA, et al: NFκB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression. Br J Cancer. 107:1554–1563. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Shiota M, Yokomizo A, Takeuchi A, Kashiwagi E, Dejima T, Inokuchi J, Tatsugami K, Uchiumi T and Eto M: Protein kinase C regulates Twist1 expression via NF-κB in prostate cancer. Endocr Relat Cancer. 24:171–180. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Pratt MAC, Bishop TE, White D, Yasvinski G, Menard M, Niu MY and Clarke R: Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: Roles in growth and hormone independence. Mol Cell Biol. 23:6887–6900. 2003. View Article : Google Scholar : PubMed/NCBI

122 

Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH, Eppenberger U, Eppenberger-Castori S and Benz CC: Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer. 7:592007. View Article : Google Scholar : PubMed/NCBI

123 

Semlali A, Oliva J, Badia E, Pons M and Duchesne MJ: Immediate early gene X-1 (IEX-1), a hydroxytamoxifen regulated gene with increased stimulation in MCF-7 derived resistant breast cancer cells. J Steroid Biochem Mol Biol. 88:247–259. 2004. View Article : Google Scholar : PubMed/NCBI

124 

Hu R, Warri A, Jin L, Zwart A, Riggins RB, Fang HB and Clarke R: NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 35:379–390. 2015. View Article : Google Scholar

125 

Yamaguchi N, Nakayama Y and Yamaguchi N: Down-regulation of Forkhead box protein A1 (FOXA1) leads to cancer stem cell-like properties in tamoxifen-resistant breast cancer cells through induction of interleukin-6. J Biol Chem. 292:8136–8148. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, et al: Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73:3470–3480. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Nehra R, Riggins RB, Shajahan AN, Zwart A, Crawford AC and Clarke R: BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J. 24:2040–2055. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Riggins RB, Zwart A, Nehra R and Clarke R: The nuclear factor kB inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther. 4:33–41. 2005. View Article : Google Scholar : PubMed/NCBI

129 

Nadiminty N, Lou W, Sun M, Chen J, Yue J, Kung HJ, Evans CP, Zhou Q and Gao AC: Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res. 70:3309–3319. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Nadiminty N, Chun JY, Lou W, Lin X and Gao AC: NF-kappaB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate. 68:1725–1733. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Nadiminty N, Dutt S, Tepper C and Gao AC: Microarray analysis reveals potential target genes of NF-kappaB2/p52 in LNCaP prostate cancer cells. Prostate. 70:276–287. 2010.

132 

Mehraein-Ghomi F, Church DR, Schreiber CL, Weichmann MA, Basu HS and Wilding G: Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated ARser81. Genes Cancer. 6:428–444. 2015.PubMed/NCBI

133 

Nadiminty N, Tummala R, Liu C, Lou W, Evans CP and Gao AC: NF-kappaB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol Cancer Ther. 14:1884–1895. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Cui Y, Nadiminty N, Liu C, Lou W, Schwartz CT and Gao AC: Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells. Endocr Relat Cancer. 21:435–442. 2014. View Article : Google Scholar : PubMed/NCBI

135 

House CD, Grajales V, Ozaki M, Jordan E, Wubneh H, Kimble DC, James JM, Kim MK and Annunziata CM: Ikke cooperates with either MEK or non-canonical NF-κB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer. 18:5952018. View Article : Google Scholar

136 

Kim YR, Kim IJ, Kang TW, Choi C, Kim KK, Kim MS, Nam KI and Jung C: HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis. Oncogene. 33:4558–4567. 2014. View Article : Google Scholar

137 

Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G and Bonavida B: Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene. 23:4993–5003. 2004. View Article : Google Scholar : PubMed/NCBI

138 

Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campás C, Dang L, et al: Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res. 12:5578–5586. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Tsai CH, Tzeng SF, Hsieh SC, Yang YC, Hsiao YW, Tsai MH and Hsiao PW: A standardized herbal extract mitigates tumor inflammation and augments chemotherapy effect of docetaxel in prostate cancer. Sci Rep. 7:156242017. View Article : Google Scholar : PubMed/NCBI

140 

Nathan S, Ma Y, Tomita YA, De Oliveira E, Brown ML and Rosen EM: BRCA1-mimetic compound NSC35446. HCl inhibits IKKB expression by reducing estrogen receptor-a occupancy in the IKKB promoter and inhibits NF-κB activity in antiestrogen-resistant human breast cancer cells. Breast Cancer Res Treat. 166:681–693. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Jiang L, Wang P, Sun YJ and Wu YJ: Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res. 38:2652019. View Article : Google Scholar

142 

Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB and Palavan-Unsal N: Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids. 50:1045–1069. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou J, Yang L, Chen Z and Hann SS: Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. J Exp Clin Cancer Res. 34:462015. View Article : Google Scholar

144 

Xu Y, Fang F, St Clair DK, Josson S, Sompol P, Spasojevic I and St Clair WH: Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of 1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. Mol Cancer Ther. 6:2048–2056. 2007. View Article : Google Scholar : PubMed/NCBI

145 

Lundqvist J, Yde CW and Lykkesfeldt AE: 1a,25-dihydroxyvitamin D3 inhibits cell growth and NFκB signaling in tamoxifen-resistant breast cancer cells. Steroids. 85:30–35. 2014. View Article : Google Scholar : PubMed/NCBI

146 

deGraffenried LA, Chandrasekar B, Friedrichs WE, Donzis E, Silva J, Hidalgo M, Freeman JW and Weiss GR: NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol. 15:885–890. 2004. View Article : Google Scholar : PubMed/NCBI

147 

Lobanova YS, Scherbakov AM, Shatskaya VA, Evteev VA and Krasil'nikov MA: NF-kappaB suppression provokes the sensitization of hormone-resistant breast cancer cells to estrogen apoptosis. Mol Cell Biochem. 324:65–71. 2009. View Article : Google Scholar

148 

Xu Y, Fang F, Miriyala S, Crooks PA, Oberley TD, Chaiswing L, Noel T, Holley AK, Zhao Y, Kiningham KK, et al: KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Cancer Res. 73:4406–4417. 2013. View Article : Google Scholar : PubMed/NCBI

149 

Josson S, Xu Y, Fang F, Dhar SK, St Clair DK and St Clair WH: RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Oncogene. 25:1554–1559. 2006. View Article : Google Scholar

150 

Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y and Tang J: Cytokine-mediated therapeutic resistance in breast cancer. Cytokine. 108:151–159. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Khurana N and SIKKa SC: Targeting crosstalk between Nrf-2, NF-κB and androgen receptor signaling in prostate cancer. Cancers (Basel). 10:102018. View Article : Google Scholar

152 

Ahmed KM, Zhang H and Park CC: NF-κB regulates radioresistance mediated by β1-integrin in three-dimensional culture of breast cancer cells. Cancer Res. 73:3737–3748. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Chaturvedi MM, Sung B, Yadav VR, Kannappan R and Aggarwal BB: NF-κB addiction and its role in cancer: 'one size does not fit all'. Oncogene. 30:1615–1630. 2011. View Article : Google Scholar

154 

Lessard L, Begin LR, Gleave ME, Mes-Masson AM and Saad F: Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: An immunohistochemical study. Br J Cancer. 93:1019–1023. 2005. View Article : Google Scholar : PubMed/NCBI

155 

Zhang Y, Xu Z, Ding J, Tan C, Hu W, Li Y, Huang W and Xu Y: HZ08 suppresses RelB-activated MnSOD expression and enhances Radiosensitivity of prostate Cancer cells. J Exp Clin Cancer Res. 37:1742018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Fang Y, Sun W, Xu Z, Zhang Y, Wei X, Ding X and Xu Y: Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). Int J Oncol 56: 1064-1074, 2020.
APA
Wang, X., Fang, Y., Sun, W., Xu, Z., Zhang, Y., Wei, X. ... Xu, Y. (2020). Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). International Journal of Oncology, 56, 1064-1074. https://doi.org/10.3892/ijo.2020.4990
MLA
Wang, X., Fang, Y., Sun, W., Xu, Z., Zhang, Y., Wei, X., Ding, X., Xu, Y."Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review)". International Journal of Oncology 56.5 (2020): 1064-1074.
Chicago
Wang, X., Fang, Y., Sun, W., Xu, Z., Zhang, Y., Wei, X., Ding, X., Xu, Y."Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review)". International Journal of Oncology 56, no. 5 (2020): 1064-1074. https://doi.org/10.3892/ijo.2020.4990
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Fang Y, Sun W, Xu Z, Zhang Y, Wei X, Ding X and Xu Y: Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). Int J Oncol 56: 1064-1074, 2020.
APA
Wang, X., Fang, Y., Sun, W., Xu, Z., Zhang, Y., Wei, X. ... Xu, Y. (2020). Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). International Journal of Oncology, 56, 1064-1074. https://doi.org/10.3892/ijo.2020.4990
MLA
Wang, X., Fang, Y., Sun, W., Xu, Z., Zhang, Y., Wei, X., Ding, X., Xu, Y."Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review)". International Journal of Oncology 56.5 (2020): 1064-1074.
Chicago
Wang, X., Fang, Y., Sun, W., Xu, Z., Zhang, Y., Wei, X., Ding, X., Xu, Y."Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review)". International Journal of Oncology 56, no. 5 (2020): 1064-1074. https://doi.org/10.3892/ijo.2020.4990
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team