|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Feldman BJ and Feldman D: The development
of androgen-independent prostate cancer. Nat Rev Cancer. 1:34–45.
2001. View
Article : Google Scholar
|
|
4
|
Rhodes LV, Short SP, Neel NF, Salvo VA,
Zhu Y, Elliott S, Wei Y, Yu D, Sun M, Muir SE, et al: Cytokine
receptor CXCR4 mediates estrogen-independent tumorigenesis,
metastasis, and resistance to endocrine therapy in human breast
cancer. Cancer Res. 71:603–613. 2011. View Article : Google Scholar :
|
|
5
|
Debes JD and Tindall DJ: The role of
androgens and the androgen receptor in prostate cancer. Cancer
Lett. 187:1–7. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Duffy MJ: Estrogen receptors: Role in
breast cancer. Crit Rev Clin Lab Sci. 43:325–347. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Balk SP and Knudsen KE: AR, the cell
cycle, and prostate cancer. Nucl Recept Signal. 6:e0012008.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lamb AD, Massie CE and Neal DE: The
transcriptional programme of the androgen receptor (AR) in prostate
cancer. BJU Int. 113:358–366. 2014. View Article : Google Scholar
|
|
9
|
Russo J and Russo IH: The role of estrogen
in the initiation of breast cancer. J Steroid Biochem Mol Biol.
102:89–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yue W, Wang JP, Li Y, Fan P, Liu G, Zhang
N, Conaway M, Wang H, Korach KS, Bocchinfuso W, et al: Effects of
estrogen on breast cancer development: Role of estrogen receptor
independent mechanisms. Int J Cancer. 127:1748–1757. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Samavat H and Kurzer MS: Estrogen
metabolism and breast cancer. Cancer Lett. 356:231–243. 2015.
View Article : Google Scholar :
|
|
12
|
DeMichele A and Chodosh LA: 'Braking' the
cycle of resistance in endocrine therapy for breast cancer. Clin
Cancer Res. 21:4999–5001. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Horwich A, Parker C, de Reijke T and
Kataja V; ESMO Guidelines Working Group: Prostate cancer: ESMO
Clinical Practice Guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 24(Suppl 6): vi106–vi114. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Heidenreich A, Bastian PJ, Bellmunt J,
Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T,
Zattoni F, et al European Association of Urology: EAU guidelines on
prostate cancer. Part 1: Screening, diagnosis, and local treatment
with curative intent-update 2013. Eur Urol. 65:124–137. 2014.
View Article : Google Scholar
|
|
15
|
Mohler JL, Armstrong AJ, Bahnson RR,
D'Amico AV, Davis BJ, Eastham JA, Enke CA, Farrington TA, Higano
CS, Horwitz EM, et al: Prostate cancer, version 1.2016. J Natl
Compr Canc Netw. 14:19–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Heidenreich A, Bastian PJ, Bellmunt J,
Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T,
Zattoni F, et al European Association of Urology: EAU guidelines on
prostate cancer: Part II: Treatment of advanced, relapsing, and
castration-resistant prostate cancer. Eur Urol. 65:467–479. 2014.
View Article : Google Scholar
|
|
17
|
Wise HM, Hermida MA and Leslie NR:
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond).
131:197–210. 2017. View Article : Google Scholar
|
|
18
|
Bilusic M, Madan RA and Gulley JL:
Immunotherapy of prostate cancer: Facts and hopes. Clin Cancer Res.
23:6764–6770. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim YJ, Jung SY and Kim K: Survival
benefit of radiotherapy after surgery in de novo stage IV breast
cancer: A population-based propensity-score matched analysis. Sci
Rep. 9:85272019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yao Y, Chu Y, Xu B, Hu Q and Song Q:
Radiotherapy after surgery has significant survival benefits for
patients with triple-negative breast cancer. Cancer Med. 8:554–563.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rugo HS, Rumble RB, Macrae E, Barton DL,
Connolly HK, Dickler MN, Fallowfield L, Fowble B, Ingle JN,
Jahanzeb M, et al: Endocrine therapy for hormone receptor-positive
metastatic breast cancer: American society of clinical oncology
guideline. J Clin Oncol. 34:3069–3103. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Alvarez Lopez I, de la Haba Rodriguez J,
Ruiz Simon A, Bellet Ezquerra M, Calvo Martinez L, Garcia Estevez
L, Rodriguez Lescure A and Isla Casado D: SEOM (Spanish Society for
Medical Oncology): SEOM clinical guidelines for the treatment of
metastatic breast cancer. Clin Transl Oncol. 12:719–723. 2010.
View Article : Google Scholar
|
|
23
|
Senkus E, Kyriakides S, Ohno S,
Penault-Llorca F, Poortmans P, Rutgers E, Zackrisson S and Cardoso
F; Committee EG: ESMO Guidelines Committee: Primary breast cancer:
ESMO Clinical Practice Guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 26(Suppl 5): v8–v30. 2015. View Article : Google Scholar
|
|
24
|
Goetz Mp, Gradishar WJ, Anderson BO,
Abraham J, Aft R, Allison Kh, Blair SL, Burstein HJ, Dang C, Elias
ad, et al: NCCN guidelines insights: Breast cancer, version 3.2018.
J Natl Compr Canc Netw. 17:118–126. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ahmed S, Sami A and Xiang J: HER2-directed
therapy: Current treatment options for HER2-positive breast cancer.
Breast Cancer. 22:101–116. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Esteva FJ, Hubbard-Lucey VM, Tang J and
Pusztai L: Immunotherapy and targeted therapy combinations in
metastatic breast cancer. Lancet Oncol. 20:e175–e186. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tremont-Lukats IW, Bobustuc G, Lagos GK,
Lolas K, Kyritsis AP and Puduvalli VK: Brain metastasis from
prostate carcinoma: The M.D. Anderson Cancer Center experience.
Cancer. 98:363–368. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lee GT, Kang DI, Ha YS, Jung YS, Chung J,
Min K, Kim TH, Moon KH, Chung JM, Lee DH, et al: Prostate cancer
bone metastases acquire resistance to androgen deprivation via
WNT5A-mediated BMP-6 induction. Br J Cancer. 110:1634–1644. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bergen ES, Berghoff AS, Medjedovic M,
Rudas M, Fitzal F, Bago-Horvath Z, Dieckmann K, Mader RM, Exner R,
Gnant M, et al: Continued endocrine therapy is associated with
improved survival in patients with breast cancer brain metastases.
Clin Cancer Res. 25:2737–2744. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yao B, Wang J, Qu S, Liu Y, Jin Y, Lu J,
Bao Q, Li L, Yuan H and Ma C: Upregulated osterix promotes invasion
and bone metastasis and predicts for a poor prognosis in breast
cancer. Cell Death Dis. 10:282019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mangelsdorf DJ, Thummel C, Beato M,
Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M,
Chambon P, et al: The nuclear receptor superfamily: The second
decade. Cell. 83:835–839. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Girdler F and Brotherick I: The oestrogen
receptors (ER alpha and ER beta) and their role in breast cancer: A
review. Breast. 9:194–200. 2000. View Article : Google Scholar
|
|
33
|
Suzuki H, Ueda T, Ichikawa T and Ito H:
Androgen receptor involvement in the progression of prostate
cancer. Endocr Relat Cancer. 10:209–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Carroll JS: Mechanisms of oestrogen
receptor (ER) gene regulation in breast cancer. Eur J Endocrinol.
175:R41–R49. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Russell DW and Wilson JD: Steroid 5
alpha-reductase: Two genes/two enzymes. Annu Rev Biochem. 63:25–61.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Marcelli M and Cunningham GR: Hormonal
signaling in prostatic hyperplasia and neoplasia. J Clin Endocrinol
Metab. 84:3463–3468. 1999.PubMed/NCBI
|
|
37
|
Sommer S and Fuqua SA: Estrogen receptor
and breast cancer. Semin Cancer Biol. 11:339–352. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Alluri PG, Speers C and Chinnaiyan AM:
Estrogen receptor mutations and their role in breast cancer
progression. Breast Cancer Res. 16:4942014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mc Cormack O, Chung WY, Fitzpatrick P,
Cooke F, Flynn B, Harrison M, Fox E, Gallagher E, McGoldrick A,
Dervan PA, et al: Progesterone receptor B (PRB) promoter
hypermethylation in sporadic breast cancer: Progesterone receptor B
hypermethylation in breast cancer. Breast Cancer Res Treat.
111:45–53. 2008. View Article : Google Scholar
|
|
40
|
Wang H, Lee EW, Zhou L, Leung PC, Ross DD,
Unadkat JD and Mao Q: Progesterone receptor (PR) isoforms PRA and
PRB differentially regulate expression of the breast cancer
resistance protein in human placental choriocarcinoma BeWo cells.
Mol Pharmacol. 73:845–854. 2008. View Article : Google Scholar
|
|
41
|
Wu X, Zhang X, Zhang H, Su P, Li W, Li L,
Wang Y, Liu W, Gao P and Zhou G: Progesterone receptor
downregulates breast cancer resistance protein expression via
binding to the progesterone response element in breast cancer.
Cancer Sci. 103:959–967. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Grimm SL, Hartig SM and Edwards DP:
Progesterone receptor signaling mechanisms. J Mol Biol.
428:3831–3849. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dowsett M: Overexpression of HER-2 as a
resistance mechanism to hormonal therapy for breast cancer. Endocr
Relat Cancer. 8:191–195. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kurokawa H and Arteaga CL: ErbB (HER)
receptors can abrogate antiestrogen action in human breast cancer
by multiple signaling mechanisms. Clin Cancer Res. 9:511S–515S.
2003.PubMed/NCBI
|
|
45
|
Hsu JL and Hung MC: The role of HER2,
EGFR, and other receptor tyrosine kinases in breast cancer. Cancer
Metastasis Rev. 35:575–588. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Järvinen TAH, Pelto-Huikko M, Holli K and
Isola J: Estrogen receptor beta is coexpressed with ERalpha and PR
and associated with nodal status, grade, and proliferation rate in
breast cancer. Am J Pathol. 156:29–35. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fan W, Chang J and Fu P: Endocrine therapy
resistance in breast cancer: Current status, possible mechanisms
and overcoming strategies. Future Med Chem. 7:1511–1519. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ding J, Wang X, Zhang Y, Sang X, Yi J, Liu
C, Liu Z, Wang M, Zhang N, Xue Y, et al: Inhibition of BTF3
sensitizes luminal breast cancer cells to PI3Ka inhibition through
the transcriptional regulation of ERa. Cancer Lett. 440-441:54–63.
2019. View Article : Google Scholar
|
|
49
|
Blessing AM, Rajapakshe K, Reddy Bollu L,
Shi Y, White MA, Pham AH, Lin C, Jonsson P, Cortes CJ, Cheung E, et
al: Transcriptional regulation of core autophagy and lysosomal
genes by the androgen receptor promotes prostate cancer
progression. Autophagy. 13:506–521. 2017. View Article : Google Scholar :
|
|
50
|
McCartan D, Bolger jC, Fagan A, Byrne C,
Hao Y, Qin L, McIlroy M, Xu J, Hill AD, Gaora pO, et al: Global
characterization of the SRC-1 transcriptome identifies ADAM22 as an
ER-independent mediator of endocrine-resistant breast cancer.
Cancer Res. 72:220–229. 2012. View Article : Google Scholar
|
|
51
|
Sahin I, Mega AE and Carneiro BA: Androgen
receptor-independent prostate cancer: An emerging clinical entity.
Cancer Biol Ther. 19:347–348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen CD and Sawyers CL: NF-kappa B
activates prostate-specific antigen expression and is upregulated
in androgen-independent prostate cancer. Mol Cell Biol.
22:2862–2870. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhou Y, Eppenberger-Castori S, Eppenberger
U and Benz CC: The NFkappaB pathway and endocrine-resistant breast
cancer. Endocr Relat Cancer. 12(Suppl 1): S37–S46. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Oida K, Matsuda A, Jung K, Xia Y, Jang H,
Amagai Y, Ahn G, Nishikawa S, Ishizaka S, Jensen-Jarolim E, et al:
Nuclear factor-KB plays a critical role in both intrinsic and
acquired resistance against endocrine therapy in human breast
cancer cells. Sci Rep. 4:40572014. View Article : Google Scholar
|
|
55
|
Malinen M, Niskanen EA, Kaikkonen MU and
Palvimo JJ: Crosstalk between androgen and pro-inflammatory
signaling remodels androgen receptor and NF-κB cistrome to
reprogram the prostate cancer cell transcriptome. Nucleic Acids
Res. 45:619–630. 2017. View Article : Google Scholar
|
|
56
|
Péant B, Diallo JS, Lessard L, Delvoye N,
Le Page C, Saad F and Mes-Masson AM: Regulation of IkappaB kinase
epsilon expression by the androgen receptor and the nuclear
factor-kappaB transcription factor in prostate cancer. Mol Cancer
Res. 5:87–94. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yuan X, Cai C, Chen S, Chen S, Yu Z and
Balk SP: Androgen receptor functions in castration-resistant
prostate cancer and mechanisms of resistance to new agents
targeting the androgen axis. Oncogene. 33:2815–2825. 2014.
View Article : Google Scholar
|
|
58
|
Zhang L, Altuwaijri S, Deng F, Chen L, Lal
P, Bhanot UK, Korets R, Wenske S, Lilja HG, Chang C, et al:
NF-kappaB regulates androgen receptor expression and prostate
cancer growth. Am J Pathol. 175:489–499. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jin R, Yamashita H, Yu X, Wang J, Franco
OE, Wang Y, Hayward SW and Matusik RJ: Inhibition of NF-kappa B
signaling restores responsiveness of castrate-resistant prostate
cancer cells to anti-androgen treatment by decreasing androgen
receptor-variant expression. Oncogene. 34:3700–3710. 2015.
View Article : Google Scholar
|
|
60
|
Nadiminty N, Tummala R, Liu C, Yang J, Lou
W, Evans CP and Gao AC: NF-κB2/p52 induces resistance to
enzalutamide in prostate cancer: Role of androgen receptor and its
variants. Mol Cancer Ther. 12:1629–1637. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Staal J and Beyaert R: Inflammation and
NF-kappaB signaling in prostate cancer: Mechanisms and clinical
implications. Cells. 7:72018. View Article : Google Scholar
|
|
62
|
Sas L, Lardon F, Vermeulen PB, Hauspy J,
Van Dam P, Pauwels P, Dirix LY and Van Laere SJ: The interaction
between ER and NFkB in resistance to endocrine therapy. Breast
Cancer Res. 14:2122012. View Article : Google Scholar
|
|
63
|
Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z,
Wang S and Lin Y: Interleukin-8 upregulates integrin β3 expression
and promotes estrogen receptor-negative breast cancer cell invasion
by activating the PI3K/Akt/NF-κB pathway. Cancer Lett. 364:165–172.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nakshatri H Jr, Bhat-Nakshatri P, Martin
DA, Goulet RJ Jr and Sledge GW Jr: Constitutive activation of
NF-kappaB during progression of breast cancer to
hormone-independent growth. Mol Cell Biol. 17:3629–3639. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Belguise K and Sonenshein GE: PKCtheta
promotes c-Rel-driven mammary tumorigenesis in mice and humans by
repressing estrogen receptor alpha synthesis. J Clin Invest.
117:4009–4021. 2007.PubMed/NCBI
|
|
66
|
Wang X, Belguise K, Kersual N, Kirsch KH,
Mineva ND, Galtier F, Chalbos D and Sonenshein GE: Oestrogen
signalling inhibits invasive phenotype by repressing RelB and its
target BCL2. Nat Cell Biol. 9:470–478. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang X, Belguise K, O'Neill CF,
Sanchez-Morgan N, Romagnoli M, Eddy SF, Mineva ND, Yu Z, Min C,
Trinkaus-Randall V, et al: RelB NF-kappaB represses estrogen
receptor alpha expression via induction of the zinc finger protein
Blimp1. Mol Cell Biol. 29:3832–3844. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Pradhan M, Baumgarten SC, Bembinster LA
and Frasor J: CBP mediates NF-κB-dependent histone acetylation and
estrogen receptor recruitment to an estrogen response element in
the BIRC3 promoter. Mol Cell Biol. 32:569–575. 2012. View Article : Google Scholar :
|
|
69
|
Frasor J, El-Shennawy L, Stender JD and
Kastrati I: NFkB affects estrogen receptor expression and activity
in breast cancer through multiple mechanisms. Mol Cell Endocrinol.
418:235–239. 2015. View Article : Google Scholar
|
|
70
|
Zeligs KP, Neuman MK and Annunziata CM:
Molecular pathways: The balance between cancer and the immune
system challenges the therapeutic specificity of targeting nuclear
factor-kB signaling for cancer treatment. Clin Cancer Res.
22:4302–4308. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sun SC: Non-canonical NF-κB signaling
pathway. Cell Res. 21:71–85. 2011. View Article : Google Scholar
|
|
72
|
Kastrati I, Siklos MI, Calderon-Gierszal
EL, El-Shennawy L, Georgieva G, Thayer EN, Thatcher GR and Frasor
J: Dimethyl fumarate inhibits the nuclear factor kB pathway in
breast cancer cells by covalent modification of p65 protein. J Biol
Chem. 291:3639–3647. 2016. View Article : Google Scholar
|
|
73
|
Vrábel D, Pour L and Ševčíková S: The
impact of NF-κB signaling on pathogenesis and current treatment
strategies in multiple myeloma. Blood Rev. 34:56–66. 2019.
View Article : Google Scholar
|
|
74
|
Park MH and Hong JT: Roles of NF-κB in
cancer and inflammatory diseases and their therapeutic approaches.
Cells. 5:52016. View Article : Google Scholar
|
|
75
|
Maubach G, Feige MH, Lim MCC and Naumann
M: NF-kappaB-inducing kinase in cancer. Biochim Biophys Acta Rev
Cancer. 1871:40–49. 2019. View Article : Google Scholar
|
|
76
|
Gray CM, Remouchamps C, McCorkell KA, Solt
LA, Dejardin E, Orange JS and May MJ: Noncanonical NF-κB signaling
is limited by classical NF-κB activity. Sci Signal. 7:ra132014.
View Article : Google Scholar
|
|
77
|
Min J, Zaslavsky A, Fedele G, McLaughlin
SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Macconaill LE,
Beroukhim R, et al: An oncogene-tumor suppressor cascade drives
metastatic prostate cancer by coordinately activating Ras and
nuclear factor-kappaB. Nat Med. 16:286–294. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ammirante M, Luo JL, Grivennikov S,
Nedospasov S and Karin M: B-cell-derived lymphotoxin promotes
castration-resistant prostate cancer. Nature. 464:302–305. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mendonca MS, Turchan WT, Alpuche ME,
Watson CN, Estabrook NC, Chin-Sinex H, Shapiro JB, Imasuen-Williams
IE, Rangel G, Gilley DP, et al: DMAPT inhibits NF-κB activity and
increases sensitivity of prostate cancer cells to X-rays in vitro
and in tumor xenografts in vivo. Free Radic Biol Med. 112:318–326.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kendellen MF, Bradford JW, Lawrence CL,
Clark KS and Baldwin AS: Canonical and non-canonical NF-κB
signaling promotes breast cancer tumor-initiating cells. Oncogene.
33:1297–1305. 2014. View Article : Google Scholar
|
|
81
|
Streicher KL, Willmarth NE, Garcia J,
Boerner JL, Dewey TG and Ethier SP: Activation of a nuclear factor
kappaB/interleukin-1 positive feedback loop by amphiregulin in
human breast cancer cells. Mol Cancer Res. 5:847–861. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Saha S, Mukherjee S, Khan P, Kajal K,
Mazumdar M, Manna A, Mukherjee S, De S, Jana D, Sarkar DK, et al:
Aspirin suppresses the acquisition of chemoresistance in breast
cancer by disrupting an NFkappaB-IL6 signaling axis responsible for
the generation of cancer stem cells. Cancer Res. 76:2000–2012.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Watson PA, Arora VK and Sawyers CL:
Emerging mechanisms of resistance to androgen receptor inhibitors
in prostate cancer. Nat Rev Cancer. 15:701–711. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Stender JD, Nwachukwu JC, Kastrati I, Kim
Y, Strid T, Yakir M, Srinivasan S, Nowak J, Izard T and Rangarajan
ES: et al Structural and molecular mechanisms of cytokine-mediated
endocrine resistance in human breast cancer cells. Mol Cell.
65:1122–1135.e1125. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Osborne CK and Schiff R: Mechanisms of
endocrine resistance in breast cancer. Annu Rev Med. 62:233–247.
2011. View Article : Google Scholar
|
|
86
|
Karantanos T, Evans CP, Tombal B, Thompson
TC, Montironi R and Isaacs WB: Understanding the mechanisms of
androgen deprivation resistance in prostate cancer at the molecular
level. Eur Urol. 67:470–479. 2015. View Article : Google Scholar
|
|
87
|
Crona DJ and Whang YE: Androgen
receptor-dependent and -independent mechanisms involved in prostate
cancer therapy resistance. Cancers (Basel). 9:92017. View Article : Google Scholar
|
|
88
|
Lee JW, Kim GY and Kim JH: Androgen
receptor is up-regulated by a BLT2-linked pathway to contribute to
prostate cancer progression. Biochem Biophys Res Commun.
420:428–433. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Penney RB and Roy D: Thioredoxin-mediated
redox regulation of resistance to endocrine therapy in breast
cancer. Biochim Biophys Acta. 1836:60–79. 2013.PubMed/NCBI
|
|
90
|
Bakin RE, Gioeli D, Bissonette EA and
Weber MJ: Attenuation of Ras signaling restores androgen
sensitivity to hormone-refractory C4-2 prostate cancer cells.
Cancer Res. 63:1975–1980. 2003.PubMed/NCBI
|
|
91
|
Mulholland DJ, Kobayashi N, Ruscetti M,
Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK
activation cooperate to promote EMT and metastasis initiated from
prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Heckler MM, Thakor H, Schafer CC and
Riggins RB: ERK/MAPK regulates ERRγ expression, transcriptional
activity and receptor-mediated tamoxifen resistance in
ER+ breast cancer. FEBS J. 281:2431–2442. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hong SK, Jeong JH, Chan AM and Park JI:
AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation
in prostate cancer cells in response to androgen depletion. Exp
Cell Res. 319:1732–1743. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang H, Zhang L, Fu Y, Fang F, Jiang Y,
Dong Y and Zhu W: CSL regulates AKT to mediate androgen
independence in prostate cancer progression. Prostate. 76:140–150.
2016. View Article : Google Scholar
|
|
95
|
Lu S, Ren C, Liu Y and Epner DE: PI3K-Akt
signaling is involved in the regulation of p21(WAF/CIP) expression
and androgen-independent growth in prostate cancer cells. Int J
Oncol. 28:245–251. 2006.
|
|
96
|
Lee SO, Lou W, Nadiminty N, Lin X and Gao
AC: Requirement for NF-(kappa)B in interleukin-4-induced androgen
receptor activation in prostate cancer cells. Prostate. 64:160–167.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Rodriguez M, Luo W, Weng J, Zeng L, Yi Z,
Siwko S and Liu M: PSGR promotes prostatic intraepithelial
neoplasia and prostate cancer xenograft growth through NF-κB.
Oncogenesis. 3:e1142014. View Article : Google Scholar
|
|
98
|
Carver BS, Chapinski C, Wongvipat J,
Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J,
Scher H, et al: Reciprocal feedback regulation of PI3K and androgen
receptor signaling in PTEN-deficient prostate cancer. Cancer Cell.
19:575–586. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Park JI, Lee MG, Cho K, Park BJ, Chae KS,
Byun DS, Ryu BK, Park YK and Chi SG: Transforming growth
factor-beta1 activates interleukin-6 expression in prostate cancer
cells through the synergistic collaboration of the Smad2,
p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene.
22:4314–4332. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Holloway JN, Murthy S and El-Ashry D: A
cytoplasmic substrate of mitogen-activated protein kinase is
responsible for estrogen receptor-alpha down-regulation in breast
cancer cells: The role of nuclear factor-kappaB. Mol Endocrinol.
18:1396–1410. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tian M and Schiemann WP: TGF-beta
stimulation of EMT programs elicits non-genomic ER-alpha activity
and anti-estrogen resistance in breast cancer cells. J Cancer
Metastasis Treat. 3:150–160. 2017. View Article : Google Scholar :
|
|
102
|
Penninkhof F, Grootegoed JA and Blok LJ:
Identification of REPS2 as a putative modulator of NF-kappaB
activity in prostate cancer cells. Oncogene. 23:5607–5615. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Brown NE, Paluch AM, Nashu MA, Komurov K
and Waltz SE: Tumor cell autonomous RON receptor expression
promotes prostate cancer growth under conditions of androgen
deprivation. Neoplasia. 20:917–929. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
House CD, Jordan E, Hernandez L, Ozaki M,
James JM, Kim M, Kruhlak MJ, Batchelor E, Elloumi F, Cam MC, et al:
NFkappaB promotes ovarian tumorigenesis via classical pathways that
support proliferative cancer cells and alternative pathways that
support ALDH(+) cancer stem-like cells. Cancer Res. 77:6927–6940.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Han B, Zhou B, Qu Y, Gao B, Xu Y, Chung S,
Tanaka H, Yang W, Giuliano AE and Cui X: FOXC1-induced
non-canonical WNT5A-MMP7 signaling regulates invasiveness in
triple-negative breast cancer. Oncogene. 37:1399–1408. 2018.
View Article : Google Scholar :
|
|
106
|
Litchfield LM, Appana SN, Datta S and
Klinge CM: COUP-TFII inhibits NFkappaB activation in
endocrine-resistant breast cancer cells. Mol Cell Endocrinol.
382:358–367. 2014. View Article : Google Scholar
|
|
107
|
Rwigemera A, Mamelona J and Martin LJ:
Inhibitory effects of fucoxanthinol on the viability of human
breast cancer cell lines MCF-7 and MDA-MB-231 are correlated with
modulation of the NF-kappaB pathway. Cell Biol Toxicol. 30:157–167.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Vogel CF, Li W, Wu D, Miller JK, Sweeney
C, Lazennec G, Fujisawa Y and Matsumura F: Interaction of aryl
hydrocarbon receptor and NF-κB subunit RelB in breast cancer is
associated with interleukin-8 overexpression. Arch Biochem Biophys.
512:78–86. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Bekki K, Vogel H, Li W, Ito T, Sweeney C,
Haarmann- Stemmann T, Matsumura F and Vogel CF: The aryl
hydrocarbon receptor (AhR) mediates resistance to apoptosis induced
in breast cancer cells. Pestic Biochem Physiol. 120:5–13. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Shah KN, Wilson EA, Malla R, Elford HL and
Faridi JS: Targeting ribonucleotide reductase M2 and NF-kappaB
activation with didox to circumvent tamoxifen resistance in breast
cancer. Mol Cancer Ther. 14:2411–2421. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yde CW, Emdal KB, Guerra B and Lykkesfeldt
AE: NFkB signaling is important for growth of antiestrogen
resistant breast cancer cells. Breast Cancer Res Treat. 135:67–78.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Catz SD and Johnson JL: Transcriptional
regulation of bcl-2 by nuclear factor kappa B and its significance
in prostate cancer. Oncogene. 20:7342–7351. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Srinivasan S, Kumar R, Koduru S,
Chandramouli A and Damodaran C: Inhibiting TNF-mediated signaling:
A novel therapeutic paradigm for androgen independent prostate
cancer. Apoptosis. 15:153–161. 2010. View Article : Google Scholar :
|
|
114
|
Liu VWS, Yau WL, Tam CW, Yao KM and Shiu
SY: Melatonin inhibits androgen receptor splice variant-7
(AR-V7)-induced nuclear factor-kappa B (NF-kappaB) activation and
NF-kappaB activator-induced AR-V7 expression in prostate cancer
cells: Potential implications for the use of melatonin in
castration-resistant prostate cancer (CRPC) therapy. Int J Mol Sci.
18:182017. View Article : Google Scholar
|
|
115
|
Zerbini LF, Wang Y, Cho JY and Libermann
TA: Constitutive activation of nuclear factor kappaB p50/p65 and
Fra-1 and JunD is essential for deregulated interleukin 6
expression in prostate cancer. Cancer Res. 63:2206–2215.
2003.PubMed/NCBI
|
|
116
|
Araki S, Omori Y, Lyn D, Singh RK,
Meinbach DM, Sandman Y, Lokeshwar VB and Lokeshwar BL:
Interleukin-8 is a molecular determinant of androgen independence
and progression in prostate cancer. Cancer Res. 67:6854–6862. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lee SO, Pinder E, Chun JY, Lou W, Sun M
and Gao AC: Interleukin-4 stimulates androgen-independent growth in
LNCaP human prostate cancer cells. Prostate. 68:85–91. 2008.
View Article : Google Scholar
|
|
118
|
Jeong JH, Park SJ, Dickinson SI and Luo
JL: A constitutive intrinsic inflammatory signaling circuit
composed of miR-196b, Meis2, PPP3CC, and p65 drives prostate cancer
castration resistance. Mol Cell. 65:154–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
McCall P, Bennett L, Ahmad I, Mackenzie
LM, Forbes IW, Leung HY, Sansom OJ, Orange C, Seywright M,
Underwood MA, et al: NFκB signalling is upregulated in a subset of
castrate-resistant prostate cancer patients and correlates with
disease progression. Br J Cancer. 107:1554–1563. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Shiota M, Yokomizo A, Takeuchi A,
Kashiwagi E, Dejima T, Inokuchi J, Tatsugami K, Uchiumi T and Eto
M: Protein kinase C regulates Twist1 expression via NF-κB in
prostate cancer. Endocr Relat Cancer. 24:171–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Pratt MAC, Bishop TE, White D, Yasvinski
G, Menard M, Niu MY and Clarke R: Estrogen withdrawal-induced
NF-kappaB activity and bcl-3 expression in breast cancer cells:
Roles in growth and hormone independence. Mol Cell Biol.
23:6887–6900. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhou Y, Yau C, Gray JW, Chew K, Dairkee
SH, Moore DH, Eppenberger U, Eppenberger-Castori S and Benz CC:
Enhanced NF kappa B and AP-1 transcriptional activity associated
with antiestrogen resistant breast cancer. BMC Cancer. 7:592007.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Semlali A, Oliva J, Badia E, Pons M and
Duchesne MJ: Immediate early gene X-1 (IEX-1), a hydroxytamoxifen
regulated gene with increased stimulation in MCF-7 derived
resistant breast cancer cells. J Steroid Biochem Mol Biol.
88:247–259. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hu R, Warri A, Jin L, Zwart A, Riggins RB,
Fang HB and Clarke R: NF-κB signaling is required for XBP1
(unspliced and spliced)-mediated effects on antiestrogen
responsiveness and cell fate decisions in breast cancer. Mol Cell
Biol. 35:379–390. 2015. View Article : Google Scholar
|
|
125
|
Yamaguchi N, Nakayama Y and Yamaguchi N:
Down-regulation of Forkhead box protein A1 (FOXA1) leads to cancer
stem cell-like properties in tamoxifen-resistant breast cancer
cells through induction of interleukin-6. J Biol Chem.
292:8136–8148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hartman ZC, Poage GM, den Hollander P,
Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck
SG, Mills GB, et al: Growth of triple-negative breast cancer cells
relies upon coordinate autocrine expression of the proinflammatory
cytokines IL-6 and IL-8. Cancer Res. 73:3470–3480. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Nehra R, Riggins RB, Shajahan AN, Zwart A,
Crawford AC and Clarke R: BCL2 and CASP8 regulation by NF-kappaB
differentially affect mitochondrial function and cell fate in
antiestrogen-sensitive and -resistant breast cancer cells. FASEB J.
24:2040–2055. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Riggins RB, Zwart A, Nehra R and Clarke R:
The nuclear factor kB inhibitor parthenolide restores ICI 182,780
(Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant
breast cancer cells. Mol Cancer Ther. 4:33–41. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Nadiminty N, Lou W, Sun M, Chen J, Yue J,
Kung HJ, Evans CP, Zhou Q and Gao AC: Aberrant activation of the
androgen receptor by NF-kappaB2/p52 in prostate cancer cells.
Cancer Res. 70:3309–3319. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Nadiminty N, Chun JY, Lou W, Lin X and Gao
AC: NF-kappaB2/p52 enhances androgen-independent growth of human
LNCaP cells via protection from apoptotic cell death and cell cycle
arrest induced by androgen-deprivation. Prostate. 68:1725–1733.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Nadiminty N, Dutt S, Tepper C and Gao AC:
Microarray analysis reveals potential target genes of
NF-kappaB2/p52 in LNCaP prostate cancer cells. Prostate.
70:276–287. 2010.
|
|
132
|
Mehraein-Ghomi F, Church DR, Schreiber CL,
Weichmann MA, Basu HS and Wilding G: Inhibitor of p52 NF-κB subunit
and androgen receptor (AR) interaction reduces growth of human
prostate cancer cells by abrogating nuclear translocation of p52
and phosphorylated ARser81. Genes Cancer. 6:428–444.
2015.PubMed/NCBI
|
|
133
|
Nadiminty N, Tummala R, Liu C, Lou W,
Evans CP and Gao AC: NF-kappaB2/p52:c-Myc:hnRNPA1 pathway regulates
expression of androgen receptor splice variants and enzalutamide
sensitivity in prostate cancer. Mol Cancer Ther. 14:1884–1895.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Cui Y, Nadiminty N, Liu C, Lou W, Schwartz
CT and Gao AC: Upregulation of glucose metabolism by NF-κB2/p52
mediates enzalutamide resistance in castration-resistant prostate
cancer cells. Endocr Relat Cancer. 21:435–442. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
House CD, Grajales V, Ozaki M, Jordan E,
Wubneh H, Kimble DC, James JM, Kim MK and Annunziata CM: Ikke
cooperates with either MEK or non-canonical NF-κB driving growth of
triple-negative breast cancer cells in different contexts. BMC
Cancer. 18:5952018. View Article : Google Scholar
|
|
136
|
Kim YR, Kim IJ, Kang TW, Choi C, Kim KK,
Kim MS, Nam KI and Jung C: HOXB13 downregulates intracellular zinc
and increases NF-κB signaling to promote prostate cancer
metastasis. Oncogene. 33:4558–4567. 2014. View Article : Google Scholar
|
|
137
|
Huerta-Yepez S, Vega M, Jazirehi A, Garban
H, Hongo F, Cheng G and Bonavida B: Nitric oxide sensitizes
prostate carcinoma cell lines to TRAIL-mediated apoptosis via
inactivation of NF-kappa B and inhibition of Bcl-xl expression.
Oncogene. 23:4993–5003. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Domingo-Domenech J, Oliva C, Rovira A,
Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campás C,
Dang L, et al: Interleukin 6, a nuclear factor-kappaB target,
predicts resistance to docetaxel in hormone-independent prostate
cancer and nuclear factor-kappaB inhibition by PS-1145 enhances
docetaxel antitumor activity. Clin Cancer Res. 12:5578–5586. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Tsai CH, Tzeng SF, Hsieh SC, Yang YC,
Hsiao YW, Tsai MH and Hsiao PW: A standardized herbal extract
mitigates tumor inflammation and augments chemotherapy effect of
docetaxel in prostate cancer. Sci Rep. 7:156242017. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Nathan S, Ma Y, Tomita YA, De Oliveira E,
Brown ML and Rosen EM: BRCA1-mimetic compound NSC35446. HCl
inhibits IKKB expression by reducing estrogen receptor-a occupancy
in the IKKB promoter and inhibits NF-κB activity in
antiestrogen-resistant human breast cancer cells. Breast Cancer Res
Treat. 166:681–693. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Jiang L, Wang P, Sun YJ and Wu YJ:
Ivermectin reverses the drug resistance in cancer cells through
EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res. 38:2652019.
View Article : Google Scholar
|
|
142
|
Coker-Gurkan A, Celik M, Ugur M, Arisan
ED, Obakan-Yerlikaya P, Durdu ZB and Palavan-Unsal N: Curcumin
inhibits autocrine growth hormone-mediated invasion and metastasis
by targeting NF-κB signaling and polyamine metabolism in breast
cancer cells. Amino Acids. 50:1045–1069. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou
J, Yang L, Chen Z and Hann SS: Combination of curcumin and
bicalutamide enhanced the growth inhibition of androgen-independent
prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated
targeting NF-κB/p65 and MUC1-C. J Exp Clin Cancer Res. 34:462015.
View Article : Google Scholar
|
|
144
|
Xu Y, Fang F, St Clair DK, Josson S,
Sompol P, Spasojevic I and St Clair WH: Suppression of
RelB-mediated manganese superoxide dismutase expression reveals a
primary mechanism for radiosensitization effect of
1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. Mol
Cancer Ther. 6:2048–2056. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Lundqvist J, Yde CW and Lykkesfeldt AE:
1a,25-dihydroxyvitamin D3 inhibits cell growth and NFκB signaling
in tamoxifen-resistant breast cancer cells. Steroids. 85:30–35.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
deGraffenried LA, Chandrasekar B,
Friedrichs WE, Donzis E, Silva J, Hidalgo M, Freeman JW and Weiss
GR: NF-kappa B inhibition markedly enhances sensitivity of
resistant breast cancer tumor cells to tamoxifen. Ann Oncol.
15:885–890. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Lobanova YS, Scherbakov AM, Shatskaya VA,
Evteev VA and Krasil'nikov MA: NF-kappaB suppression provokes the
sensitization of hormone-resistant breast cancer cells to estrogen
apoptosis. Mol Cell Biochem. 324:65–71. 2009. View Article : Google Scholar
|
|
148
|
Xu Y, Fang F, Miriyala S, Crooks PA,
Oberley TD, Chaiswing L, Noel T, Holley AK, Zhao Y, Kiningham KK,
et al: KEAP1 is a redox sensitive target that arbitrates the
opposing radiosensitive effects of parthenolide in normal and
cancer cells. Cancer Res. 73:4406–4417. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Josson S, Xu Y, Fang F, Dhar SK, St Clair
DK and St Clair WH: RelB regulates manganese superoxide dismutase
gene and resistance to ionizing radiation of prostate cancer cells.
Oncogene. 25:1554–1559. 2006. View Article : Google Scholar
|
|
150
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y
and Tang J: Cytokine-mediated therapeutic resistance in breast
cancer. Cytokine. 108:151–159. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Khurana N and SIKKa SC: Targeting
crosstalk between Nrf-2, NF-κB and androgen receptor signaling in
prostate cancer. Cancers (Basel). 10:102018. View Article : Google Scholar
|
|
152
|
Ahmed KM, Zhang H and Park CC: NF-κB
regulates radioresistance mediated by β1-integrin in
three-dimensional culture of breast cancer cells. Cancer Res.
73:3737–3748. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Chaturvedi MM, Sung B, Yadav VR, Kannappan
R and Aggarwal BB: NF-κB addiction and its role in cancer: 'one
size does not fit all'. Oncogene. 30:1615–1630. 2011. View Article : Google Scholar
|
|
154
|
Lessard L, Begin LR, Gleave ME, Mes-Masson
AM and Saad F: Nuclear localisation of nuclear factor-kappaB
transcription factors in prostate cancer: An immunohistochemical
study. Br J Cancer. 93:1019–1023. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Zhang Y, Xu Z, Ding J, Tan C, Hu W, Li Y,
Huang W and Xu Y: HZ08 suppresses RelB-activated MnSOD expression
and enhances Radiosensitivity of prostate Cancer cells. J Exp Clin
Cancer Res. 37:1742018. View Article : Google Scholar : PubMed/NCBI
|