Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2020 Volume 57 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 57 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)

  • Authors:
    • Stella Baliou
    • Anthony M. Kyriakopoulos
    • Demetrios  A. Spandidos
    • Vassilios Zoumpourlis
  • View Affiliations / Copyright

    Affiliations: National Hellenic Research Foundation, 11635 Athens, Greece, Nasco AD Biotechnology Laboratory, 18536 Pireus, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
    Copyright: © Baliou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 631-664
    |
    Published online on: July 14, 2020
       https://doi.org/10.3892/ijo.2020.5100
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Leon R, Wu H, Jin Y, Wei J, Buddhala C, Prentice H and Wu JY: Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res. 87:1185–1194. 2009. View Article : Google Scholar

2 

Chang CY, Shen CY, Kang CK, Sher YP, Sheu WHH, Chang CC and Lee TH: Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways. Toxicol Appl Pharmacol. 279:351–363. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Schaffer S, Azuma J, Takahashi K and Mozaffari M: Why is taurine cytoprotective? Adv Exp Med Biol. 526:307–321. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Marcinkiewicz J and Kontny E: Taurine and inflammatory diseases. Amino Acids. 46:7–20. 2014. View Article : Google Scholar :

5 

Schuller-Levis GB and Park E: Taurine and its chloramine: Modulators of immunity. Neurochem Res. 29:117–126. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Maher SG, Condron CE, Bouchier-Hayes DJ and Toomey DM: Taurine attenuates CD3/interleukin-2-induced T cell apoptosis in an in vitro model of activation-induced cell death (AICD). Clin Exp Immunol. 139:279–286. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Fukuda K, Hirai Y, Yoshida H, Nakajima T and Usui T: Free amino acid content of lymphocytes and granulocytes compared. Clin Chem. 28:1758–1761. 1982. View Article : Google Scholar : PubMed/NCBI

8 

Capuozzo E, Pecci L, Baseggio Conrado A and Fontana M: Thiotaurine prevents apoptosis of human neutrophils: A putative role in inflammation. Adv Exp Med Biol. 775:227–236. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Redmond HP, Stapleton PP, Neary P and Bouchier-Hayes D: Immunonutrition: The role of taurine. Nutrition. 14:599–604. 1998. View Article : Google Scholar : PubMed/NCBI

10 

William R, Watson G, Redmond HP, Wang JH and Bouchier-Hayes D: Mechanisms involved in sodium arse-nite-induced apoptosis of human neutrophils. J Leukoc Biol. 60:625–632. 1996. View Article : Google Scholar

11 

Condron CM, Toomey DM, Casey RG, Creagh T and Bouchier-Hayes DJ: Taurine protects against PMN dysfunction and death in urine. Urol Res. 32:338–345. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Masuda M, Horisaka K and Koeda T: Effects of taurine on neutrophil function in hyperlipidemic rats. Jpn J Pharmacol. 40:478–480. 1986. View Article : Google Scholar : PubMed/NCBI

13 

Schaffer SW, Azuma J and Mozaffari M: Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol. 87:91–99. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Wang L, Zhao N, Zhang F, Yue W and Liang M: Effect of taurine on leucocyte function. Eur J Pharmacol. 616:275–280. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Pasantes-Morales H and Cruz C: Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res. 330:154–157. 1985. View Article : Google Scholar : PubMed/NCBI

16 

Son M, Kim HK, Kim WB, Yang J and Kim BK: Protective effect of taurine on indomethacin-induced gastric mucosal injury. Adv Exp Med Biol. 403:147–155. 1996. View Article : Google Scholar : PubMed/NCBI

17 

Marcinkiewicz J, Grabowska A, Bereta J and Stelmaszynska T: Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J Leukoc Biol. 58:667–674. 1995. View Article : Google Scholar : PubMed/NCBI

18 

Nakajima Y, Osuka K, Seki Y, Gupta RC, Hara M, Takayasu M and Wakabayashi T: Taurine reduces inflammatory responses after spinal cord injury. J Neurotrauma. 27:403–410. 2010. View Article : Google Scholar

19 

Zhang F, Mao Y, Qiao H, Jiang H, Zhao H, Chen X, Tong L and Sun X: Protective effects of taurine against endotoxin-induced acute liver injury after hepatic ischemia reperfusion. Amino Acids. 38:237–245. 2010. View Article : Google Scholar

20 

Elson CO, Sartor RB, Tennyson GS and Riddell RH: Experimental models of inflammatory bowel disease. Gastroenterology. 109:1344–1367. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Abdih H, Kelly CJ, Bouchier-Hayes D, Barry M and Kearns S: Taurine prevents interleukin-2-induced acute lung injury in rats. Eur Surg Res. 32:347–352. 2000. View Article : Google Scholar

22 

Sun M, Zhao Y, Gu Y and Xu C: Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-κB. Amino Acids. 42:1735–1747. 2012. View Article : Google Scholar

23 

Son MW, Ko JI, Doh HM, Kim WB, Park TS, Shim MJ and Kim BK: Protective effect of taurine on TNBS-induced inflammatory bowel disease in rats. Arch Pharm Res. 21:531–536. 1998. View Article : Google Scholar

24 

Shimizu M, Zhao Z, Ishimoto Y and Satsu H: Dietary taurine attenuates dextran sulfate sodium (DSS)-induced experimental colitis in mice. Adv Exp Med Biol. 643:265–271. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Zhao Z, Satsu H, Fujisawa M, Hori M, Ishimoto Y, Totsuka M, Nambu A, Kakuta S, Ozaki H and Shimizu M: Attenuation by dietary taurine of dextran sulfate sodium-induced colitis in mice and of THP-1-induced damage to intestinal Caco-2 cell monolayers. Amino Acids. 35:217–224. 2008. View Article : Google Scholar

26 

Yin Y, Wen K, Wu Y, Kang Y and Lou J: Inhibition of sodium current by taurine magnesium coordination compound prevents cesium chloride-induced arrhythmias. Biol Trace Elem Res. 146:192–198. 2012. View Article : Google Scholar

27 

Wang Q, Fan W, Cai Y, Wu Q, Mo L, Huang Z and Huang H: Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow. Amino Acids. 48:2169–2177. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Megaraj V, Iida T, Jungsuwadee P, Hofmann AF and Vore M: Hepatobiliary disposition of 3alpha,6alpha,7alpha,12alpha-tetra-hydroxy-cholanoyl taurine: A substrate for multiple canalicular transporters. Drug Metab Dispos. 38:1723–1730. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Guler L, Tavlasoglu M, Yucel O, Guler A, Sahin MA, Kurkluoglu M, Sirin Y, Eken A, Gamsizkan M, Dakak M, et al: Taurine attenuates lung ischemia-reperfusion injury after lung transplantation in rats. J Anesth. 28:347–353. 2014. View Article : Google Scholar

30 

Park SH, Lee H, Park KK, Kim HW and Park T: Taurine-responsive genes related to signal transduction as identified by cDNA micro-array analyses of HepG2 cells. J Med Food. 9:33–41. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Song XD, Chen CZ, Dong B, Shi YY, Zhang W, Yan LS and Luo GA: Study on the intervening mechanism of taurine on streptozotocin-induced diabetic cataracts. Zhonghua Yan Ke Za Zhi. 39:605–609. 2003.In Chinese.

32 

Schuller-Levis G, Mehta PD, Rudelli R and Sturman J: Immunologic consequences of taurine deficiency in cats. J Leukoc Biol. 47:321–331. 1990. View Article : Google Scholar : PubMed/NCBI

33 

Sapronov NS, Khnychenko LK and Polevshchikov AV: Effects of new taurine derivatives on primary immune response in rats. Bull Exp Biol Med. 131:142–144. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Negoro S and Hara H: The effect of taurine on the age-related decline of the immune response in mice: The restorative effect on the T cell proliferative response to costimulation with ionomycin and phorbol myristate acetate. Adv Exp Med Biol. 315:229–239. 1992. View Article : Google Scholar : PubMed/NCBI

35 

Tappaz ML: Taurine biosynthetic enzymes and taurine transporter: Molecular identification and regulations. Neurochem Res. 29:83–96. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Park E, Park SY, Dobkin C and Schuller-Levis G: A novel cysteine sulfinic acid decarboxylase knock-out mouse: Comparison between newborn and weanling mice. Adv Exp Med Biol. 803:3–16. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med. 10:789–799. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Luo J, Solimini NL and Elledge SJ: Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell. 136:823–837. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Sardesai VM: Role of antioxidants in health maintenance. Nutr Clin Pract. 10:19–25. 1995. View Article : Google Scholar : PubMed/NCBI

40 

Szatrowski TP and Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51:794–798. 1991.PubMed/NCBI

41 

Trachootham D, Alexandre J and Huang P: Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Zhang X, Tu S, Wang Y, Xu B and Wan F: Mechanism of taurine-induced apoptosis in human colon cancer cells. Acta Biochim Biophys Sin (Shanghai). 46:261–272. 2014. View Article : Google Scholar

43 

Liu Z, Xia Y, Zhang X, Liu L, Tu S, Zhu W, Yu L, Wan H, Yu B and Wan F: Roles of the MST1-JNK signaling pathway in apoptosis of colorectal cancer cells induced by Taurine. Libyan J Med. 13:15003462018. View Article : Google Scholar : PubMed/NCBI

44 

Tu S, Zhang XL, Wan HF, Xia YQ, Liu ZQ, Yang XH and Wan FS: Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells. Oncol Lett. 15:5473–5480. 2018.PubMed/NCBI

45 

Wang AS, Lodi A, Rivera LB, Izquierdo-Garcia JL, Firpo MA, Mulvihill SJ, Tempero MA, Bergers G and Ronen SM: HR-MAS MRS of the pancreas reveals reduced lipid and elevated lactate and taurine associated with early pancreatic cancer. NMR Biomed. 27:1361–1370. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Opstad KS, Bell BA, Griffiths JR and Howe FA: Taurine: A potential marker of apoptosis in gliomas. Br J Cancer. 100:789–794. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Yu J and Kim AK: Effect of taurine on antioxidant enzyme system in B16F10 melanoma cells. Adv Exp Med Biol. 643:491–499. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Vanitha MK, Anandakumar P and Sakthisekaran D: Taurine abrogates mammary carcinogenesis through induction of apoptosis in Sprague-Dawley rats. J Biochem Mol Toxicol. 32:e222042018. View Article : Google Scholar : PubMed/NCBI

49 

Vanitha MK, Baskaran K, Periyasamy K, Selvaraj S, Ilakkia A, Saravanan D, Venkateswari R, Revathi Mani B, Anandakumar P and Sakthisekaran D: Modulatory effect of taurine on 7,12-Dimethylbenz(a)Anthracene-induced alterations in detoxifi-cation enzyme system, membrane bound enzymes, glycoprotein profile and proliferative cell nuclear antigen in rat breast tissue. J Biochem Mol Toxicol. 30:414–423. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Zhang X, Lu H, Wang Y, Liu C, Zhu W, Zheng S and Wan F: Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria. Int J Mol Med. 35:218–226. 2015. View Article : Google Scholar

51 

Choi EJ, Tang Y, Lee CB, Cheong SH, Sung SH, Oh MR, Young Jang SY, Park PJ and Kim EK: Effect of taurine on in vitro migration of MCF-7 and MDA-MB-231 human breast carcinoma cells. Adv Exp Med Biol. 803:191–201. 2015. View Article : Google Scholar : PubMed/NCBI

52 

He F, Ma N, Midorikawa K, Hiraku Y, Oikawa S, Zhang Z, Huang G, Takeuchi K and Murata M: Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro. Amino Acids. 50:1749–1758. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Tang Y, Choi E-J, Cheong SH, Hwang YJ, Arokiyaraj S, Park PJ, Moon SH and Kim EK: Effect of taurine on prostate-specific antigen level and migration in human prostate cancer cells. Adv Exp Med Biol. 803:203–214. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Chatzakos V, Slätis K, Djureinovic T, Helleday T and Hunt MC: N-acyl taurines are anti-proliferative in prostate cancer cells. Lipids. 47:355–361. 2012. View Article : Google Scholar

55 

Li H, Ruan WJ, Liu LQ, Wan HF, Yang XH, Zhu WF, Yu LH, Zhang XL and Wan FS: Impact of taurine on the proliferation and apoptosis of human cervical carcinoma cells and its mechanism. Chin Med J (Engl). 132:948–956. 2019. View Article : Google Scholar

56 

Srivastava S, Roy R, Singh S, Kumar P, Dalela D and Sankhwar SN: Taurine - a possible fingerprint biomarker in non-muscle invasive bladder cancer: A pilot study by 1H NMR spectroscopy. Cancer Biomark. 6:11–20. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Zhang X, Du W, Shen F and Wang J: Research on effects of taurine on the transplanted tumor of mice. Wei Sheng Yan Jiu. 26:321–324. 1997.In Chinese.

58 

Yousef HN and Aboelwafa HR: The potential protective role of taurine against 5-fluorouracil-induced nephrotoxicity in adult male rats. Exp Toxicol Pathol. 69:265–274. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Vanitha MK, Priya KD, Baskaran K, Periyasamy K, Saravanan D, Venkateswari R, Mani BR, Ilakkia A, Selvaraj S, Menaka R, et al: Taurine regulates mitochondrial function during 7,12-dimethyl Benz[a]anthracene induced experimental mammary carcinogenesis. J Pharmacopuncture. 18:68–74. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Tu S, Zhang X, Luo D, Liu Z, Yang X, Wan H, Yu L, Li H and Wan F: Effect of taurine on the proliferation and apoptosis of human hepatocellular carcinoma HepG2 cells. Exp Ther Med. 10:193–200. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Sadzuka Y, Matsuura M and Sonobe T: The effect of taurine, a novel biochemical modulator, on the antitumor activity of doxo-rubicin. Biol Pharm Bull. 32:1584–1587. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Daigeler A, Chromik AM, Geisler A, Bulut D, Hilgert C, Krieg A, Klein-Hitpass L, Lehnhardt M, Uhl W and Mittelkötter U: Synergistic apoptotic effects of taurolidine and TRAIL on squamous carcinoma cells of the esophagus. Int J Oncol. 32:1205–1220. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Jacobi CA, Menenakos C and Braumann C: Taurolidine - a new drug with anti-tumor and anti-angiogenic effects. Anticancer Drugs. 16:917–921. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Rodak R, Kubota H, Ishihara H, Eugster HP, Könü D, Möhler H, Yonekawa Y and Frei K: Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine. J Neurosurg. 102:1055–1068. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Refai NS, Louka ML, Halim HY and Montasser I: Long non-coding RNAs (CASC2 and TUG1) in hepatocellular carcinoma: Clinical significance. J Gene Med. 21:e31122019. View Article : Google Scholar : PubMed/NCBI

66 

Matés JM, Segura JA, Alonso FJ and Márquez J: Oxidative stress in apoptosis and cancer: An update. Arch Toxicol. 86:1649–1656. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Mates JM, Segura JA, Alonso FJ and Marquez J: Sulphur-containing non enzymatic antioxidants: Therapeutic tools against cancer. Front Biosci (Schol Ed). 4:722–748. 2012. View Article : Google Scholar

68 

Okamoto K, Sugie S, Ohnishi M, Makita H, Kawamori T, Watanabe T, Tanaka T and Mori H: Chemopreventive effects of taurine on diethylnitrosamine and phenobarbital-induced hepato-carcinogenesis in male F344 rats. Jpn J Cancer Res. 87:30–36. 1996. View Article : Google Scholar : PubMed/NCBI

69 

Abd-Allah AR, Gado AM, Al-Majed AA, Al-Yahya AA and Al-Shabanah OA: Protective effect of taurine against cyclophosphamide-induced urinary bladder toxicity in rats. Clin Exp Pharmacol Physiol. 32:167–172. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Islambulchilar M, Asvadi I, Sanaat Z, Esfahani A and Sattari M: Effect of taurine on attenuating chemotherapy-induced adverse effects in acute lymphoblastic leukemia. J Cancer Res Ther. 11:426–432. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Desai TK, Maliakkal J, Kinzie JL, Ehrinpreis MN, Luk GD and Cejka J: Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr. 55:708–711. 1992. View Article : Google Scholar : PubMed/NCBI

72 

Tabassum H, Parvez S, Rehman H, Dev Banerjee B, Siemen D and Raisuddin S: Nephrotoxicity and its prevention by taurine in tamoxifen induced oxidative stress in mice. Hum Exp Toxicol. 26:509–518. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Tabassum H, Rehman H, Banerjee BD, Raisuddin S and Parvez S: Attenuation of tamoxifen-induced hepatotoxicity by taurine in mice. Clin Chim Acta. 370:129–136. 2018. View Article : Google Scholar

74 

Parvez S, Tabassum H, Banerjee BD and Raisuddin S: Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol. 102:382–387. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Han X, Yue J and Chesney RW: Functional TauT protects against acute kidney injury. J Am Soc Nephrol. 20:1323–1332. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Al-Asmari A, Al-Zahrani A, Khan A, Al-Shahrani H and Ali Al Amri M: Taurine ameliorates 5-flourouracil-induced intestinal mucositis, hepatorenal and reproductive organ damage in Wistar rats: A biochemical and histological study. Hum Exp Toxicol. 35:10–20. 2018. View Article : Google Scholar

77 

Das J, Ghosh J, Manna P and Sil PC: Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids. 42:1839–1855. 2012. View Article : Google Scholar

78 

Das J, Ghosh J, Manna P and Sil PC: Taurine suppresses doxo-rubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol. 81:891–909. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Neary PM, Hallihan P, Wang JH, Pfirrmann RW, Bouchier-Hayes DJ and Redmond HP: The evolving role of taurolidine in cancer therapy. Ann Surg Oncol. 17:1135–1143. 2010. View Article : Google Scholar

80 

Mobley JA and Brueggemeier RW: Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis. 25:3–9. 2004. View Article : Google Scholar

81 

Huang S, Chong N, Lewis NE, Jia W, Xie G and Garmire LX: Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med. 8:342016. View Article : Google Scholar : PubMed/NCBI

82 

Sitter B, Bathen TF, Singstad TE, Fjøsne HE, Lundgren S, Halgunset J and Gribbestad IS: Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 23:424–431. 2010. View Article : Google Scholar : PubMed/NCBI

83 

El Agouza IM, Eissa SS, El Houseini MM, El-Nashar DE and Abd El Hameed OM: Taurine: A novel tumor marker for enhanced detection of breast cancer among female patients. Angiogenesis. 14:321–330. 2011. View Article : Google Scholar : PubMed/NCBI

84 

He YU, Li QQ and Guo SC: Taurine attenuates dimethylbenz[a] anthracene-induced breast tumorigenesis in rats: A plasma metabolomic study. Anticancer Res. 36:533–543. 2016.PubMed/NCBI

85 

Zhou DN, Deng YF, Li RH, Yin P and Ye CS: Concurrent alterations of RAGE, RECK, and MMP9 protein expression are relevant to Epstein-Barr virus infection, metastasis, and survival in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 7:3245–3254. 2014.PubMed/NCBI

86 

Shennan D and Thomson J: Estrogen regulation and ion dependence of taurine uptake by MCF-7 human breast cancer cells. Cell Mol Biol Lett. 12:396–406. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Pine MJ, Kim U and Ip C: Free amino acid pools of rodent mammary tumors. J Natl Cancer Inst. 69:729–735. 1982.PubMed/NCBI

88 

Brown NS and Bicknell R: Hypoxia and oxidative stress in breast cancer. Oxidative stress: Its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer. 3:323–327. 2001. View Article : Google Scholar

89 

Ambrosone CB, Marshall JR, Vena JE, Laughlin R, Graham S, Nemoto T and Freudenheim JL: Interaction of family history of breast cancer and dietary antioxidants with breast cancer risk (New York, United States). Cancer Causes. 6:407–415. 1995. View Article : Google Scholar

90 

Freudenheim JL, Marshall JR, Vena JE, Laughlin R, Brasure JR, Swanson MK, Nemoto T and Graham S: Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients. J Natl Cancer Inst. 88:340–348. 1996. View Article : Google Scholar : PubMed/NCBI

91 

Kubota A, Meguid MM and Hitch DC: Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors. Cancer. 69:2343–2348. 1992. View Article : Google Scholar : PubMed/NCBI

92 

Maeda J, Higashiyama M, Imaizumi A, Nakayama T, Yamamoto H, Daimon T, Yamakado M, Imamura F and Kodama K: Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: A case control study. BMC Cancer. 10:6902010. View Article : Google Scholar : PubMed/NCBI

93 

Satsu H, Ishimoto Y, Nakano T, Mochizuki T, Iwanaga T and Shimizu M: Induction by activated macrophage-like THP-1 cells of apoptotic and necrotic cell death in intestinal epithelial Caco-2 monolayers via tumor necrosis factor-alpha. Exp Cell. 312:3909–3919. 2006. View Article : Google Scholar

94 

Wang H, Tso VK, Slupsky CM and Fedorak RN: Metabolomics and detection of colorectal cancer in humans: A systematic review. Future Oncol. 6:1395–1406. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL and Weinberg RA: Paracrine and autocrine signals induce and maintain mesen-chymal and stem cell states in the breast. Cell. 145:926–940. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Turman MV, Kingsley PJ, Rouzer CA, Cravatt BF and Marnett LJ: Oxidative metabolism of a fatty acid amide hydrolase-regulated lipid, arachidonoyltaurine. Biochemistry. 47:3917–3925. 2008. View Article : Google Scholar : PubMed/NCBI

97 

McKinney MK and Cravatt BF: Structure and function of fatty acid amide hydrolase. Annu Rev. 74:411–432. 2005.

98 

Saghatelian A, McKinney MK, Bandell M, Patapoutian A and Cravatt BF: A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry. 45:9007–9015. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Ueki I, Roman HB, Hirschberger LL, Junior C and Stipanuk MH: Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxy-genase. Am J Physiol Endocrinol Metab. 302:E1292–E1299. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Timbrell JA, Seabra V and Waterfield CJ: The in vivo and in vitro protective properties of taurine. Gen Pharmacol. 26:453–462. 1995. View Article : Google Scholar : PubMed/NCBI

101 

Heidari R, Babaei H and Eghbal MA: Ameliorative effects of taurine against methimazole-induced cytotoxicity in isolated rat hepatocytes. Sci Pharm. 80:987–999. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Boşgelmez İİ, Söylemezoğlu T and Güvendik G: The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res. 125:46–58. 2008. View Article : Google Scholar

103 

Heidari R, Babaei H and Eghbal MA: Amodiaquine-induced toxicity in isolated rat hepatocytes and the cytoprotective effects of taurine and/or N-acetyl cysteine. Res Pharm Sci. 9:97–105. 2014.

104 

Sinha M, Manna P and Sil PC: Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro. 21:1419–1428. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Vissers MC and Fantone JC: Inhibition of hypochlorous acid-mediated reactions by desferrioxamine. Implications for the mechanism of cellular injury by neutrophils. Free Radic Biol Med. 8:331–337. 1990. View Article : Google Scholar : PubMed/NCBI

106 

Riordan JD, Feddersen CR, Tschida BR, Beckmann PJ, Keng VW, Linden MA, Amin K, Stipp CS, Largaespada DA and Dupuy AJ: Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice. Hepatology. 67:924–939. 2018. View Article : Google Scholar :

107 

Glauert HP, Calfee-Mason K, Stemm DN, Tharappel JC and Spear BT: Dietary antioxidants in the prevention of hepatocar-cinogenesis: A review. Mol Nutr Food Res. 54:875–896. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Bansal AK, Trivedi R, Soni GL and Bhatnagar D: Hepatic and renal oxidative stress in acute toxicity of N-nitrosodiethylamine in rats. Indian J Exp Biol. 38:916–920. 2000.

109 

Kang JS, Wanibuchi H, Morimura K, Gonzalez FJ and Fukushima S: Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res. 67:11141–11116. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Başaran-Küçükgergin C, Bingül I, Tekkeşin MS, Olgaç V, Doğru-Abbasoğlu S and Uysal M: Effects of carnosine, taurine, and betaine pretreatments on diethylnitrosamine-induced oxida-tive stress and tissue injury in rat liver. Toxicol Ind Health. 32:1405–1413. 2016. View Article : Google Scholar

111 

Chang YY, Chou CH, Chiu CH, Yang KT, Lin YL, Weng WL and Chen YC: Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J Agric Food Chem. 59:450–457. 2011. View Article : Google Scholar

112 

Kalaz EB, Çoban J, Aydın AF, Doğan-Ekici I, Doğru- Abbasoğlu S, Öztezcan S and Uysal M: Carnosine and taurine treatments decreased oxidative stress and tissue damage induced by D-galactose in rat liver. J Physiol Biochem. 70:15–25. 2014. View Article : Google Scholar

113 

Kerai MD, Waterfield CJ, Kenyon SH, Asker DS and Timbrell JA: The effect of taurine depletion by beta-alanine treatment on the susceptibility to ethanol-induced hepatic dysfunction in rats. Alcohol. 36:29–38. 2001. View Article : Google Scholar

114 

You JS and Chang KJ: Taurine protects the liver against lipid peroxidation and membrane disintegration during rat hepatocar-cinogenesis. Adv Exp Med Biol. 442:105–112. 1998. View Article : Google Scholar

115 

Liu Y, Li F, Zhang L, Wu J, Wang Y and Yu H: Taurine alleviates lipopolysaccharide-induced liver injury by anti-inflammation and antioxidants in rats. Mol Med Rep. 16:6512–6517. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Seabra V, Stachlewitz RF and Thurman RG: Taurine blunts LPS-induced increases in intracellular calcium and TNF-alpha production by Kupffer cells. J Leukoc Biol. 64:615–621. 1998. View Article : Google Scholar : PubMed/NCBI

117 

Wu G, Yang Q, Yu Y, Lin S, Feng Y, Lv Q, Yang J and Hu J: Taurine inhibits kupffer cells activation induced by lipopolysac-charide in alcoholic liver damaged rats. Adv Exp Med Biol. 975:789–800. 2017. View Article : Google Scholar

118 

Kim SK and Kim YC: Attenuation of bacterial lipopolysaccha-ride-induced hepatotoxicity by betaine or taurine in rats. Food Chem Toxicol. 40:545–549. 2002. View Article : Google Scholar : PubMed/NCBI

119 

Abd-Rabou AA, Zoheir KMA and Ahmed HH: Potential impact of curcumin and taurine on human hepatoma cells using Huh-7 cell line. Clin. 45:1519–1521. 2012.

120 

El-Houseini ME, El-Agoza IA, Sakr MM and El-Malky GM: Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp Ther Med. 13:29–36. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Kim YS, Cheong SH, Hwang JW, Lodhi G, Lee KH, Choi DK, Song H, Lee SH, Park DJ, Ahn CB, et al: Effect of taurine on viability and proliferation of murine melanoma B16F10 cells. Adv Exp Med Bio. 803:167–177. 2015. View Article : Google Scholar

122 

Finnegan N, Toomey D, Condron C, Redmond HP, Da Costa M and Bouchier-Hayes DJ: Potentiation of the therapeutic index of interleukin-2 immunotherapy by combination with taurine in a syngeneic murine tumour model. Ir J Med Sci. 171:85–88. 2002. View Article : Google Scholar : PubMed/NCBI

123 

Son YI, Dallal RM and Lotze MT: Combined treatment with interleukin-18 and low-dose interleukin-2 induced regression of a murine sarcoma and memory response. J Immunother Hagerstown Md. 26:234–240. 2003. View Article : Google Scholar

124 

Da Costa ML, Redmond HP and Bouchier-Hayes DJ: Taurolidine improves survival by abrogating the accelerated development and proliferation of solid tumors and development of organ metastases from circulating tumor cells released following surgery. J Surg Res. 101:111–119. 2001. View Article : Google Scholar : PubMed/NCBI

125 

Logotheti S, Khoury N, Vlahopoulos SA, Skourti E, Papaevangeliou D, Liloglou T, Gorgoulis V, Budunova I, Kyriakopoulos AM and Zoumpourlis V: N-bromotaurine surrogates for loss of antiproliferative response and enhances cisplatin efficacy in cancer cells with impaired glucocorticoid receptor. Transl Res. 173:58–73.e2. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Gottardi W and Nagl M: N-chlorotaurine, a natural antiseptic with outstanding tolerability. J Antimicrob Chemother. 65:399–409. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Carr C, Ng J and Wigmore T: The side effects of chemotherapeutic agents. Curr Anaesth Crit Care. 19:70–79. 2008. View Article : Google Scholar

128 

Bergkvist K and Wengström Y: Symptom experiences during chemotherapy treatment-With focus on nausea and vomiting. Eur J Oncol Nurs. 10:21–29. 2006. View Article : Google Scholar

129 

Kim KS, Tsuji M, Kimura T and Sezaki H: Effect of taurine on the gastrointestinal absorption of drugs - Ionic requirement for the action. J Pharmacobiodyn. 5:172–178. 1982. View Article : Google Scholar : PubMed/NCBI

130 

Zeybek A, Ercan F, Çetinel Ş, Çikler E, Sağlam B and Şener G: Taurine ameliorates water avoidance stress-induced degenerations of gastrointestinal tract and liver. Dig Dis Sci. 51:1853–1861. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Abe M, Takahashi M, Takeuchi K and Fukuda M: Studies on the significance of taurine in radiation injury. Radiat Res. 33:5631968. View Article : Google Scholar : PubMed/NCBI

132 

Sener G, Sehirli O, Cetinel S, Midillioğlu S, Gedik N and Ayanoğlu-Dülger G: Protective effect of taurine against alendronate-induced gastric damage in rats. Fundam Clin Pharmacol. 19:93–100. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Saransaari P and Oja SS: Taurine and neural cell damage. Amino Acids. 19:509–526. 2000. View Article : Google Scholar

134 

Waters E, Wang JH, Redmond HP, Wu QD, Kay E and Bouchier-Hayes D: Role of taurine in preventing acetaminophen-induced hepatic injury in the rat. Am J Physiol Gastrointest Liver Physiol. 280:G1274–G1279. 2001. View Article : Google Scholar : PubMed/NCBI

135 

Erdem A, Gündogan NÜ, Usubütün A, Kılınç K, Erdem ŞR, Kara A and Bozkurt A: The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol Dial Transplant. 15:1175–1182. 2000. View Article : Google Scholar : PubMed/NCBI

136 

Piao J, Meng F, Fang H, Piao F, Jin B, Li M and Li W: Effect of taurine on thymus differentiation of dex-induced immunosup-pressive mice. Adv Exp Med Biol. 1155:381–390. 2019. View Article : Google Scholar

137 

Hamaguchi T, Azuma J, Awata N, Ohta H, Takihara K, Harada H, Kishimoto S and Sperelakis N: Reduction of doxo-rubicin-induced cardiotoxicity in mice by taurine. Res Commun Chem Pathol Pharmacol. 59:21–30. 1988.PubMed/NCBI

138 

Refik Mas M, Comert B, Oncu K, Vural SA, Akay C, Tasci I, Ozkomur E, Serdar M, Mas N, Alcigir G and Yener N: The effect of taurine treatment on oxidative stress in experimental liver fibrosis. Hepatol Res. 28:207–215. 2004. View Article : Google Scholar : PubMed/NCBI

139 

Kato T, Tsunekawa M, Wang S, Yamashita T and Ma N: Effect of taurine on iNOS-mediated DNA damage in drug-induced renal injury. Adv Exp Med Biol. 975:717–727. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Gewirtz D: A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 57:727–741. 1999. View Article : Google Scholar : PubMed/NCBI

141 

Milic V and Dragojevic V: Doxorubicin-induced oxida-tive injury of cardiomyocytes - do we have right strategies for prevention? Cardiotoxicity of oncologic treatments. Fiuza M: InTech; 2012, http://www.intechopen.com/books/cardiotoxicity-of-oncologic-treatments/doxorubicin-induced-oxidative-injury-of-cardiomyocytes-do-we-have-right-strategies-for-prevention-. View Article : Google Scholar

142 

Ujhazy P, Zaleskis G, Mihich E, Ehrke MJ and Berleth ES: Doxorubicin induces specific immune functions and cytokine expression in peritoneal cells. Cancer Immunol Immunother. 52:463–472. 2003. View Article : Google Scholar : PubMed/NCBI

143 

Kim YS, Kim EK, Hwang JW, Kim WS, Shin WB, Natarajan SB, Moon SH, Jeon BT and Park PJ: Taurine attenuates doxoru-bicin-induced toxicity on B16F10 cells. Adv Exp Med Biol. 975:1179–1190. 2017. View Article : Google Scholar

144 

Grenier MA and Lipshultz SE: Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 25(Suppl 10): S72–S85. 1998.

145 

Volkova M and Russell R III: Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev. 7:214–220. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Comereski CR, Peden WM, Davidson TJ, Warner GL, Hirth RS and Frantz JD: BR96-doxorubicin conjugate (BMS-182248) versus doxorubicin: A comparative toxicity assessment in rats. Toxicol Pathol. 22:473–488. 1994. View Article : Google Scholar : PubMed/NCBI

147 

Nagai K, Fukuno S, Oda A and Konishi H: Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anticancer Drugs. 27:17–23. 2016. View Article : Google Scholar

148 

Kim YS, Sung SH, Tang Y, Choi EJ, Choi YJ, Hwang YJ, Park PJ and Kim EK: Protective effect of taurine on mice with doxorubicin-induced acute kidney injury. Adv Exp Med Biol. 975:1191–1201. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Adedara IA, Ojuade TJD, Olabiyi BF, Idris UF, Onibiyo EM, Ajeigbe OF and Farombi EO: Taurine ameliorates renal oxida-tive damage and thyroid dysfunction in rats chronically exposed to fluoride. Biol Trace Elem Res. 175:388–395. 2017. View Article : Google Scholar

150 

Mohamed RH, Karam RA and Amer MG: Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-α, iNOS and NF-κB. Brain Res Bull. 86:22–28. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Gradishar WJ and Vokes EE: 5-Fluorouracil cardiotoxicity: A critical review. Ann Oncol. 1:409–414. 1990. View Article : Google Scholar : PubMed/NCBI

152 

D'Souza UJ and Narayana K: Induction of seminiferous tubular atrophy by single dose of 5-fluorouracil (5-FU) in Wistar rats. Indian J Physiol Pharmacol. 45:87–94. 2001.PubMed/NCBI

153 

Narayana K, D'Souza UJ, Sanyal AK and Rao KP: 5-fluoro-uracil (5-FU) induces the formation of giant cells and sloughing of seminiferous epithelium in the rat testis. Indian J Physiol Pharmacol. 44:317–322. 2000.PubMed/NCBI

154 

Cheah KY, Howarth GS, Yazbeck R, Wright TH, Whitford EJ, Payne C, Butler RN and Bastian SE: Grape seed extract protects IEC-6 cells from chemotherapy-induced cytotoxicity and improves parameters of small intestinal mucositis in rats with experimentally-induced mucositis. Cancer Biol Ther. 8:382–390. 2009. View Article : Google Scholar : PubMed/NCBI

155 

Son JY, Shin JW, Wang JH, Park HJ, Kim HG, Raghavendran HR and Son CG: Chemotherapy-induced myelotoxicity and incidence of lung metastasis in an animal model. Hum Exp Toxicol. 30:649–655. 2011. View Article : Google Scholar

156 

Tsibiribi P, Bui-Xuan C, Bui-Xuan B, Lombard-Bohas C, Duperret S, Belkhiria M, Tabib A, Maujean G, Descotes J and Timour Q: Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum Exp Toxicol. 25:305–309. 2006. View Article : Google Scholar : PubMed/NCBI

157 

Rashid S, Ali N, Nafees S, Hasan SK and Sultana S: Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol. 66:185–193. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Heidari R, Rasti M, Shirazi Yeganeh B, Niknahad H, Saeedi A and Najibi A: Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine. Bioimpacts. 6:3–8. 2016. View Article : Google Scholar : PubMed/NCBI

159 

Han X: Targeting Taurine Transporter (TauT) for cancer immu-notherapy of p53 mutation mediated cancers - molecular basis and preclinical implication. Adv Exp Med Biol. 1155:543–553. 2019. View Article : Google Scholar

160 

Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J and Ghafourifar P: Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res. 67:1282–1290. 2007. View Article : Google Scholar : PubMed/NCBI

161 

Deng X, Liang J, Lin ZX, Wu FS, Zhang YP and Zhang ZW: Natural taurine promotes apoptosis of human hepatic stel-late cells in proteomics analysis. World J Gastroenterol. 16:1916–1923. 2010. View Article : Google Scholar : PubMed/NCBI

162 

Alam SS, Hafiz NA and Abd El-Rahim AH: Protective role of taurine against genotoxic damage in mice treated with methotrexate and tamoxfine. Environ Toxicol Pharmacol. 31:143–152. 2011. View Article : Google Scholar : PubMed/NCBI

163 

Fontanelli R, Spatti G, Raspagliesi F, Zunino F and Di Re F: A preoperative single course of high-dose cisplatin and bleomycin with glutathione protection in bulky stage IB/II carcinoma of the cervix. Ann Oncol. 3:117–122. 1992. View Article : Google Scholar : PubMed/NCBI

164 

Panici PB, Greggi S, Scambia G, Ragusa G, Baiocchi G, Battaglia F, Coronetta F and Mancuso S: High-dose cisplatin and bleomycin neoadjuvant chemotherapy plus radical surgery in locally advanced cervical carcinoma: A preliminary report. Gynecol Oncol. 41:212–216. 1991. View Article : Google Scholar : PubMed/NCBI

165 

Pabla N and Dong Z: Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 73:994–1007. 2008. View Article : Google Scholar : PubMed/NCBI

166 

Ries F and Klastersky J: Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis. 8:368–379. 1986. View Article : Google Scholar : PubMed/NCBI

167 

Townsend DM, Deng M, Zhang L, Lapus MG and Hanigan MH: Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 14:1–10. 2003. View Article : Google Scholar

168 

Francescato HDC, Costa RS, Scavone C and Coimbra TM: Parthenolide reduces cisplatin-induced renal damage. Toxicology. 230:64–75. 2007. View Article : Google Scholar

169 

Yao X, Panichpisal K, Kurtzman N and Nugent K: Cisplatin nephrotoxicity: A review. Am J Med Sci. 334:115–124. 2007. View Article : Google Scholar : PubMed/NCBI

170 

Chtourou Y, Aouey B, Aroui S, Kebieche M and Fetoui H: Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact. 243:1–9. 2016. View Article : Google Scholar

171 

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics 2018: Ovarian cancer statistics 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Han X and Chesney RW: Regulation of TauT by cisplatin in LLC-PK1 renal cells. Pediatr Nephrol. 20:1067–1072. 2005. View Article : Google Scholar : PubMed/NCBI

173 

Shalby AB, Assaf N and Ahmed HH: Possible mechanisms for N-acetyl cysteine and taurine in ameliorating acute renal failure induced by cisplatin in rats. Toxicol Mech Methods. 21:538–546. 2011. View Article : Google Scholar : PubMed/NCBI

174 

Kim T and Kim AK: Taurine enhances anticancer activity of cisplatin in human cervical cancer cells. Adv Exp Med Biol. 776:189–198. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Tsunekawa M, Wang S, Kato T, Yamashita T and Ma N: Taurine administration mitigates cisplatin induced acute neph-rotoxicity by decreasing DNA damage and inflammation: An Immunocytochemical Study. Adv Exp Med Biol. 975:703–716. 2017. View Article : Google Scholar

176 

Sørensen BH, Thorsteinsdottir UA and Lambert IH: Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate. Am J Physiol Cell Physiol. 307:C1071–C1080. 2014. View Article : Google Scholar : PubMed/NCBI

177 

Sugiura H, Okita S, Kato T, Naka T, Kawanishi S, Ohnishi S, Oshida Y and Ma N: Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-κB signaling pathway. Adv Exp Med Biol. 775:237–246. 2013. View Article : Google Scholar

178 

Ma N, Kato T, Isogai T, Gu Y and Yamashita T: The potential effects of taurine in mitigation of radiation nephropathy. Adv Exp Med Biol. 1155:497–505. 2019. View Article : Google Scholar : PubMed/NCBI

179 

Owoeye O, Adedara IA and Farombi EO: Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother. 102:375–384. 2018. View Article : Google Scholar : PubMed/NCBI

180 

Bishnu A, Sakpal A, Ghosh N, Choudhury P, Chaudhury K and Ray P: Long term treatment of metformin impedes development of chemoresistance by regulating cancer stem cell differentiation through taurine generation in ovarian cancer cells. Int J Biochem Cell Biol. 107:116–127. 2019. View Article : Google Scholar

181 

Badary OA: Taurine attenuates fanconi syndrome induced by ifosfamide without compromising its antitumor activity. Oncol Res. 10:355–360. 1998.

182 

Han X and Chesney RW: The role of taurine in renal disorders. Amino Acids. 43:2249–2263. 2012. View Article : Google Scholar : PubMed/NCBI

183 

Bouckenooghe T, Remacle C and Reusens B: Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care. 9:728–733. 2006. View Article : Google Scholar : PubMed/NCBI

184 

Dotan E, Aggarwal C and Smith MR: Impact of rituximab (Rituxan) on the treatment of B-cell Non-Hodgkin's lymphoma. P T. 35:148–157. 2010.PubMed/NCBI

185 

Han YM, Awng N, Nu LH, Thway NM and McLiesh P: Orthopaedic nursing in developing nations: A collaboration between the Republic of the Union of Myanmar (Burma) and Australia. Int J Orthop Trauma Nurs. 27:41–45. 2017. View Article : Google Scholar : PubMed/NCBI

186 

Dong JF, Zheng X-Q and Rui HB: Effect of taurine on immune function in mice with T-cell lymphoma during chemotherapy. Asian Pac J Trop Med. 10:1090–1094. 2017. View Article : Google Scholar : PubMed/NCBI

187 

D'souza M, Jaimini A, Bansal A, Tripathi M, Sharma R, Mondal A and Tripathi RP: FDG-PET/CT in lymphoma. Indian J Radiol Imaging. 23:354–365. 2013. View Article : Google Scholar

188 

Marcinkiewicz J, Grabowska A, Bereta J, Bryniarski K and Nowak B: Taurine chloramine down-regulates the generation of murine neutrophil inflammatory mediators. Immunopharmacology. 40:27–38. 1998. View Article : Google Scholar : PubMed/NCBI

189 

Klebanoff SJ: Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 95:2131–2138. 1968. View Article : Google Scholar : PubMed/NCBI

190 

Thomas EL: Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: Effect of exogenous amines on antibacterial action against Escherichia coli. Infect Immun. 25:110–116. 1979. View Article : Google Scholar : PubMed/NCBI

191 

Babior BM: Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 298:659–668. 1978. View Article : Google Scholar : PubMed/NCBI

192 

Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML and Heinecke JW: Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem. 276:7867–7875. 2001. View Article : Google Scholar

193 

Klebanoff SJ: Myeloperoxidase: Friend and foe. J Leukoc Biol. 77:598–625. 2005. View Article : Google Scholar : PubMed/NCBI

194 

van Dalen CJ and Kettle AJ: Substrates and products of eosino-phil peroxidase. Biochem J. 358:233–239. 2001. View Article : Google Scholar : PubMed/NCBI

195 

Weiss SJ, Klein R, Slivka A and Wei M: Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 70:598–607. 1982. View Article : Google Scholar : PubMed/NCBI

196 

Marcinkiewicz J, Strus M, Walczewska M, Machul A and Mikołajczyk D: Influence of taurine haloamines (TauCl and TauBr) on the development of pseudomonas aeruginosa biofilm: A preliminary study. Adv Exp Med Biol. 775:269–283. 2013. View Article : Google Scholar : PubMed/NCBI

197 

Tokunaga S, Kanayama A and Miyamoto Y: Modification of IkappaBalpha by taurine bromamine inhibits tumor necrosis factor alpha-induced NF-kappaB activation. Inflamm Res. 56:479–486. 2007. View Article : Google Scholar

198 

Midwinter RG, Peskin AV, Vissers MC and Winterbourn CC: Extracellular oxidation by taurine chloramine activates ERK via the epidermal growth factor receptor. J Biol Chem. 279:32205–32211. 2004. View Article : Google Scholar : PubMed/NCBI

199 

Grisham MB, Jefferson MM, Melton DF and Thomas EL: Chlorination of endogenous amines by isolated neutrophils. Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines. J Biol Chem. 259:10404–10413. 1984.PubMed/NCBI

200 

Thomas EL, Grisham MB and Jefferson MM: Myeloperoxidase- dependent effect of amines on functions of isolated neutrophils. J Clin Invest. 72:441–454. 1983. View Article : Google Scholar : PubMed/NCBI

201 

Kim C and Kang IS: Taurine chloramine, a taurine metabolite from activated neutrophils, inhibits osteoclastogenesis by suppressing NFATc1 expression. Adv Exp Med Biol. 803:99–107. 2015. View Article : Google Scholar : PubMed/NCBI

202 

Walczewska M, Peruń A, Białecka A, Śróttek M, Jamróz W, Dorożyński P, Jachowicz R, Kulinowski P, Nagl M, Gottardi W and Marcinkiewicz J: Comparative analysis of microbicidal and anti-inflammatory properties of novel taurine bromamine derivatives and bromamine T. Adv Exp Med Biol. 975:515–534. 2017. View Article : Google Scholar : PubMed/NCBI

203 

Gottardi W, Hagleitner M and Nagl M: N, N-Dichlorotaurine: Chemical and bactericidal properties. Arch Pharm (Weinheim). 338:473–483. 2005. View Article : Google Scholar

204 

Gottardi W and Nagl M: Chlorine covers on living bacteria: The initial step in antimicrobial action of active chlorine compounds. J Antimicrob Chemother. 55:475–482. 2005. View Article : Google Scholar : PubMed/NCBI

205 

Roos D, Eckmann CM and Yazdanbakhsh M: Killing of schis-tosomula by taurine chloramine and taurine bromamine. Am J Trop Med Hyg. 37:106–110. 1987. View Article : Google Scholar

206 

Nagl M, Nguyen VA, Gottardi W, Ulmer H and Höpfl R: Tolerability and efficacy of N-chlorotaurine in comparison with chloramine T for the treatment of chronic leg ulcers with a purulent coating: A randomized phase II study. Br J Dermatol. 149:590–597. 2003. View Article : Google Scholar : PubMed/NCBI

207 

Marcinkiewicz J, Wojas-Pelc A, Walczewska M, Lipko- Godlewska S, Jachowicz R, Maciejewska A, Białecka A and Kasprowicz A: Topical taurine bromamine, a new candidate in the treatment of moderate inflammatory acne vulgaris: A pilot study. Eur J Dermatol. 18:433–439. 2008.PubMed/NCBI

208 

Nagl M, Hess MW, Pfaller K, Hengster P and Gottardi W: Bactericidal activity of micromolar N-chlorotaurine: Evidence for its antimicrobial function in the human defense system. Antimicrob Agents Chemother. 44:2507–2513. 2000. View Article : Google Scholar : PubMed/NCBI

209 

Nagl M, Teuchner B, Pöttinger E, Ulmer H and Gottardi W: Tolerance of N-chlorotaurine, a new antimicrobial agent, in infectious conjunctivitis - a phase II pilot study. Ophthalmologica. 214:111–114. 2000. View Article : Google Scholar : PubMed/NCBI

210 

Neher A, Gstöttner M, Nagl M, Scholtz A and Gunkel AR: N-chlorotaurine - a new safe substance for postoperative ear care. Auris Nasus Larynx. 34:19–22. 2007. View Article : Google Scholar

211 

Neher A, Nagl M, Appenroth E, Gstöttner M, Wischatta M, Reisigl F, Schindler M, Ulmer H and Stephan K: Acute otitis externa: Efficacy and tolerability of n-chlorotaurine, a novel endogenous antiseptic agent. Laryngoscope. 114:850–854. 2004. View Article : Google Scholar : PubMed/NCBI

212 

Mainnemare A, Mégarbane B, Soueidan A, Daniel A and Chapple IL: Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res. 83:823–831. 2004. View Article : Google Scholar : PubMed/NCBI

213 

Marcinkiewicz J: Taurine bromamine (TauBr) - its role in immunity and new perspectives for clinical use. J Biomed Sci. 17(Suppl 1): S32010. View Article : Google Scholar :

214 

Eitzinger C, Ehrlenbach S, Lindner H, Kremser L, Gottardi W, Debabov D, Anderson M, Nagl M and Orth D: N-chlorotaurine, a long-lived oxidant produced by human leukocytes, inactivates Shiga toxin of enterohemorrhagic Escherichia coli. PLoS One. 7:e471052012. View Article : Google Scholar : PubMed/NCBI

215 

Kim C, Jang JS, Cho MR, Agarawal SR and Cha YN: Taurine chloramine induces heme oxygenase-1 expression via Nrf2 activation in murine macrophages. Int Immunopharmacol. 10:440–446. 2010. View Article : Google Scholar : PubMed/NCBI

216 

Schuller-Levis GB and Park E: Taurine: New implications for an old amino acid. FEMS Microbiol Lett. 226:195–202. 2003. View Article : Google Scholar : PubMed/NCBI

217 

Green TR, Fellman JH, Eicher AL and Pratt KL: Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta. 1073:91–97. 1991. View Article : Google Scholar : PubMed/NCBI

218 

Jeon SH, Lee MY, Rahman MM, Kim SJ, Kim GB, Park SY, Hong CU, Kim SZ, Kim JS and Kang HS: The antioxidant, taurine reduced lipopolysaccharide (LPS)-induced generation of ROS, and activation of MAPKs and Bax in cultured pneumo-cytes. Pulm Pharmacol Ther. 22:562–566. 2009. View Article : Google Scholar : PubMed/NCBI

219 

Oliveira MWS, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC and Klamt F: Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep. 62:185–193. 2010. View Article : Google Scholar : PubMed/NCBI

220 

Marcinkiewicz J, Mak M, Bobek M, Biedroń R, Białecka A, Koprowski M, Kontny E and Maśliński W: Is there a role of taurine bromamine in inflammation? Interactive effects with nitrite and hydrogen peroxide. Inflamm Res. 54:42–49. 2005. View Article : Google Scholar : PubMed/NCBI

221 

Kontny E, Chorąży-Massalska M, Rudnicka W, Marcinkiewicz J and Maśliński W: Comparison of taurine chloramine and taurine bromamine effects on rheumatoid arthritis synoviocytes. Amino Acids. 32:447–452. 2007. View Article : Google Scholar

222 

Park E, Schuller-Levis G, Jia JH and Quinn MR: Preactivation exposure of RAW 264.7 cells to taurine chloramine attenuates subsequent production of nitric oxide and expression of iNOS mRNA. J Leukoc Biol. 61:161–166. 1997. View Article : Google Scholar : PubMed/NCBI

223 

Park E, Jia J, Quinn MR and Schuller-Levis G: Taurine chlora-mine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes. Clin Immunol. 102:179–184. 2002. View Article : Google Scholar : PubMed/NCBI

224 

Kontny E, Maśliński W and Marcinkiewicz J: Anti-inflammatory activities of taurine chloramine: Implication for immunoregulation and pathogenesis of rheumatoid arthritis. Adv Exp Med Biol. 526:329–340. 2003. View Article : Google Scholar : PubMed/NCBI

225 

Olszanecki R and Marcinkiewicz J: Taurine chloramine and taurine bromamine induce heme oxygenase-1 in resting and LPS-stimulated J774.2 macrophages. Amino Acids. 27:29–35. 2004. View Article : Google Scholar : PubMed/NCBI

226 

Kim K, Choi HM, Oh D, Kim C, Jeong JS, Yoo M and Yang HI: Effect of taurine chloramine on the production of matrix metal-loproteinases (MMPs) in adiponectin- or IL-1beta-stimulated fibroblast-like synoviocytes. J Biomed Sci. 17(Suppl 1): S272010. View Article : Google Scholar :

227 

Olszanecki R, Kurnyta M, Biedroń R, Chorobik P, Bereta M and Marcinkiewicz J: The role of heme oxygenase-1 in down regulation of PGE2 production by taurine chloramine and taurine bromamine in J774.2 macrophages. Amino Acids. 35:359–364. 2008. View Article : Google Scholar

228 

Araujo JA, Zhang M and Yin F: Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol. 3:1192012. View Article : Google Scholar : PubMed/NCBI

229 

Idelman G, Smith DLH and Zucker SD: Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase. Redox Biol. 5:398–408. 2015. View Article : Google Scholar : PubMed/NCBI

230 

Jong CJ, Azuma J and Schaffer S: Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids. 42:2223–2232. 2012. View Article : Google Scholar

231 

Tallan HH, Jacobson E, Wright CE, Schneidman K and Gaull GE: Taurine uptake by cultured human lymphoblastoid cells. Life Sci. 33:1853–1860. 1983. View Article : Google Scholar : PubMed/NCBI

232 

Kim C, Chung JK, Jeong JM, Chang YS, Lee YJ, Kim YJ, Lee MC, Koh CS and Kim BK: Uptake of taurine and taurine chloramine in murine macrophages and their distribution in mice with experimental inflammation. Adv Exp Med Biol. 442:169–176. 1998. View Article : Google Scholar : PubMed/NCBI

233 

Kwaśny-Krochin B, Bobek M, Kontny E, Gluszko P, Biedroń R, Chain BM, Maśliński W and Marcinkiewicz J: Effect of taurine chloramine, the product of activated neutrophils, on the development of collagen-induced arthritis in DBA 1/J mice. Amino Acids. 23:419–426. 2002. View Article : Google Scholar

234 

Chung Y-L, Wassif WS, Bell JD, Hurley M and Scott DL: Urinary levels of creatine and other metabolites in the assessment of polymyositis and dermatomyositis. Rheumatology (Oxford). 42:298–303. 2003. View Article : Google Scholar

235 

Kim H, Jeon H, Kong H, Yang Y, Choi B, Kim YM, Neckers L and Jung Y: A molecular mechanism for the anti-inflammatory effect of taurine-conjugated 5-aminosalicylic acid in inflamed colon. Mol Pharmacol. 69:1405–1412. 2006. View Article : Google Scholar : PubMed/NCBI

236 

Quinn MR, Park E and Schuller-Levis G: Taurine chloramine inhibits prostaglandin E2 production in activated raw 264.7 cells by post-transcriptional effects on inducible cyclooxygenase expression. Immunol Lett. 50:185–188. 1996. View Article : Google Scholar : PubMed/NCBI

237 

Park E, Schuller-Levis G and Quinn MR: Taurine chloramine inhibits production of nitric oxide and TNF-alpha in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events. J Immunol. 154:4778–4784. 1995.PubMed/NCBI

238 

Kim C, Park E, Quinn MR and Schuller-Levis G: The production of superoxide anion and nitric oxide by cultured murine leukocytes and the accumulation of TNF-alpha in the conditioned media is inhibited by taurine chloramine. Immunopharmacology. 34:89–95. 1996. View Article : Google Scholar : PubMed/NCBI

239 

Barua M, Liu Y and Quinn MR: Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: Decreased NF-kappaB activation and IkappaB kinase activity. J Immunol. 167:2275–2281. 2001. View Article : Google Scholar : PubMed/NCBI

240 

Park E, Quinn MR, Wright CE and Schuller-Levis G: Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol. 54:119–124. 1993. View Article : Google Scholar : PubMed/NCBI

241 

Sun Jang J, Piao S, Cha YN and Kim C: Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr. 45:37–43. 2009. View Article : Google Scholar : PubMed/NCBI

242 

Fazzino F, Obregón F, Morles M, Rojas A, Arocha L, Mata S and Lima L: Taurine transporter in lymphocytes of patients with major depression treated with venlafaxine plus psychotherapy. Adv Exp Med Biol. 643:217–224. 2009. View Article : Google Scholar : PubMed/NCBI

243 

Wirleitner B, Neurauter G, Nagl M and Fuchs D: Down-regulatory effect of N-chlorotaurine on tryptophan degradation and neopterin production in human PBMC. Immunol Lett. 93:143–149. 2004. View Article : Google Scholar : PubMed/NCBI

244 

Kanayama A, Inoue JI, Sugita-Konishi Y, Shimizu M and Miyamoto Y: Oxidation of Ikappa Balpha at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-kappa B activation. J Biol Chem. 277:24049–24056. 2002. View Article : Google Scholar : PubMed/NCBI

245 

Liu Y and Quinn MR: Chemokine production by rat alveolar macrophages is inhibited by taurine chloramine. Immunol Lett. 80:27–32. 2002. View Article : Google Scholar

246 

Cobb MH, Xu S, Hepler JE, Hutchison M, Frost J and Robbins DJ: Regulation of the MAP kinase cascade. Cell Mol Biol Res. 40:253–256. 1994.PubMed/NCBI

247 

Crews CM, Alessandrini A and Erikson RL: The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science. 258:478–480. 1992. View Article : Google Scholar : PubMed/NCBI

248 

Kim JW and Kim C: Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem Pharmacol. 70:1352–1360. 2005. View Article : Google Scholar : PubMed/NCBI

249 

Bhat NR, Zhang P, Lee JC and Hogan EL: Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 18:1633–1641. 1998. View Article : Google Scholar : PubMed/NCBI

250 

Ajizian SJ, English BK and Meals EA: Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis. 179:939–944. 1999. View Article : Google Scholar : PubMed/NCBI

251 

Chen CC and Wang JK: p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol. 55:481–488. 1999.PubMed/NCBI

252 

Kontny E, Szczepańska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J and Maśliński W: The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 43:2169–2177. 2000. View Article : Google Scholar : PubMed/NCBI

253 

Wojtecka-Lukasik E, Gujski M, Roguska K, Maslinska D and Maslinski S: Taurine chloramine modifies adjuvant arthritis in rats. Inflamm Res. 54(Suppl 1): S21–S22. 2005. View Article : Google Scholar : PubMed/NCBI

254 

Verdrengh M and Tarkowski A: Inhibition of septic arthritis by local administration of taurine chloramine, a product of activated neutrophils. J Rheumatol. 32:1513–1517. 2005.PubMed/NCBI

255 

Kontny E, Plebanczyk M, Lisowska B, Olszewska M, Maldyk P and Maslinski W: Comparison of rheumatoid articular adipose and synovial tissue reactivity to proinflammatory stimuli: Contribution to adipocytokine network. Ann Rheum Dis. 71:262–267. 2012. View Article : Google Scholar

256 

Kontny E, Grabowska A, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J and Maśliński W: Taurine chlora-mine inhibition of cell proliferation and cytokine production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 42:2552–2560. 1999. View Article : Google Scholar

257 

Kontny E, Rudnicka W, Kowalczewski J, Marcinkiewicz J and Maslinski W: Selective inhibition of cyclooxygenase 2-generated prostaglandin E2 synthesis in rheumatoid arthritis synoviocytes by taurine chloramine. Arthritis Rheum. 48:1551–1555. 2003. View Article : Google Scholar : PubMed/NCBI

258 

Kontny E, Rudnicka W, Chorąży-Massalska M, Marcinkiewicz J and Maśliński W: Taurine chloramine inhibits proliferation of rheumatoid arthritis synoviocytes by triggering a p53-dependent pathway. Inflamm Res. 55:446–455. 2006. View Article : Google Scholar : PubMed/NCBI

259 

Kim KS, Park EK, Ju SM, Jung HS, Bang JS, Kim C, Lee YA, Hong SJ, Lee SH, Yang HI and Yoo MC: Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1beta stimulated fibroblast-like synovio-cytes. Arthritis Res Ther. 9:R802007. View Article : Google Scholar

260 

Wang Y, Cha YN, Kim KS and Kim C: Taurine chloramine inhibits osteoclastogenesis and splenic lymphocyte proliferation in mice with collagen-induced arthritis. Eur J Pharmacol. 668:325–330. 2011. View Article : Google Scholar : PubMed/NCBI

261 

Davies EV, Williams BD and Campbell AK: Synovial fluid polymorphonuclear leucocytes from patients with rheumatoid arthritis have reduced MPO and NADPH-oxidase activity. Br J Rheumatol. 29:415–421. 1990. View Article : Google Scholar : PubMed/NCBI

262 

Kanayama A and Miyamoto Y: Apoptosis triggered by phago-cytosis-related oxidative stress through FLIPS downregulation and JNK activation. J Leukoc Biol. 82:1344–1352. 2007. View Article : Google Scholar : PubMed/NCBI

263 

Emerson DK, McCormick ML, Schmidt JA and Knudson CM: Taurine monochloramine activates a cell death pathway involving Bax and Caspase-9. J Biol Chem. 280:3233–3241. 2005. View Article : Google Scholar

264 

Vile GF, Rothwell LA and Kettle AJ: Initiation of rapid, P53-dependent growth arrest in cultured human skin fibroblasts by reactive chlorine species. Arch Biochem Biophys. 377:122–128. 2000. View Article : Google Scholar : PubMed/NCBI

265 

Klamt F and Shacter E: Taurine chloramine, an oxidant derived from neutrophils, induces apoptosis in human B lymphoma cells through mitochondrial damage. J Biol Chem. 280:21346–21352. 2005. View Article : Google Scholar : PubMed/NCBI

266 

Pilz M, Holinka J, Vavken P, Marian B and Krepler P: Taurine chloramine induces apoptosis in human osteosarcoma cell lines. J Orthop Res. 30:2046–2051. 2012. View Article : Google Scholar : PubMed/NCBI

267 

Gupta R, Seki Y and Yosida J: Role of taurine in spinal cord injury. Curr Neurovasc Res. 3:225–235. 2006. View Article : Google Scholar : PubMed/NCBI

268 

Kulakowski EC and Maturo J: Hypoglycemic properties of taurine: Not mediated by enhanced insulin release. Biochem Pharmacol. 33:2835–2838. 1984. View Article : Google Scholar : PubMed/NCBI

269 

McCartney AC and Browne MK: Clinical studies on administration of taurolin in severe sepsis: A preliminary study. Prog Clin Biol Res. 272:361–371. 1988.PubMed/NCBI

270 

Staubach KH: Adjuvant therapy of peritonitis with taurolidine. Modulation of mediator liberation. Langenbecks Arch Chir. 382(Suppl 1): S26–S30. 1997.In German. View Article : Google Scholar

271 

Wesch G, Petermann C and Linder MM: Drug therapy of peritonitis. 6-year experience with the chemotherapeutic agent and anti-endotoxin taurolin. Fortschr Med. 101:545–550. 1983.In German. PubMed/NCBI

272 

Jurewitsch B and Jeejeebhoy KN: Taurolidine lock: The key to prevention of recurrent catheter-related bloodstream infections. Clin Nutr. 24:462–465. 2005. View Article : Google Scholar : PubMed/NCBI

273 

Liu Y, Zhang AQ, Cao L, Xia HT and Ma JJ: Taurolidine lock solutions for the prevention of catheter-related bloodstream infections: A systematic review and meta-analysis of random-ized controlled trials. PLoS One. 8:e794172013. View Article : Google Scholar

274 

Hayes KC, Stephan ZF and Sturman JA: Growth depression in taurine-depleted infant monkeys. J Nutr. 110:2058–2064. 1980. View Article : Google Scholar : PubMed/NCBI

275 

Braumann C, Winkler G, Rogalla P, Menenakos C and Jacobi CA: Prevention of disease progression in a patient with a gastric cancer-re-recurrence. Outcome after intravenous treatment with the novel antineoplastic agent taurolidine. Report of a case. World J Surg Onco. 4:342006. View Article : Google Scholar

276 

Stendel R, Picht T, Schilling A, Heidenreich J, Loddenkemper C, Jänisch W and Brock M: Treatment of glioblastoma with intravenous taurolidine. First clinical experience Anticancer Res. 24:1143–1147. 2004.

277 

Teuchner B, Nagl M, Schidlbauer A, Ishiko H, Dragosits E, Ulmer H, Aoki K, Ohno S, Mizuki N, Gottardi W and Larcher C: Tolerability and efficacy of N-chlorotaurine in epidemic kera-toconjunctivitis-A double-blind, randomized, phase-2 clinical trial. J Ocul Pharmacol Ther. 21:157–165. 2005. View Article : Google Scholar : PubMed/NCBI

278 

Pasich E, Walczewska M, Białecka A, Peruń A, Kasprowicz A and Marcinkiewicz J: Taurine haloamines and biofilm: II. Efficacy of taurine bromamine and chlorhexidine against selected microorganisms of oral biofilm. Adv Exp Med Biol. 803:133–143. 2015. View Article : Google Scholar : PubMed/NCBI

279 

Kyriakopoulos A, Logotheti S, Marcinkiewicz J and Nagl M: N-chlorotaurine and N-bromotaurine combination regimen for the cure of valacyclovir-unresponsive herpes zoster comorbidity in a multiple sclerosis patient. Int J Med Pharm Case Rep. 7:1–6. 2016. View Article : Google Scholar

280 

Kyriakopoulos AM, Nagl M, Orth-Höller D, Marcinkiewicz J, Baliou S and Zoumbourlis V: Successful treatment of a unique chronic multi-bacterial scalp infection with N-chlorotaurine, N-bromotaurine and bromamine T. Access Microbiol: https://doi.org/10.1099/acmi.0.000126.

281 

Zhai X, Zhao J, Wang Y, Wei X, Li G, Yang Y, Chen Z, Bai Y, Wang Q, Chen X and Li M: Bibliometric analysis of global scientific research on lncRNA: A swiftly expanding trend. Biomed Res Int. 2018:76250782018. View Article : Google Scholar : PubMed/NCBI

282 

Di Gesualdo F, Capaccioli S and Lulli M: A pathophysi-ological view of the long non-coding RNA world. Oncotarget. 5:10976–10996. 2014. View Article : Google Scholar : PubMed/NCBI

283 

Wapinski O and Chang HY: Long noncoding RNAs and human disease. Trends Cell Biol. 21:354–361. 2011. View Article : Google Scholar : PubMed/NCBI

284 

Thin KZ, Liu X, Feng X, Raveendran S and Tu JC: LncRNA- DANCR: A valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract. 214:801–805. 2018. View Article : Google Scholar : PubMed/NCBI

285 

Dykes IM and Emanueli C: Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 15:177–186. 2017. View Article : Google Scholar : PubMed/NCBI

286 

Dey BK, Mueller AC and Dutta A: Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription. 5:e9440142014. View Article : Google Scholar : PubMed/NCBI

287 

Li CH and Chen Y: Targeting long non-coding RNAs in cancers: Progress and prospects. Int J Biochem Cell Biol. 45:1895–1910. 2013. View Article : Google Scholar : PubMed/NCBI

288 

Herriges MJ, Swarr DT, Morley MP, Rathi KS, Peng T, Stewart KM and Morrisey EE: Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev. 28:1363–1379. 2014. View Article : Google Scholar : PubMed/NCBI

289 

Kołat D, Hammouz R, Bednarek A and Płuciennik E: Exosomes as carriers transporting long non-coding RNAs: Molecular characteristics and their function in cancer (Review). Mol Med Rep. 20:851–862. 2019.

290 

Xiao Y, Zhang J and Deng L: Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks. Sci Rep. 7:36642017. View Article : Google Scholar : PubMed/NCBI

291 

Sun B, Liu C, Li H, Zhang L, Luo G, Liang S and Lü M: Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett. 19:595–605. 2020.PubMed/NCBI

292 

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147:358–369. 2011. View Article : Google Scholar : PubMed/NCBI

293 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

294 

Mishra K and Kanduri C: Understanding long noncoding RNA and chromatin interactions: What we know so far. Noncoding RNA. 5:542019.

295 

Tasharrofi B and Ghafouri-Fard S: Long non-coding RNAs as regulators of the mitogen-activated protein kinase (MAPK) pathway in cancer. Klin Onkol. 31:95–102. 2018. View Article : Google Scholar : PubMed/NCBI

296 

Young TL, Matsuda T and Cepko CL: The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 15:501–512. 2005. View Article : Google Scholar : PubMed/NCBI

297 

Santoro M, Nociti V, Lucchini M, De Fino C, Losavio FA and Mirabella M: Expression profile of long non-coding RNAs in serum of patients with multiple sclerosis. J Mol Neurosci. 59:18–23. 2016. View Article : Google Scholar : PubMed/NCBI

298 

Zang XJ, Li L, Du X, Yang B and Mei CL: LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 23:7519–7525. 2019.PubMed/NCBI

299 

Li SY and Susztak K: The long noncoding RNA tug1 connects metabolic changes with kidney disease in podocytes. J Clin Invest. 126:4072–4075. 2016. View Article : Google Scholar : PubMed/NCBI

300 

Gu W, Yuan Y, Wang L, Yang H, Li S, Tang Z and Li Q: Long non-coding RNA TUG1 promotes airway remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD. J Cell Mol Med. 23:7200–7209. 2019. View Article : Google Scholar : PubMed/NCBI

301 

Long J, Badal SS, Ye Z, Wang Y, Ayanga BA, Galvan DL, Green NH, Chang BH, Overbeek PA and Danesh FR: Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J Clin Invest. 126:4205–4218. 2016. View Article : Google Scholar : PubMed/NCBI

302 

Yin DD, Zhang EB, You LH, Wang N, Wang LT, Jin FY, Zhu YN, Cao LH, Yuan QX, De W and Tang W: Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells. Cell Physiol Biochem. 35:1892–1904. 2015. View Article : Google Scholar

303 

Li Z, Shen J, Chan MTV and Wu WKK: TUG1: A pivotal onco-genic long non-coding RNA of human cancers. Cell Prolif. 49:471–475. 2016. View Article : Google Scholar : PubMed/NCBI

304 

Gutschner T and Diederichs S: The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI

305 

Shi X, Sun M, Liu H, Yao Y and Song Y: Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett. 339:159–166. 2013. View Article : Google Scholar : PubMed/NCBI

306 

Li B, Shen S, Zhang W, Qi T, Hu Q and Cheng Y: Long non-coding RNA TUG1 as a potential novel biomarker for predicting the clinical outcome of cancer patients: A meta-analysis. Clin Lab. 64:2018. View Article : Google Scholar

307 

van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E and Simonis M: Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 15:R62014. View Article : Google Scholar : PubMed/NCBI

308 

Long J, Menggen Q, Wuren Q, Shi Q and Pi X: Long noncoding RNA taurine-upregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma. Med Sci Monit. 24:1547–1559. 2018. View Article : Google Scholar : PubMed/NCBI

309 

Han Y, Liu Y, Gui Y and Cai Z: Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol. 107:555–559. 2013. View Article : Google Scholar

310 

Zhang Q, Geng PL, Yin P, Wang XL, Jia JP and Yao J: Down-regulation of long non-coding RNA TUG1 inhibits osteo-sarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 14:2311–2315. 2013. View Article : Google Scholar

311 

Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P and Shu YQ: Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigeneti-cally silencing of KLF2. Mol Cancer. 14:1652015. View Article : Google Scholar

312 

Zhai HY, Sui MH, Yu X, Qu Z, Hu JC, Sun HQ, Zheng HT, Zhou K and Jiang LX: Overexpression of long non-coding RNA TUG1 promotes colon cancer progression. Med Sci Monit. 22:3281–3287. 2016. View Article : Google Scholar : PubMed/NCBI

313 

Li J, Zhang M, An G and Ma Q: LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood). 241:644–649. 2016. View Article : Google Scholar

314 

Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, Han L, Xia R, Wang KM, Yang JS, et al: P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 5:e12432014. View Article : Google Scholar : PubMed/NCBI

315 

Kondo Y, Shinjo K and Katsushima K: Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci. 108:1927–1933. 2017. View Article : Google Scholar : PubMed/NCBI

316 

Kim KH and Roberts CWM: Targeting EZH2 in cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI

317 

Sun CC, Li SJ, Li G, Hua RX, Zhou XH and Li DJ: Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther Nucleic Acids. 5:e3852016. View Article : Google Scholar : PubMed/NCBI

318 

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI

319 

Liu H, Zhou G, Fu X, Cui H, Pu G, Xiao Y, Sun W, Dong X, Zhang L, Cao S, et al: Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX. Oncotarget. 8:101899–101910. 2017. View Article : Google Scholar : PubMed/NCBI

320 

Zhang E, He X, Yin D, Han L, Qiu M, Xu T, Xia R, Xu L, Yin R and De W: Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis. 7:e21092016. View Article : Google Scholar : PubMed/NCBI

321 

Ding B, Lou W, Xu L and Fan W: Non-coding RNA in drug resistance of hepatocellular carcinoma. Biosci Rep. 38:BSR201809152018. View Article : Google Scholar : PubMed/NCBI

322 

Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC and Rosenfeld MG: ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 147:773–788. 2011. View Article : Google Scholar : PubMed/NCBI

323 

Thomson DW and Dinger ME: Endogenous microRNA sponges: Evidence and controversy. Nat Rev Genet. 17:272–283. 2016. View Article : Google Scholar : PubMed/NCBI

324 

Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI

325 

Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI

326 

Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, Kao HW, Fang WL, Huang KH, Chan WC and Lin WC: Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 129:2600–2610. 2011. View Article : Google Scholar : PubMed/NCBI

327 

Ji TT, Huang X, Jin J, Pan SH and Zhuge XJ: Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-met axis. Asian Pac J Trop Med. 9:508–512. 2016. View Article : Google Scholar : PubMed/NCBI

328 

Zhang M, Huang S and Long D: MiR-381 inhibits migration and invasion in human gastric carcinoma through downregulating SOX4. Oncol Lett. 14:3760–3766. 2017. View Article : Google Scholar : PubMed/NCBI

329 

Li J, Zhang Q, Fan X, Mo W, Dai W, Feng J, Wu L, Liu T, Li S, Xu S, et al: The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget. 8:65932–65945. 2017. View Article : Google Scholar : PubMed/NCBI

330 

Sun J, Hu J, Wang G, Yang Z, Zhao C, Zhang X and Wang J: LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res. 37:1062018. View Article : Google Scholar : PubMed/NCBI

331 

Ma F, Wang S, Cai Q, Jin L, Zhou D, Ding J and Quan ZW: Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma. Biomed Pharmacother. 88:863–869. 2017. View Article : Google Scholar : PubMed/NCBI

332 

Tan J, Qiu K, Li M and Liang Y: Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 589(20 Pt B): 3175–3181. 2015. View Article : Google Scholar : PubMed/NCBI

333 

Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, Li Z, Shang X and Liu Y: The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget. 6:19759–19779. 2015. View Article : Google Scholar : PubMed/NCBI

334 

Xie CH, Cao YM, Huang Y, Shi QW, Guo JH, Fan ZW, Li JG, Chen BW and Wu BY: Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumor Biol. 37:15031–15041. 2016. View Article : Google Scholar

335 

Dong R, Liu GB, Liu BH, Chen G, Li K, Zheng S and Dong KR: Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma. Cell Death Dis. 7:e22782016. View Article : Google Scholar : PubMed/NCBI

336 

Cai H, Liu X, Zheng J, Xue Y, Ma J, Li Z, Xi Z, Li Z, Bao M and Liu Y: Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene. 36:318–331. 2017. View Article : Google Scholar

337 

Hu Y, Sun X, Mao C, Guo G, Ye S, Xu J, Zou R, Chen J, Wang L, Duan P and Xue X: Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 6:471–482. 2017. View Article : Google Scholar : PubMed/NCBI

338 

Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, Sato S, Takahashi S, Kimura H, Totoki Y, et al: Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 7:136162016. View Article : Google Scholar : PubMed/NCBI

339 

Yun-Bo F, Xiao-Po L, Xiao-Li L, Guo-Long C, Pei Z and Fa-Ming T: LncRNA TUG1 is upregulated and promotes cell proliferation in osteosarcoma. Open Med (Wars). 11:163–167. 2016. View Article : Google Scholar

340 

Liang S, Zhang S, Wang P, Yang C, Shang C, Yang J and Wang J: LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling. Gene. 608:49–57. 2017. View Article : Google Scholar : PubMed/NCBI

341 

Tang T, Cheng Y, She Q, Jiang Y, Chen Y, Yang W and Li Y: Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother. 107:338–346. 2018. View Article : Google Scholar : PubMed/NCBI

342 

Xiao CH, Yu HZ, Guo CY, Wu ZM, Cao HY, Li WB and Yuan JF: Long non-coding RNA TUG1 promotes the proliferation of colorectal cancer cells through regulating Wnt/β-catenin pathway. Oncol Lett. 16:5317–5324. 2018.PubMed/NCBI

343 

Qin CF and Zhao FL: Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway. Eur Rev Med Pharmacol Sci. 21:2377–2384. 2017.PubMed/NCBI

344 

Zhang CG, Yin DD, Sun SY and Han L: The use of lncRNA analysis for stratification management of prognostic risk in patients with NSCLC. Eur Rev Med Pharmacol Sci. 21:115–119. 2017.PubMed/NCBI

345 

Lin PC, Huang HD, Chang CC, Chang YS, Yen JC, Lee CC, Chang WH, Liu TC and Chang JG: Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer. 16:5832016. View Article : Google Scholar : PubMed/NCBI

346 

Baratieh Z, Khalaj Z, Honardoost MA, Emadi-Baygi M, Khanahmad H, Salehi M and Nikpour P: Aberrant expression of PlncRNA-1 and TUG1: Potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression. Biomark Med. 11:1077–1090. 2017. View Article : Google Scholar : PubMed/NCBI

347 

Ren K, Li Z, Li Y, Zhang W and Han X: Long noncoding RNA taurine-upregulated gene 1 promotes cell proliferation and invasion in gastric cancer via negatively modulating miRNA-145-5p. Oncol Res. 25:789–798. 2017. View Article : Google Scholar

348 

Lin YH, Wu MH, Huang YH, Yeh CT and Lin KH: TUG1 is a regulator of AFP and serves as prognostic marker in non-hepatitis B non-hepatitis C hepatocellular carcinoma. Cells. 9:2622020. View Article : Google Scholar :

349 

Dai Q, Deng J, Zhou J, Wang Z, Yuan X, Pan S and Zhang HB: Long non-coding RNA TUG1 promotes cell progression in hepatocellular carcinoma via regulating miR-216b-5p/DLX2 axis. Cancer Cell Int. 20:82020. View Article : Google Scholar : PubMed/NCBI

350 

Fang T, Fang Y, Xu X, He M, Zhao Z, Huang P, Yuan F, Guo M, Yang B and Xia J: Actinidia chinensis planch root extract attenuates proliferation and metastasis of hepatocellular carcinoma by inhibiting epithelial-mesenchymal transition. J Ethnopharmacol. 231:474–485. 2019. View Article : Google Scholar

351 

Huang J, Lu D, Xiang T, Wu X, Ge S, Wang Y, Wang J and Cheng N: MicroRNA-132-3p regulates cell proliferation, apop-tosis, migration and invasion of liver cancer by targeting Sox4. Oncol Lett. 19:3173–3180. 2020.PubMed/NCBI

352 

Lv J, Kong Y, Gao Z, Liu Y, Zhu P and Yu Z: LncRNA TUG1 interacting with miR-144 contributes to proliferation, migration and tumorigenesis through activating the JAK2/STAT3 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol. 101:19–28. 2018. View Article : Google Scholar : PubMed/NCBI

353 

He C, Liu Z, Jin L, Zhang F, Peng X, Xiao Y, Wang X, Lyu Q and Cai XJ: lncRNA TUG1-mediated mir-142-3p downregulation contributes to metastasis and the epithelial-to-mesenchymal transition of hepatocellular carcinoma by targeting ZEB1. Cell Physiol Biochem. 48:1928–1941. 2018. View Article : Google Scholar : PubMed/NCBI

354 

Xie F, Zhang L, Yao Q, Shan L, Liu J, Dong N and Liang J: TUG1 promoted tumor progression by sponging miR-335-5p and regulating CXCR4-mediated infiltration of pro-tumor immunocytes in CTNNB1-mutated hepatoblastoma. Onco Targets Ther. 13:3105–3115. 2020. View Article : Google Scholar : PubMed/NCBI

355 

An N and Cheng D: The long noncoding RNA HOST2 promotes gemcitabine resistance in human pancreatic cancer cells. Pathol Oncol Res. 26:425–431. 2020. View Article : Google Scholar

356 

Zhao L, Sun H, Kong H, Chen Z, Chen B and Zhou M: The lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging mir-382. Cell Physiol Biochem. 42:2145–2158. 2017. View Article : Google Scholar : PubMed/NCBI

357 

Xu K and Zhang L: Inhibition of TUG1/miRNA-299-3p axis represses pancreatic cancer malignant progression via suppression of the notch1 pathway. Dig Dis Sci. 65:1748–1760. 2020. View Article : Google Scholar

358 

Yang F and Li X, Zhang L, Cheng L and Li X: LncRNA TUG1 promoted viability and associated with gemcitabine resistant in pancreatic ductal adenocarcinoma. J Pharmacol Sci. 137:116–121. 2018. View Article : Google Scholar : PubMed/NCBI

359 

Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, et al: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol. 15:2403–2413. 1997. View Article : Google Scholar : PubMed/NCBI

360 

Lu Y, Tang L, Zhang Z, Li S, Liang S, Ji L, Yang B, Liu Y and Wei W: Long noncoding RNA TUG1/miR-29c axis affects cell proliferation, invasion, and migration in human pancreatic cancer. Dis Markers. 2018:68570422018. View Article : Google Scholar :

361 

Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, et al: Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 3:565–576. 2003. View Article : Google Scholar : PubMed/NCBI

362 

Hu H, Zhou L, Awadallah A and Xin W: Significance of Notch1-signaling pathway in human pancreatic development and carcinogenesis. Appl Immunohistochem Mol Morphol. 21:242–247. 2013.

363 

Chen X, Qi M, Yang Q and Li JY: MiR-299-3p functions as a tumor suppressor in thyroid cancer by regulating SHOC2. Eur Rev Med Pharmacol Sci. 23:232–240. 2019.PubMed/NCBI

364 

Dang S, Zhou J, Wang Z, Wang K, Dai S and He S: MiR-299-3p functions as a tumor suppressor via targeting Sirtuin 5 in hepato-cellular carcinoma. Biomed Pharmacother. 106:966–975. 2018. View Article : Google Scholar : PubMed/NCBI

365 

Wang JY, Jiang JB, Li Y, Wang YL and Dai Y: MicroRNA-299-3p suppresses proliferation and invasion by targeting VEGFA in human colon carcinoma. Biomed Pharmacother. 93:1047–1054. 2017. View Article : Google Scholar : PubMed/NCBI

366 

Hui B, Xu Y, Zhao B, Ji H, Ma Z, Xu S, He ZY, Wang K and Lu J: Overexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2A. Onco Targets Ther. 12:1043–1057. 2019. View Article : Google Scholar :

367 

Zhu Y, Zhou J, Xia H, Chen X, Qiu M, Huang J, Liu S, Tang Q, Lang N, Liu Z, et al: The Rho GTPase RhoE is a p53-regulated candidate tumor suppressor in cancer cells. Int J Oncol. 44:896–904. 2014. View Article : Google Scholar : PubMed/NCBI

368 

Poch E, Miñambres R, Mocholí E, Ivorra C, Pérez-Aragó A, Guerri C, Pérez-Roger I and Guasch RM: RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line. Exp Cell Res. 313:719–731. 2007. View Article : Google Scholar

369 

Wang L, Zhao Z, Feng W, Ye Z, Dai W, Zhang C, Peng J and Wu K: Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget. 7:51713–51719. 2016. View Article : Google Scholar : PubMed/NCBI

370 

Shen X, Hu X, Mao J, Wu Y, Liu H, Shen J, Yu J and Chen W: The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells. Cell Death Dis. 11:652020. View Article : Google Scholar

371 

Sun J, Ding C, Yang Z, Liu T, Zhang X, Zhao C and Wang J: The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J Transl Med. 14:422016. View Article : Google Scholar : PubMed/NCBI

372 

Fan S, Yang Z, Ke Z, Huang K, Liu N, Fang X and Wang K: Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomed Pharmacother. 95:1636–1643. 2017. View Article : Google Scholar : PubMed/NCBI

373 

Caldon CE, Daly RJ, Sutherland RL and Musgrove EA: Cell cycle control in breast cancer cells. J Cell Biochem. 97:261–274. 2006. View Article : Google Scholar

374 

Zhao X and Ren G: LncRNA taurine-upregulated gene 1 promotes cell proliferation by inhibiting microRNA-9 in MCF-7 cells. J Breast Cancer. 19:349–357. 2016. View Article : Google Scholar

375 

Gradia DF, Mathias C, Coutinho R, Cavalli IJ, Ribeiro EMSF and de Oliveira JC: Long non-coding RNA TUG1 expression is associated with different subtypes in human breast cancer. Noncoding RNA. 3:262017.

376 

Neuwelt EA, Barnett PA, Bigner DD and Frenkel EP: Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: The factor of the blood-brain barrier. Proc Natl Acad Sci USA. 79:4420–4423. 1982. View Article : Google Scholar : PubMed/NCBI

377 

Li TH, Zhang JJ, Liu SX and Chen Y: Long non-coding RNA taurine-upregulated gene 1 predicts unfavorable prognosis, promotes cells proliferation, and inhibits cells apoptosis in epithelial ovarian cancer. Medicine (Baltimore). 97:e05752018. View Article : Google Scholar

378 

Iliev R, Kleinova R, Juracek J, Dolezel J, Ozanova Z, Fedorko M, Pacik D, Svoboda M, Stanik M and Slaby O: Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol. 37:13385–13390. 2016. View Article : Google Scholar : PubMed/NCBI

379 

Guo P, Zhang G, Meng J, He Q, Li Z and Guan Y: Upregulation of long noncoding RNA TUG1 promotes bladder cancer cell proliferation, migration, and invasion by inhibiting miR-29c. Oncol Res. 26:1083–1091. 2018. View Article : Google Scholar : PubMed/NCBI

380 

Liu Q, Liu H, Cheng H, Li Y, Li X and Zhu C: Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. Onco Targets Ther. 10:2461–2471. 2017. View Article : Google Scholar : PubMed/NCBI

381 

Jiang H, Hu X, Zhang H and Li W: Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol. 12:652017. View Article : Google Scholar : PubMed/NCBI

382 

Zhu J, Shi H, Liu H, Wang X and Li F: Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget. 8:65253–65264. 2017. View Article : Google Scholar : PubMed/NCBI

383 

Fan M, Li C, He P, Fu Y, Li M and Zhao X: Knockdown of long noncoding RNA-taurine-upregulated gene 1 inhibits tumor angiogenesis in ovarian cancer by regulating leucine-rich α-2-glycoprotein-1. Anticancer Drugs. 30:562–570. 2019. View Article : Google Scholar : PubMed/NCBI

384 

Wang X, Abraham S, McKenzie JAG, Jeffs N, Swire M, Tripathi VB, Luhmann UFO, Lange CAK, Zhai Z, Arthur HM, et al: LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature. 499:306–311. 2013. View Article : Google Scholar : PubMed/NCBI

385 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI

386 

Meng H, Song Y, Zhu J, Liu Q, Lu P, Ye N, Zhang Z, Pang Y, Qi J and Wu H: LRG1 promotes angiogenesis through upregulating the TGF-β1 pathway in ischemic rat brain. Mol Med Rep. 14:5535–5543. 2016. View Article : Google Scholar : PubMed/NCBI

387 

Zhang J, Zhu L, Fang J, Ge Z and Li X: LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res. 35:292016. View Article : Google Scholar

388 

Baek YY, Cho DH, Choe J, Lee H, Jeoung D, Ha KS, Won MH, Kwon YG and Kim YM: Extracellular taurine induces angio-genesis by activating ERK-, Akt-, and FAK-dependent signal pathways. Eur J Pharmacol. 674:188–199. 2012. View Article : Google Scholar

389 

Xu T, Liu CL, Li T, Zhang YH and Zhao YH: LncRNA TUG1 aggravates the progression of prostate cancer and predicts the poor prognosis. Eur Rev Med Pharmacol Sci. 23:4698–4705. 2019.PubMed/NCBI

390 

Hao SD, Ma JX, Liu Y, Liu PJ and Qin Y: Long non-coding TUG1 accelerates prostate cancer progression through regulating miR-128-3p/YES1 axis. Eur Rev Med Pharmacol Sci. 24:619–632. 2020.PubMed/NCBI

391 

Jiang L, Wang W, Li G, Sun C, Ren Z, Sheng H, Gao H, Wang C and Yu H: High TUG1 expression is associated with chemotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. Cancer Chemother Pharmacol. 78:333–339. 2016. View Article : Google Scholar : PubMed/NCBI

392 

Xu Y, Wang J, Qiu M and Xu L, Li M, Jiang F, Yin R and Xu L: Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumor Biol. 36:1643–1651. 2015. View Article : Google Scholar

393 

Tang Y, Yang P, Zhu Y and Su Y: LncRNA TUG1 contributes to ESCC progression via regulating miR-148a-3p/ MCL-1/Wnt/β-catenin axis in vitro. Thorac Cancer. 11:82–94. 2020. View Article : Google Scholar

394 

Ma B, Li M, Zhang L, Huang M, Lei JB, Fu GH, Liu CX, Lai QW, Chen QQ and Wang YL: Upregulation of long non-coding RNA TUG1 correlates with poor prognosis and disease status in osteosarcoma. Tumor Biol. 37:4445–4455. 2016. View Article : Google Scholar

395 

Wang H, Yu Y, Fan S and Luo L: Knockdown of Long noncoding RNA TUG1 inhibits the proliferation and cellular invasion of osteosarcoma cells by sponging miR-153. Oncol Res. 26:665–673. 2018. View Article : Google Scholar

396 

Xie C, Chen B, Wu B, Guo J and Cao Y: LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis. Biomed Pharmacother. 97:1645–1653. 2018. View Article : Google Scholar : PubMed/NCBI

397 

Li G, Liu K and Du X: Long Non-Coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression. Yonsei Med J. 59:226–235. 2018. View Article : Google Scholar : PubMed/NCBI

398 

Liu Y, Li Y, Liu J, Wu Y and Zhu Q: MicroRNA-132 inhibits cell growth and metastasis in osteosarcoma cell lines possibly by targeting Sox4. Int J Oncol. 47:1672–1684. 2015. View Article : Google Scholar : PubMed/NCBI

399 

Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X and Zhang W: Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci. 108:859–867. 2017. View Article : Google Scholar : PubMed/NCBI

400 

Li Y, Zhang T, Zhang Y, Zhao X and Wang W: Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosar-coma. Cancer Sci. 109:3093–3104. 2018. View Article : Google Scholar : PubMed/NCBI

401 

Cao J, Han X, Qi X, Jin X and Li X: TUG1 promotes osteo-sarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int J Oncol. 51:1115–1123. 2017. View Article : Google Scholar : PubMed/NCBI

402 

Yu X, Hu L, Li S, Shen J, Wang D, Xu R and Yang H: Long non-coding RNA Taurine upregulated gene 1 promotes osteo-sarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 10:2802019. View Article : Google Scholar

403 

Li Q, Song W and Wang J: TUG1 confers Adriamycin resistance in acute myeloid leukemia by epigenetically suppressing miR-34a expression via EZH2. Biomed Pharmacother. 109:1793–1801. 2019. View Article : Google Scholar

404 

Isin M, Ozgur E, Cetin G, Erten N, Aktan M, Gezer U and Dalay N: Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta. 431:255–259. 2014. View Article : Google Scholar : PubMed/NCBI

405 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

406 

Yang L, Moss T, Mangala LS, Marini J, Zhao H, Wahlig S, Armaiz-Pena G, Jiang D, Achreja A, Win J, et al: Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol Syst Biol. 10:7282014. View Article : Google Scholar : PubMed/NCBI

407 

Wang J, Xie H, Ling Q, Lu D, Lv Z, Zhuang R, Liu Z, Wei X, Zhou L, Xu X and Zheng S: Coding-noncoding gene expression in intrahepatic cholangiocarcinoma. Transl Res. 168:107–121. 2016. View Article : Google Scholar

408 

Zeng B, Ye H, Chen J, Cheng D, Cai C, Chen G, Chen X, Xin H, Tang C and Zeng J: LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis. Oncotarget. 8:113650–113661. 2017. View Article : Google Scholar

409 

Han X and Yang Y, Sun Y, Qin L and Yang Y: LncRNA TUG1 affects cell viability by regulating glycolysis in osteosarcoma cells. Gene. 674:87–92. 2018. View Article : Google Scholar : PubMed/NCBI

410 

Kunej T, Obsteter J, Pogacar Z, Horvat S and Calin GA: The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci. 51:344–357. 2014. View Article : Google Scholar : PubMed/NCBI

411 

Dutour A, Leclers D, Monteil J, Paraf F, Charissoux JL, Rousseau R and Rigaud M: Non-invasive imaging correlates with histological and molecular characteristics of an osteosar-coma model: Application for early detection and follow-up of MDR phenotype. Anticancer Res. 27(6B): 4171–4178. 2007.

412 

Fidler IJ: The biology of brain metastasis: Challenges for therapy. Cancer J. 21:284–293. 2015. View Article : Google Scholar : PubMed/NCBI

413 

La Porta CA: Drug resistance in melanoma: New perspectives. Curr Med Chem. 14:387–391. 2007. View Article : Google Scholar : PubMed/NCBI

414 

Liu YY, Han TY, Giuliano AE and Cabot MC: Ceramide glyco-sylation potentiates cellular multidrug resistance. FASEB J. 15:719–730. 2001. View Article : Google Scholar : PubMed/NCBI

415 

Synold TW, Dussault I and Forman BM: The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 7:584–590. 2001. View Article : Google Scholar : PubMed/NCBI

416 

Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI

417 

Liu Z and Zhang H: LncRNA plasmacytoma variant trans-location 1 is an oncogene in bladder urothelial carcinoma. Oncotarget. 8:64273–64282. 2017. View Article : Google Scholar : PubMed/NCBI

418 

Xie D, Zhang H, Hu X and Shang C: Knockdown of long non-coding RNA Taurine Up-Regulated 1 inhibited doxorubicin resistance of bladder urothelial carcinoma via Wnt/β-catenin pathway. Oncotarget. 8:88689–88696. 2017. View Article : Google Scholar : PubMed/NCBI

419 

Li C, Gao Y, Li Y and Ding D: TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem Biophys Res Commun. 491:552–557. 2017. View Article : Google Scholar : PubMed/NCBI

420 

Gu L, Li Q, Liu H, Lu X and Zhu M: Long noncoding RNA TUG1 promotes autophagy-associated paclitaxel resistance by sponging miR-29b-3p in ovarian cancer cells. OncoTargets Ther. 13:2007–2019. 2020. View Article : Google Scholar

421 

Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y and Yuan H: Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett. 307:141–148. 2011. View Article : Google Scholar : PubMed/NCBI

422 

Wei X, Zhou Y, Qiu J, Wang X, Xia Y and Sui L: Low expression of TUG1 promotes cisplatin sensitivity in cervical cancer by activating the MAPK pathway. J BUON. 24:1020–1026. 2019.PubMed/NCBI

423 

Köberle B, Tomicic MT, Usanova S and Kaina B: Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta. 1806:172–182. 2010.PubMed/NCBI

424 

Niu Y, Ma F, Huang W, Fang S, Li M, Wei T and Guo L: Long non-coding RNA TUG1 is involved in cell growth and chemo-resistance of small cell lung cancer by regulating LIMK2b via EZH2. Mol Cancer. 16:52017. View Article : Google Scholar

425 

Xu C, Guo Y, Liu H, Chen G, Yan Y and Liu T: TUG1 confers cisplatin resistance in esophageal squamous cell carcinoma by epigenetically suppressing PDCD4 expression via EZH2. Cell Biosci. 8:612018. View Article : Google Scholar : PubMed/NCBI

426 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

427 

Liu Q, Sun S, Yu W, Jiang J, Zhuo F, Qiu G, Xu S and Jiang X: Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells. J Neurooncol. 122:283–292. 2015. View Article : Google Scholar : PubMed/NCBI

428 

Wang X, Chen X, Zhang D, Yang G, Yang Z, Yin Z and Zhao S: Prognostic and clinicopathological role of long non-coding RNA taurine upregulated 1 in various human malignancies: A systemic review and meta-analysis. Tumor Biol. 39:10104283177143612017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Baliou S, Kyriakopoulos AM, Spandidos DA and Zoumpourlis V: Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 57: 631-664, 2020.
APA
Baliou, S., Kyriakopoulos, A.M., Spandidos, D.A., & Zoumpourlis, V. (2020). Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). International Journal of Oncology, 57, 631-664. https://doi.org/10.3892/ijo.2020.5100
MLA
Baliou, S., Kyriakopoulos, A. M., Spandidos, D. A., Zoumpourlis, V."Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)". International Journal of Oncology 57.3 (2020): 631-664.
Chicago
Baliou, S., Kyriakopoulos, A. M., Spandidos, D. A., Zoumpourlis, V."Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)". International Journal of Oncology 57, no. 3 (2020): 631-664. https://doi.org/10.3892/ijo.2020.5100
Copy and paste a formatted citation
x
Spandidos Publications style
Baliou S, Kyriakopoulos AM, Spandidos DA and Zoumpourlis V: Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 57: 631-664, 2020.
APA
Baliou, S., Kyriakopoulos, A.M., Spandidos, D.A., & Zoumpourlis, V. (2020). Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). International Journal of Oncology, 57, 631-664. https://doi.org/10.3892/ijo.2020.5100
MLA
Baliou, S., Kyriakopoulos, A. M., Spandidos, D. A., Zoumpourlis, V."Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)". International Journal of Oncology 57.3 (2020): 631-664.
Chicago
Baliou, S., Kyriakopoulos, A. M., Spandidos, D. A., Zoumpourlis, V."Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)". International Journal of Oncology 57, no. 3 (2020): 631-664. https://doi.org/10.3892/ijo.2020.5100
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team