Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2020 Volume 56 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2020 Volume 56 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review)

  • Authors:
    • Héctor R. Contreras
    • Fernanda López‑Moncada
    • Enrique A. Castellón
  • View Affiliations / Copyright

    Affiliations: Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
  • Pages: 1075-1082
    |
    Published online on: March 5, 2020
       https://doi.org/10.3892/ijo.2020.5008
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) is the leading cause of male cancer‑associated mortality worldwide. Mortality is associated with metastasis and hormone resistance. Cellular, genetic and molecular mechanisms underlying metastatic progression and hormone resistance are poorly understood. Studies have investigated the local effects of gonadotropin‑releasing hormone (GnRH) analogs (used for androgen deprivation treatments) and the presence of the GnRH receptor (GnRH‑R) on PCa cells. Furthermore, cell subpopulations with stem‑like properties, or cancer stem cells, have been isolated and characterized using a cell culture system derived from explants of human prostate tumors. In addition, the development of preclinical orthotopic models of human PCa in a nonobese diabetic/severe combined immunodeficiency mouse model of compromised immunity has enabled the establishment of a reproducible system of metastatic progression in vivo. There is increasing evidence that metastasis is a complex process involving the cooperative actions of different cancer cell subpopulations, in which cancer stem‑like cells would be responsible for the final step of colonizing premetastatic niches. It has been hypothesized that PCa cells with stemness and mesenchymal signatures act cooperatively in metastatic progression and the inhibition of stemness genes, and that overexpression of androgen receptor (AR) and GnRH‑R decreases the rate the metastasis and sensitizes tumors to hormone therapy. The aim of the present review is to analyze the evidence regarding this cooperative process and the possible influence of stem‑like cell phenotypes, AR and GnRH‑R in metastatic progression and hormone resistance. These aspects may represent an important contribution in the understanding of the mechanisms underlying metastasis and hormone resistance in PCa, and potential routes to blocking these processes, enabling the development of novel therapies that would be particularly relevant for patients with metastatic and castration‑resistant PCa.
View Figures

Figure 1

Figure 2

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Rodgers L, Peer CJ and Figg WD: Diagnosis, staging and risk stratification in prostate cancer: Utilizing diagnostic tools to avoid unnecessary therapies and side effects. Cancer Biol Ther. 18:470–472. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Shah RB and Zhou M: Recent advances in prostate cancer pathology: Gleason grading and beyond. Pathol Int. 66:260–272. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Heijnsdijk EAM, Bangma CH, Borràs JM, de Carvalho TM, Castells X, Eklund M, Espinàs JA, Graefen M, Grönberg H, Lansdorp-Vogelaar I, et al: Summary statement on screening for prostate cancer in Europe. Int J Cancer. 142:741–746. 2018. View Article : Google Scholar

5 

Litwin MS and Tan HJ: The diagnosis and treatment of prostate cancer: A review. J Am Med Assoc. 317:2532–2542. 2017. View Article : Google Scholar

6 

Ost P, Bossi A, Decaestecker K, De Meerleer G, Giannarini G, Karnes RJ, Roach M III and Briganti A: Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: A systematic review of the literature. Eur Urol. 67:852–863. 2015. View Article : Google Scholar

7 

Fakhrejahani F, Madan RA and Dahut WL: Management options for biochemically recurrent prostate cancer. Curr Treat Options Oncol. 18:262017. View Article : Google Scholar : PubMed/NCBI

8 

Artibani W, Porcaro AB, De Marco V, Cerruto MA and Siracusano S: Management of biochemical recurrence after primary curative treatment for prostate cancer: A review. Urol Int. 100:251–262. 2018. View Article : Google Scholar

9 

Sartor O and de Bono JS: Metastatic prostate cancer. N Engl J Med. 378:645–657. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Song C, Kang T, Yoo S, Jeong IG, Ro JY, Hong JH, Kim CS and Ahn H: Tumor volume, surgical margin, and the risk of biochemical recurrence in men with organ-confined prostate cancer. Urol Oncol. 31:168–174. 2013. View Article : Google Scholar

11 

Suzman DL, Boikos SA and Carducci MA: Bone-targeting agents in prostate cancer. Cancer Metastasis Rev. 33:619–628. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Dong L, Zieren RC, Xue W, de Reijke TM and Pienta KJ: Metastatic prostate cancer remains incurable, why? Asian J Urol. 6:26–41. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Pelekanou V and Castanas E: Androgen control in prostate cancer. J Cell Biochem. 2234:2224–2234. 2016. View Article : Google Scholar

14 

Tan MH, Li J, Xu HE, Melcher K and Yong EL: Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 36:3–23. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Fujita K and Nonomura N: Role of androgen receptor in prostate cancer: A review. World J Mens Health. 36:288–295. 2018.

16 

Rodriguez KM, Pastuszak AW and Khera M: The role of testosterone therapy in the setting of prostate cancer. Curr Urol Rep. 19:672018. View Article : Google Scholar : PubMed/NCBI

17 

Obinata D, Takayama K, Takahashi S and Inoue S: Crosstalk of the androgen receptor with transcriptional collaborators: Potential therapeutic targets for castration-resistant prostate cancer. Cancers (Basel). 9:pii: E22. 2017. View Article : Google Scholar

18 

Grossmann M, Cheung AS and Zajac JD: Androgens and prostate cancer; pathogenesis and deprivation therapy. Best Pract Res Clin Endocrinol Metab. 27:603–616. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Hahn AW, Hale P, Rathi N and Agarwal N: Novel androgen axis systemic therapies for metastatic hormone-sensitive prostate cancer. Curr Opin Urol. 27:559–565. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Shore ND, Abrahamsson P, Anderson J, Crawford ED and Lange P: New considerations for ADT in advanced prostate cancer and the emerging role of GnRH antagonists. Prostate Cancer Prostatic Dis. 16:7–15. 2013. View Article : Google Scholar

21 

Lama G, Papi M, Angelucci C, Maulucci G, Sica G and De Spirito M: Leuprorelin acetate long-lasting effects on GnRH receptors of prostate cancer cells: An atomic force microscopy study of agonist/receptor interaction. PLoS One. 8:e525302013. View Article : Google Scholar : PubMed/NCBI

22 

Thomas BC and Neal DE: Androgen deprivation treatment in prostate cancer. BMJ. 346:1–5. 2013. View Article : Google Scholar

23 

Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M and Rocchi P: The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev. 41:588–597. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Yuan X, Cai C, Chen S, Chen S, Yu Z and Balk SP: Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 33:2815–2825. 2014. View Article : Google Scholar

25 

Fujimoto N: Role of the androgen-androgen receptor axis in the treatment resistance of advanced prostate cancer: From androgen-dependent to castration resistant and further. J UOEH. 38:129–138. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Chandrasekar T, Yang JC, Gao AC and Evans CP: Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 4:365–380. 2015.

27 

Tilki D, Schaeffer EM and Evans CP: Understanding mechanisms of resistance in metastatic castration-resistant prostate cancer: The role of the androgen receptor. Eur Urol Focus. 2:499–505. 2019. View Article : Google Scholar

28 

Huang Y, Jiang X, Liang X and Jiang G: Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett. 15:6063–6076. 2018.PubMed/NCBI

29 

Ho Y and Dehm SM: Androgen receptor rearrangement and splicing variants in resistance to endocrine therapies in prostate cancer. Endocrinology. 158:1533–1542. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Recouvreux MV, Wu JB, Gao AC, Zonis S, Chesnokova V, Bhowmick N, Chung LW and Melmed S: Androgen receptor regulation of local growth hormone in prostate cancer cells. Endocrinology. 158:2255–2568. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Stelloo S, Nevedomskaya E, van der Poel HG, de Jong J, van Leenders GJ, Jenster G, Wessels LF, Bergman AM and Zwart W: Androgen receptor profiling predicts prostate cancer outcome. EMBO Mol Med. 7:1450–1464. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Höti N, Shah P, Hu Y, Yang S and Zhang H: Proteomics analyses of prostate cancer cells reveal cellular pathways associated with androgen resistance. Proteomics. 17:2017. View Article : Google Scholar : PubMed/NCBI

33 

Van Den Eeden SK, Lu R, Zhang N, Quesenberry CP Jr, Shan J, Han JS, Tsiatis AC, Leimpeter AD, Lawrence HJ, Febbo PG and Presti JC: A Biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease. Eur Urol. 73:129–138. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Hasegawa S, Nagano H, Konno M, Eguchi H, Tomokuni A, Tomimaru Y, Asaoka T, Wada H, Hama N, Kawamoto K, et al: A crucial epithelial to mesenchymal transition regulator, Sox4/Ezh2 axis is closely related to the clinical outcome in pancreatic cancer patients. Int J Oncol. 48:145–152. 2016. View Article : Google Scholar

37 

Frisch SM, Schaller M and Cieply B: Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci. 126:21–29. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Serrano-Gomez SJ, Maziveyi M and Alahari SK: Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 15:182016. View Article : Google Scholar : PubMed/NCBI

39 

Mateo F, Meca-Cortés O, Celià-Terrassa T, Fernández Y, Abasolo I, Sánchez-Cid L, Bermudo R, Sagasta A, Rodríguez-Carunchio L, Pons M, et al: SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer. 13:2372014. View Article : Google Scholar : PubMed/NCBI

40 

Lin KC, Torga G, Sun Y, Axelrod R, Pienta KJ, Sturm JC and Austin RH: The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin Exp Metastasis. 36:97–108. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DC, de Jong TV, Halsema N, Kazemier HG, Hoekstra-Wakker K, Bradley A, et al: Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol. 17:1152016. View Article : Google Scholar : PubMed/NCBI

42 

Chapman MP, Risom T, Aswani AJ, Langer EM, Sears RC and Tomlin CJ: Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer. PLoS Comput Biol. 15:e10068402019. View Article : Google Scholar : PubMed/NCBI

43 

Eun K, Ham SW and Kim H: Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 50:117–125. 2017. View Article : Google Scholar :

44 

Adamowicz J, Pakravan K, Bakhshinejad B, Drewa T and Babashah S: Prostate cancer stem cells: From theory to practice. Scand J Urol. 51:95–106. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU and Fatatis A: Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene. 36:2846–2856. 2017. View Article : Google Scholar :

46 

Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malouf D, Gillatt D and Li Y: Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 7:11002–11017. 2016.

47 

Geng SQ, Alexandrou AT and Li JJ: Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett. 349:1–7. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U and Castelo-Branco P: Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol Int. 99:125–136. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Rosario DJ, Davey P, Green J, Greene D, Turner B, Payne H and Kirby M: The role of gonadotrophin-releasing hormone antagonists in the treatment of patients with advanced hormone-dependent prostate cancer in the UK. World J Urol. 34:1601–1609. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Poelaert F, Kumps C, Lumen N, Verschuere S, Libbrecht L, Praet M, Rottey S, Claeys T, Ost P, Decaestecker K, et al: Androgen receptor gene copy number and protein expression in treatment-naïve prostate cancer. Urol Int. 99:222–228. 2017. View Article : Google Scholar

51 

Prekovic S, van Royen ME, Voet AR, Geverts B, Houtman R, Melchers D, Zhang KY, Van den Broeck T, Smeets E, Spans L, et al: The effect of F877L and T878A mutations on androgen receptor response to enzalutamide. Mol Cancer Ther. 15:1702–1712. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Sutinen P, Malinen M, Heikkinen S and Palvimo JJ: SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Res. 42:8310–8319. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Rowlands MA, Holly JM, Hamdy F, Phillips J, Goodwin L, Marsden G, Gunnell D, Donovan J, Neal DE and Martin RM: Serum insulin-like growth factors and mortality in localised and advanced clinically detected prostate cancer. Cancer Causes Control. 23:347–354. 2012. View Article : Google Scholar

54 

Lescarbeau RM, Seib FP, Prewitz M, Werner C and Kaplan DL: In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors. PLoS One. 7:e403722012. View Article : Google Scholar : PubMed/NCBI

55 

Penning TM and Tamae D: Current advances in intratumoral androgen metabolism in castration-resistant prostate cancer. Curr Opin Endocrinol Diabetes Obes. 23:264–270. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Price DK, Chau CH, Till C, Goodman PJ, Leach RJ, Johnson-Pais TL, Hsing AW, Hoque A, Parnes HL, Schenk JM, et al: Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the prostate cancer prevention trial. Cancer. 122:2332–2340. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Clementi M, Sánchez C, Benitez DA, Contreras HR, Huidobro C, Cabezas J, Acevedo C and Castellón EA: Gonadotropin releasing hormone analogs induce apoptosis by extrinsic pathway involving p53 phosphorylation in primary cell cultures of human prostatic adenocarcinomas. Prostate. 69:1025–1033. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Sánchez C, Clementi M, Benitez D, Contreras H, Huidobro C and Castellón E: Effect of GnRH analogs on the expression of TrkA and p75 neurotrophin receptors in primary cell cultures from human prostate adenocarcinoma. Prostate. 65:195–202. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Angelucci C, Lama G, Iacopino F, Ferracuti S, Bono AV, Millar RP and Sica G: GnRH receptor expression in human prostate cancer cells is affected by hormones and growth factors. Endocrine. 36:87–97. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Sánchez CA, Mercado AJ, Contreras HR, Cabezas JC, Huidobro CC and Castellón EA: Pharmacoperone IN3 enhances the apoptotic effect of leuprolide in prostate cancer cells by increasing the gonadotropin-releasing hormone receptor in the cell membrane. Anticancer Drugs. 23:959–969. 2012.PubMed/NCBI

61 

Castellón E, Clementi M, Hitschfeld C, Sánchez C, Benítez D, Sáenz L, Contreras H and Huidobro C: Effect of leuprolide and cetrorelix on cell growth, apoptosis, and GnRH receptor expression in primary cell cultures from human prostate carcinoma. Cancer Invest. 24:261–268. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Saltzstein D, Shore ND, Moul JW, Chu F, Concepcion R, de la Motte S, McLane JA, Atkinson S, Yang A and Crawford ED: Pharmacokinetic and pharmacodynamic comparison of subcutaneous versus intramuscular leuprolide acetate formulations in male subjects. Ther Adv Urol. 10:43–50. 2017. View Article : Google Scholar

63 

Nieto MA and Cano A: The epithelial-mesenchymal transition under control: Global programs to regulate epithelial plasticity. Semin Cancer Biol. 22:361–368. 2012. View Article : Google Scholar : PubMed/NCBI

64 

García de Herreros A and Baulida J: Cooperation, amplification, and feed-back in epithelial-mesenchymal transition. Biochim Biophys Acta. 1825:223–228. 2012.PubMed/NCBI

65 

Savagner P: The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol. 21(Suppl 7): vii89–vii92. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Chen T, You Y, Jiang H and Wang ZZ: Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 232:3261–3272. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Micalizzi DS, Farabaugh SM and Ford HL: Epithelial- mesen-chymal transition in cancer: Parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 15:117–134. 2010. View Article : Google Scholar : PubMed/NCBI

68 

De Craene B and Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Osorio LA, Farfán NM, Castellón EA and Contreras HR: SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 13:778–786. 2016. View Article : Google Scholar :

70 

Orellana-Serradell O, Herrera D, Castellón EA and Contreras HR: The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J Androl. 20:294–299. 2018. View Article : Google Scholar :

71 

Contreras HR, Ledezma RA, Vergara J, Cifuentes F, Barra C, Cabello P, Gallegos I, Morales B, Huidobro C and Castellón EA: The expression of syndecan-1 and -2 is associated with Gleason score and epithelial-mesenchymal transition markers, E-cadherin and beta-catenin, in prostate cancer. Urol Oncol. 28:534–540. 2010. View Article : Google Scholar

72 

Poblete CE, Fulla J, Gallardo M, Muñoz V, Castellón EA, Gallegos I and Contreras HR: Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer. Int J Oncol. 44:647–654. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Farfán N, Ocarez N, Castellón EA, Mejía N, de Herreros AG and Contreras HR: The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci Rep. 8:114672018. View Article : Google Scholar : PubMed/NCBI

74 

Montanari M, Rossetti S, Cavaliere C, D'Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E, Iovane G, Piscitelli R, et al: Epithelial-mesenchymal transition in prostate cancer: An overview. Oncotarget. 8:35376–35389. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Mitra A, Mishra L and Li S: EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 6:10699–10710. 2015. View Article : Google Scholar

76 

Peitzsch C, Tyutyunnykova A, Pantel K and Dubrovska A: Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Ajani JA, Song S, Hochster HS and Steinberg IB: Cancer stem cells: The promise and the potential. Semin Oncol. 42(Suppl 1): S3–S17. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Castellón EA, Valenzuela R, Lillo J, Castillo V, Contreras HR, Gallegos I, Mercado A and Huidobro C: Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biol Res. 45:297–305. 2012. View Article : Google Scholar

79 

Castillo V, Valenzuela R, Huidobro C, Contreras HR and Castellon EA: Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol. 45:985–994. 2014. View Article : Google Scholar : PubMed/NCBI

80 

McGranahan N and Swanton C: Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell. 168:613–628. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Bosman FT: Tumor heterogeneity: Will it change what pathologists do. Pathobiology. 85:18–22. 2018. View Article : Google Scholar

82 

Jolly MK and Celià-Terrassa T: Dynamics of phenotypic heterogeneity during EMT and stemness in cancer progression. J Clin Med. 8:pii: E1542. 2019. View Article : Google Scholar

83 

Bu Y and Cao D: The origin of cancer stem cells. Front Biosci (Schol Ed). 4:819–830. 2012.

84 

Parsons BL: Multiclonal tumor origin: Evidence and implications. Mutat Res. 777:1–18. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Vicente-Dueñas C, Hauer J, Cobaleda C, Borkhardt A and Sánchez-García I: Epigenetic priming in cancer initiation. Trends Cancer. 4:408–417. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Ye X and Weinberg RA: Epithelial-mesenchymal plasticity: A central regulator of cancer progression. Trends Cell Biol. 25:675–686. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Graham TA and Sottoriva A: Measuring cancer evolution from the genome. J Pathol. 241:183–191. 2017. View Article : Google Scholar

88 

Francart M, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M and Gilles C: Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev Dyn. 247:432–450. 2018. View Article : Google Scholar

89 

Carnero A and Lleonart M: The hypoxic microenvironment: A determinant of cancer stem cell evolution. Bioessays. 38(Suppl 1): S65–S74. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Yeo CD, Kang N, Choi SY, Kim BN, Park CK, Kim JW, Kim YK and Kim SJ: The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: A possible link to epigenetic regulation. Korean J Intern Med. 32:589–599. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Rhim AD: Epithelial to mesenchymal transition and the generation of stem-like cells in pancreatic cancer. Pancreatology. 13:114–117. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL, Chen HL, Zhang GY and Deng LL: Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol. 43:113–120. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Li N, Babaei-Jadidi R, Lorenzi F, Spencer-Dene B, Clarke P, Domingo E, Tulchinsky E, Vries RGJ, Kerr D, Pan Y, et al: An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis. 8:132019. View Article : Google Scholar : PubMed/NCBI

94 

Croker AK and Allan AL: Cancer stem cells: Implications for the progression and treatment of metastatic disease. J Cell Mol Med. 12:374–390. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Massagué J and Obenauf AC: Metastatic colonization by circulating tumour cells. Nature. 529:298–306. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Hayashida T, Jinno H, Kitagawa Y and Kitajima M: Cooperation of cancer stem cell properties and epithelial-mesenchymal transition in the establishment of breast cancer metastasis. J Oncol. 2011:5914272011. View Article : Google Scholar : PubMed/NCBI

97 

Hsu CL, Chung FH, Chen CH, Hsu TT, Liu SM, Chung DS, Hsu YF, Chen CL, Ma N and Lee HC: Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions. Sci Rep. 6:325232016. View Article : Google Scholar : PubMed/NCBI

98 

Yun EJ, Lo UG and Hsieh JT: The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges. Asian J Urol. 3:203–210. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Lin CJ, Lo UG and Hsieh JT: The regulatory pathways leading to stem-like cells underlie prostate cancer progression. Asian J Androl. 21:233–240. 2019. View Article : Google Scholar :

100 

Sánchez CA, Andahur EI, Valenzuela R, Castellón EA, Fullá JA, Ramos CG and Triviño JC: Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 7:3993–4008. 2016. View Article : Google Scholar :

101 

Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organo-tropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Langley RR and Fidler IJ: The seed and soil hypothesis revisited-The role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 128:2527–2535. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Miftakhova R, Hedblom A, Semenas J, Robinson B, Simoulis A, Malm J, Rizvanov A, Heery DM, Mongan NP, Maitland NJ, et al: Cyclin A1 and P450 aromatase promote metastatic homing and growth of stem-like prostate cancer cells in the bone marrow. Cancer Res. 76:2453–2464. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Shiozawa Y, Berry JE, Eber MR, Jung Y, Yumoto K, Cackowski FC, Yoon HJ, Parsana P, Mehra R, Wang J, et al: The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget. 7:41217–41232. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Sharma S, Xing F, Liu Y, Wu K, Said N, Pochampally R, Shiozawa Y, Lin HK, Balaji KC and Watabe K: Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in the bone. J Biol Chem. 291:19351–19363. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Jin J, Dayyani F and Gallick G: Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer. 128:2545–2561. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Peyruchaud O, Leblanc R and David M: Pleiotropic activity of lysophosphatidic acid in bone metastasis. Biochim Biophys Acta. 1831:99–104. 2013. View Article : Google Scholar

108 

Roodman GD: Genes associate with abnormal bone cell activity in bone metastasis. Cancer Metastasis Rev. 31:569–578. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Zhang T and Armstrong AJ: Clinical utility of circulating tumor cells in advanced prostate cancer. Curr Oncol Rep. 18:32016. View Article : Google Scholar

110 

Barriere G, Fici P, Gallerani G, Fabbri F, Zoli W and Rigaud M: Circulating tumor cells and epithelial, mesenchymal and stemness markers: Characterization of cell subpopulations. Ann Transl Med. 2:1092014.PubMed/NCBI

111 

Vogelzang NJ, Fizazi K, Burke JM, De Wit R, Bellmunt J, Hutson TE, Crane E, Berry WR, Doner K, Hainsworth JD, et al: Circulating tumor cells in a phase 3 study of docetaxel and prednisone with or without lenalidomide in metastatic Castration-resistant prostate cancer. Eur Urol. 71:168–171. 2017. View Article : Google Scholar

112 

Srivatsa N, Nagaraja H, Shweta S and Raghunath S: Radical prostatectomy for locally advanced prostate cancers-review of literature. Indian J Surg Oncol. 8:175–180. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Wilt T, Brawe M, Jones K, Barry MJ, Aronson WJ, Fox S, Gingrich JR, Wei JT, Gilhooly P, Grob BM, et al: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 367:203–213. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Celià-Terrassa T, Meca-Cortés Ó, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A, Ell BJ, Bermudo R, Díaz A, Guerra-Rebollo M, et al: Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest. 122:1846–1868. 2012. View Article : Google Scholar

115 

López-Moncada F, Torres MJ, Castellón EA and Contreras HR: Secreted protein acidic and rich in cysteine (SPARC) induces epithelial-mesenchymal transition, enhancing migration and invasion, and is associated with high Gleason score in prostate cancer. Asian J Androl. 21:557–564. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Gunasinghe NP, Wells A, Thompson EW and Hugo HJ: Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. 31:469–478. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Bullock MD, Sayan AE, Packham GK and Mirnezami AH: MicroRNAs: Critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell. 104:3–12. 2012. View Article : Google Scholar

118 

Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN and Jolly MK: Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA. 116:148–157. 2019. View Article : Google Scholar

119 

Harris JE, Shin J, Lee B, Pelosky K, Hooker CM, Harbom K, Hulbert A, Zahnow C, Yang SC, Baylin S, et al: A murine xenograft model of spontaneous metastases of human lung adenocarcinoma. J Surg Res. 171:e75–e79. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Rea D, Del Vecchio V, Palma G, Barbieri A, Falco M, Luciano A, De Biase D, Perdonà S, Facchini G and Arra C: Mouse models in prostate cancer translational research: From Xenograft to PDX. Biomed Res Int. 2016:112016. View Article : Google Scholar

121 

Daphu I, Sundstrøm T, Horn S, Huszthy PC, Niclou SP, Sakariassen PØ, Immervoll H, Miletic H, Bjerkvig R and Thorsen F: In vivo animal models for studying brain metastasis: Value and limitations. Clin Exp Metastasis. 30:695–610. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Romano G, Chagani S and Kwong LN: The path to metastatic mouse models of colorectal cancer. Oncogene. 37:2481–2489. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Kahn J, Tofilon PJ and Camphausen K: Preclinical models in radiation oncology. Radiat Oncol. 7:2232012. View Article : Google Scholar : PubMed/NCBI

124 

Loi M, Di Paolo D, Becherini P, Zorzoli A, Perri P, Carosio R, Cilli M, Ribatti D, Brignole C, Pagnan G, et al: The use of orthotopic models to validate antivascular therapies for cancer. Int J Dev Biol. 55:547–555. 2011. View Article : Google Scholar

125 

Grabowska MM, Degraff DJ, Yu X, Jin RJ, Chen Z, Borowsky AD and Matusik RJ: Mouse models of prostate cancer: Picking the best model for the question. Cancer Metastasis Rev. 33:377–397. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Usary J, Zhao W, Darr D, Roberts PJ, Liu M, Balletta L, Karginova O, Jordan J, Combest A, Bridges A, et al: Predicting drug responsiveness in human cancers using genetically engineered mice. Clin Cancer Res. 19:4889–4899. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Bastide C, Bagnis C, Mannoni P, Hassoun J and Bladou F: A Nod Scid mouse model to study human prostate cancer. Prostate Cancer Prostatic Dis. 5:311–315. 2002. View Article : Google Scholar

128 

Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Dai J, Hensel J, Wang N, Kruithof-de Julio M and Shiozawa Y: Mouse models for studying prostate cancer bone metastasis. Bonekey Rep. 5:7772016. View Article : Google Scholar : PubMed/NCBI

130 

Tumati V, Mathur S, Song K, Hsieh JT, Zhao D, Takahashi M, Dobin T, Gandee L, Solberg TD, Habib AA and Saha D: Development of a locally advanced orthotopic prostate tumor model in rats for assessment of combined modality therapy. Int J Oncol. 42:1613–1619. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Lee ST, Wong PF, He H, Hooper JD and Mustafa MR: Alpha-tomatine attenuation of in vivo growth of subcutaneous and orthotopic xenograft tumors of human prostate carcinoma PC-3 cells is accompanied by inactivation of nuclear factor-Kappa B signaling. PLoS One. 8:e577082013. View Article : Google Scholar : PubMed/NCBI

132 

Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, Goetz LJ, Hayward SW, Sadar MD, Gilks CB, et al: An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest. 85:1392–1404. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Cifuentes FF, Valenzuela RH, Contreras HR and Castellón EA: Development of an orthotopic model of human metastatic prostate cancer in the NOD-SCIDγ mouse (Mus musculus) anterior prostate. Oncol Lett. 10:2142–2148. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Cifuentes FF, Valenzuela RH, Contreras HR and Castellón EA: Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer. Oncol Rep. 34:2837–2844. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Contreras HR, López‑Moncada F and Castellón EA: Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review). Int J Oncol 56: 1075-1082, 2020.
APA
Contreras, H.R., López‑Moncada, F., & Castellón, E.A. (2020). Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review). International Journal of Oncology, 56, 1075-1082. https://doi.org/10.3892/ijo.2020.5008
MLA
Contreras, H. R., López‑Moncada, F., Castellón, E. A."Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review)". International Journal of Oncology 56.5 (2020): 1075-1082.
Chicago
Contreras, H. R., López‑Moncada, F., Castellón, E. A."Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review)". International Journal of Oncology 56, no. 5 (2020): 1075-1082. https://doi.org/10.3892/ijo.2020.5008
Copy and paste a formatted citation
x
Spandidos Publications style
Contreras HR, López‑Moncada F and Castellón EA: Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review). Int J Oncol 56: 1075-1082, 2020.
APA
Contreras, H.R., López‑Moncada, F., & Castellón, E.A. (2020). Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review). International Journal of Oncology, 56, 1075-1082. https://doi.org/10.3892/ijo.2020.5008
MLA
Contreras, H. R., López‑Moncada, F., Castellón, E. A."Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review)". International Journal of Oncology 56.5 (2020): 1075-1082.
Chicago
Contreras, H. R., López‑Moncada, F., Castellón, E. A."Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review)". International Journal of Oncology 56, no. 5 (2020): 1075-1082. https://doi.org/10.3892/ijo.2020.5008
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team