Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2020 Volume 57 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 57 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Cholesterol metabolism in drug‑resistant cancer (Review)

  • Authors:
    • Aiwen Yan
    • Zhirong Jia
    • Chen Qiao
    • Meisa Wang
    • Xuansheng Ding
  • View Affiliations / Copyright

    Affiliations: School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China, Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
  • Pages: 1103-1115
    |
    Published online on: September 22, 2020
       https://doi.org/10.3892/ijo.2020.5124
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer represents a severe challenge to healthcare systems and individuals worldwide. The development of multiple drug resistance is a major issue regarding cancer therapy, which can result in the progression of disease. Cholesterol is a major constituent of cell membranes and participates in the regulation of several cellular processes, such as cell growth, proliferation, differentiation, survival and apoptosis. Numerous studies have provided correlative support for a role of cholesterol in cancer development and drug resistance. In the present review, recent insights into the regulation of cholesterol metabolism, the association between cholesterol and the efficacy of antitumor agents in preclinical studies, as well as the possible mechanisms through which cholesterol influences drug resistance, are summarized. Furthermore, the clinical relevance of cholesterol to the development of cancer, as well as strategies targeting cholesterol for therapeutic intervention are detailed. Collectively, studies on various types of cancer have suggested that increased cholesterol levels promote resistance to chemotherapeutic drugs in cancer through a variety of mechanisms, and that the depletion of cholesterol using statins significantly enhances the sensitivity of the therapeutic agents. However, additional studies are required to enhance the current understanding of the involvement of cholesterol in the development of drug‑resistant cancer.
View Figures

Figure 1

Figure 2

View References

1 

Global Burden of Disease Cancer Collaboration; Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I, et al: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 5:1749–1768. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Fojo A, Hamilton TC, Young RC and Ozols RF: Multidrug resistance in ovarian cancer. Cancer. 60:2075–2080. 1987. View Article : Google Scholar : PubMed/NCBI

3 

Yang F, Gao B, Li R, Li W, Chen W, Yu Z and Zhang J: Expression levels of resistant genes affect cervical cancer prognosis. Mol Med Rep. 15:2802–2806. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Chun SY, Kwon YS, Nam KS and Kim S: Lapatinib enhances the cytotoxic effects of doxorubicin in MCF-7 tumorspheres by inhibiting the drug efflux function of ABC transporters. Biomed Pharmacother. 72:37–43. 2015. View Article : Google Scholar : PubMed/NCBI

5 

International Transporter Consortium; Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, et al: Membrane transporters in drug development. Nat Rev Drug Discov. 9:215–236. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Longley DB and Johnston PG: Molecular mechanisms of drug resistance. J Pathol. 205:275–292. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS, Akhtar AJ, Hilton J and Jones RJ: BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: A mechanism of resistance to multiple anticancer agents. Blood. 86:1148–1158. 1995. View Article : Google Scholar : PubMed/NCBI

8 

Camidge DR, Pao W and Sequist LV: Acquired resistance to TKIs in solid tumours: Learning from lung cancer. Nat Rev Clin Oncol. 11:473–481. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Maier S, Dahlstroem C, Haefliger C, Plum A and Piepenbrock C: Identifying DNA methylation biomarkers of cancer drug response. Am J Pharmacogenomics. 5:223–232. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Taylor ST, Hickman JA and Dive C: Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J Natl Cancer Inst. 92:18–23. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Maxfield FR and Tabas I: Role of cholesterol and lipid organization in disease. Nature. 438:612–621. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Gabitova L, Gorin A and Astsaturov I: Molecular pathways: Sterols and receptor signaling in cancer. Clin Cancer Res. 20:28–34. 2014. View Article : Google Scholar

13 

Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, Wang S, Pan CW, Zhu Y, Yan Y, et al: Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabi-lization and AKT-mTORC1 activation. Nat Med. 23:1055–1062. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Wu Y, Si R, Tang H, He Z, Zhu H, Wang L, Fan Y, Xia S, He Z and Wang Q: Cholesterol reduces the sensitivity to platinum-based chemotherapy via upregulating ABCG2 in lung adenocarcinoma. Biochem Biophyes Res Commun. 457:614–620. 2015. View Article : Google Scholar

15 

Sperling CD, Verdoodt F, Hansen MK, Dehlendorff C, Friis S and Kjaer SK: Statin use and mortality among endometrial cancer patients: A danish nationwide cohort study. Int J Cancer. 143:2668–2676. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Murtola TJ, Peltomaa AI, Talala K, Määttänen L, Taari K, Tammela TL and Auvinen A: Statin use and prostate cancer survival in the finnish randomized study of screening for prostate cancer. Eur Urol Focus. 3:212–220. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Rezen T, Rozman D, Pascussi JM and Monostory K: Interplay between cholesterol and drug metabolism. Biochim Biophys Acta. 1814:146–160. 2011. View Article : Google Scholar

18 

Cerqueira NM, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ and Fernandes PA: Cholesterol biosynthesis: A mechanistic overview. Biochemistry. 55:5483–5506. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Bloch K: Summing up. Ann Rev Biochem. 56:1–19. 1987. View Article : Google Scholar : PubMed/NCBI

20 

Goldstein JL and Brown MS: Regulation of the mevalonate pathway. Nature. 343:425–430. 1990. View Article : Google Scholar : PubMed/NCBI

21 

Williamson IP and Kekwick RG: The formation of 5-phospho-mevalonate by mevalonate kinase in hevea brasiliensis latex. Biochem J. 96:862–871. 1965. View Article : Google Scholar : PubMed/NCBI

22 

Ačimovič J and Rozman D: Steroidal triterpenes of cholesterol synthesis. Molecules. 18:4002–4017. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Brown MS and Goldstein JL: Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 21:505–517. 1980.PubMed/NCBI

24 

Gilardi F, Mitro N, Godio C, Scotti E, Caruso D, Crestani M and De Fabiani E: The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: From binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther. 116:449–472. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Sakakura Y, Shimano H, Sone H, Takahashi A, Inoue N, Toyoshima H, Suzuki S and Yamada N: Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem Biophys Res Commun. 286:176–183. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basañez G, Antonsson B, Prieto J, García-Ruiz C, Colell A, et al: Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 68:5246–5256. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Weber P, Wagner M and Schneckenburger H: Cholesterol dependent uptake and interaction of doxorubicin in MCF-7 breast cancer cells. Int J Mol Sci. 14:8358–8366. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Chen QF, Pan ZZ, Zhao M, Wang Q, Qiao C, Miao L and Ding X: High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J Cell Physiol. 233:6722–6732. 2018. View Article : Google Scholar

29 

Yun UJ, Lee JH, Shim J, Yoon K, Goh SH, Yi EH, Ye SK, Lee JS, Lee H, Park J, et al: Anti-Cancer effect of doxorubicin is mediated by downregulation of HMG-Co A reductase via inhibition of EGFR/Src pathway. Lab Invest. 99:1157–1172. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Greife A, Tukova J, Steinhoff C, Scott SD, Schulz WA and Hatina J: Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation. Tumor Biol. 36:3293–3300. 2015. View Article : Google Scholar

31 

Kong YF, Cheng LJ, Mao FY, Zhang ZZ, Zhang YQ, Farah E, Bosler J, Bai YF, Ahmad N, Kuang S, et al: Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC). J Biol Chem. 293:14328–14341. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Kim YN, Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J and Huang Y: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics. 9:265–278. 2019. View Article : Google Scholar

33 

Gupta VK, Sharma NS, Kesh K, Dauer P, Nomura A, Giri B, Dudeja V and Banerjee S, Bhattacharya S, Saluja A and Banerjee S: Metastasis and chemoresistance in CD133 expressing pancreatic cancer cells are dependent on their lipid raft integrity. Cancer Lett. 439:101–112. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Glod kowska-M rowka E, M rowka P, Basa k GW, Niesiobedzka-Krezel J, Seferynska I, Wlodarski PK, Jakobisiak M and Stoklosa T: Statins inhibit ABCB1 and ABCG2 drug trans-porter activity in chronic myeloid leukemia cells and potentiate antileukemic effects of imatinib. Exp Hematol. 42:439–447. 2014. View Article : Google Scholar

35 

Chen Y, Liu G, Guo L, Wang H, Fu Y and Luo Y: Enhancement of tumor uptake and therapeutic efficacy of EGFR-targeted antibody cetuximab and antibody-drug conjugates by cholesterol sequestration. Int J Cancer. 136:182–194. 2015. View Article : Google Scholar

36 

Chen X, Liu Y, Wu J, Huang HR, Du ZY, Zhang K, Zhou DY, Hung K, Goodin S and Zheng X: Mechanistic study of inhibitory effects of atorvastatin and docetaxel in combination on prostate cancer. Cancer Genomics Proteomics. 13:151–160. 2016.PubMed/NCBI

37 

Brown MS and Goldstein JL: Receptor-Mediated control of cholesterol metabolism. Science. 191:150–154. 1976. View Article : Google Scholar : PubMed/NCBI

38 

Brown MS and Goldstein JL: A receptor-mediated pathway for cholesterol homeostasis. Science. 232:34–47. 1986. View Article : Google Scholar : PubMed/NCBI

39 

Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH and Krieger M: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 271:518–520. 1996. View Article : Google Scholar : PubMed/NCBI

40 

Landschulz KT, Pathak RK, Rigotti A, Krieger M and Hobbs HH: Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest. 98:984–995. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Betters JL and Yu L: NPC1L1 and cholesterol transport. FEBS Lett. 584:2740–2747. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Rader DJ, Alexander ET, Weibel GL, Billheimer J and Rothblat GH: The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 50(Suppl): S189–S194. 2009. View Article : Google Scholar :

43 

Maranghi M, Truglio G, Gallo A, Grieco E, Verrienti A, Montali A, Gallo P, Alesini F, Arca M and Lucarelli M: A novel splicing mutation in the ABCA1 gene, causing tangier disease and familial HDL deficiency in a large family. Biochem Biophys Res Commun. 508:487–493. 2019. View Article : Google Scholar

44 

Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S and Phillips MC: Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J Biol Chem. 282:25123–25130. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L and Jessup W: ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol. 26:534–540. 2006. View Article : Google Scholar

46 

Jessup W, Gelissen IC, Gaus K and Kritharides L: Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macro-phages. Curr Opin Lipidol. 17:247–257. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Wang J, Mitsche MA, Lutjohann D, Cohen JC, Xie XS and Hobbs HH: Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res. 56:319–330. 2015. View Article : Google Scholar :

48 

Connelly MA and Williams DL: Scavenger receptor BI: A scavenger receptor with a mission to transport high density lipo-protein lipids. Curr Opin Lipidol. 15:287–295. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Huang ZH, Gu D, Lange Y and Mazzone T: Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages. Biochemistry. 42:3949–3955. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Calkin AC and Tontonoz P: Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 13:213–224. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Goldstein JL, DeBose-Boyd RA and Brown MS: Protein sensors for membrane sterols. Cell. 124:35–46. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Brown MS and Goldstein JL: The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89:331–340. 1997. View Article : Google Scholar : PubMed/NCBI

53 

Shimano H: SREBPs: Physiology and pathophysiology of the SREBP family. FEBS J. 276:616–621. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Radhakrishnan A, Goldstein JL, McDonald JG and Brown MS: Switch-Like control of SREBP-2 transport triggered by small changes in ER cholesterol: A delicate balance. Cell Metab. 8:512–521. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Lo Sasso G, Murzilli S, Salvatore L, D'Errico I, Petruzzelli M, Conca P, Jiang ZY, Calabresi L, Parini P and Moschetta A: Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab. 12:187–193. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Duval C, Touche V, Tailleux A, Fruchart JC, Fievet C, Clavey V, Staels B and Lestavel S: Niemann-Pick C1 like 1 gene expression is downregulated by LXR activators in the intestine. Biochem Biophys Res Commun. 340:1259–1263. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Cancer Genome Atlas Research Network; Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Kuzu OF, Noory MA and Robertson GP: The role of cholesterol in cancer. Cancer Res. 76:2063–2070. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Li JJ, Qu XC, Tian J, Zhang JT and Cheng JX: Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation. PLoS One. 13:e01933182018. View Article : Google Scholar : PubMed/NCBI

60 

Hultsch S, Kankainen M, Paavolainen L, Kovanen RM, Ikonen E, Kangaspeska S, Pietiäinen V and Kallioniemi O: Association of tamoxifen resistance and lipid reprogramming in breast cancer. BMC Cancer. 18:8502018. View Article : Google Scholar : PubMed/NCBI

61 

May GL, Wright LC, Dyne M, Mackinnon WB, Fox RM and Mountford CE: Plasma membrane lipid composition of vinblastine sensitive and resistant human leukaemic lymphoblasts. Int J Cancer. 42:728–733. 1988. View Article : Google Scholar : PubMed/NCBI

62 

Nguyen VT, Barozzi I, Faronato M, Lombardo Y, Steel JH, Patel N, Darbre P, Castellano L, Győrffy B, Woodley L, et al: Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat Commun. 6:100442015. View Article : Google Scholar : PubMed/NCBI

63 

Souchek JJ, Baine MJ, Lin C, Rachagani S, Gupta S, Kaur S, Lester K, Zheng D, Chen S, Smith L, et al: Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation. Br J Cancer. 111:1139–1149. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Bandyopadhyay S, Li J, Traer E, Tyner JW, Zhou A, Oh ST and Cheng JX: Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One. 12:e01795582017. View Article : Google Scholar : PubMed/NCBI

65 

Dominguez-Perez M, Simoni-Nieves A, Rosales P, Nuño-Lámbarri N, Rosas-Lemus M, Souza V, Miranda RU, Bucio L, Carvajal SU, Marquardt JU, et al: Cholesterol burden in the liver induces mitochondrial dynamic changes and resistance to apoptosis. J Cell Physiol. 234:7213–7223. 2019. View Article : Google Scholar

66 

Smith B and Land H: Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep. 2:580–590. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Crain RC, Clark RW and Harvey BE: Role of lipid transfer proteins in the abnormal lipid content of morris hepatoma mitochondria and microsomes. Cancer Res. 43:3197–3202. 1983.PubMed/NCBI

68 

Yamamoto Y, Tomiyama A, Sasaki N, Yamaguchi H, Shirakihara T, Nakashima T, Kumagai K, Takeuchi S, Toyooka T, Otani N, et al: Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolo-mide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft. Biochem Biophys Res Commun. 495:1292–1299. 2018. View Article : Google Scholar

69 

Ikonen E: Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 9:125–138. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Pike LJ: Lipid rafts: Heterogeneity on the high seas. Biochem J. 378:281–292. 2004. View Article : Google Scholar

71 

Li YC, Park MJ, Ye SK, Kim CW and Kim YN: Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 168:1107–1118. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Vieira AV, Lamaze C and Schmid SL: Control of EGF receptor signaling by clathrin-mediated endocytosis. Science. 274:2086–2089. 1996. View Article : Google Scholar : PubMed/NCBI

73 

Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S and Di Fiore PP: Clathrin-Mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell. 15:209–219. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Jiang S, Wang X, Song D, Liu X, Gu Y, Xu Z, Wang X, Zhang X, Ye Q, Tong Z, et al: Cholesterol induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP. Cancer Res. 15:3063–3075. 2019. View Article : Google Scholar

75 

Su YJ, Lin WH, Chang YW, Wei KC, Liang CL, Chen SC and Lee JL: Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3 beta/beta-catenin signaling required for maintenance of cancer stem cell properties. Oncotarget. 6:38029–38045. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Prieto-Vila M, Takahashi RU, Usuba W, Kohama I and Ochiya T: Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 18:25742017. View Article : Google Scholar

77 

Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, et al: Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 293:2449–2452. 2001. View Article : Google Scholar : PubMed/NCBI

78 

Chatterjee M, Ben-Josef E, Thomas DG, Morgan MA, Zalupski MM, Khan G, Andrew Robinson C, Griffith KA, Chen CS, Ludwig T, et al: Caveolin-1 is associated with tumor progression and confers a multi-modality resistance phenotype in pancreatic cancer. Sci Rep. 5:108672015. View Article : Google Scholar : PubMed/NCBI

79 

Li Z, Wang N, Huang C, Bao Y, Jiang Y and Zhu G: Downregulation of caveolin-1 increases the sensitivity of drug-resistant colorectal cancer HCT116 cells to 5-fluorouracil. Oncol Lett. 13:483–487. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Karantanos T, Karanika S, Wang J, Yang G, Dobashi M, Park S, Ren C, Li L, Basourakos SP, Hoang A, et al: Caveolin-1 regulates hormone resistance through lipid synthesis, creating novel therapeutic opportunities for castration-resistant prostate cancer. Oncotarget. 7:46321–46334. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Mohammad N, Malvi P, Meena AS, Singh SV, Chaube B, Vannuruswamy G, Kulkarni MJ and Bhat MK: Cholesterol depletion by methyl-beta-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol Cancer. 13:2042014. View Article : Google Scholar

82 

Troost J, Albermann N, Haefeli WE and Weiss J: Cholesterol modulates P-glycoprotein activity in human peripheral blood mononuclear cells. Biochem Biophys Res Commun. 316:705–711. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Rothnie A, Theron D, Soceneantu L, Martin C, Traikia M, Berridge G, Higgins CF, Devaux PF and Callaghan R: The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur Biophys J. 30:430–442. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Kamau SW, Krämer SD, Günthert M and Wunderli-Allenspach H: Effect of the modulation of the membrane lipid composition on the localization and function of P-glycoprotein in MDR1-MDCK cells. In Vitro Cell Dev Anim. 41:207–216. 2005. View Article : Google Scholar

85 

Gayet L, Dayan G, Barakat S, Labialle S, Michaud M, Cogne S, Mazane A, Coleman AW, Rigal D and Baggetto LG: Control of P-glycoprotein activity by membrane cholesterol amounts and their relation to multidrug resistance in human CEM leukemia cells. Biochemistry. 44:4499–4509. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Eckford PD and Sharom FJ: Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: Effects on ATPase activity, drug binding and transport. Biochemistry. 47:13686–13698. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Subramanian N, Schumann-Gillett A, Mark AE and O'Mara ML: Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning. Biochim Biophys Acta. 1858:776–782. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Gelsomino G, Corsetto PA, Campia I, Montorfano G, Kopecka J, Castella B, Gazzano E, Ghigo D, Rizzo AM and Riganti C: Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Mol Cancer. 12:1372013. View Article : Google Scholar : PubMed/NCBI

89 

Chen W, Zhang YW, Li Y, Zhang JW, Zhang T, Fu BS, Zhang Q and Jiang N: Constitutive expression of wnt/betacatenin target genes promotes proliferation and invasion of liver cancer stem cells. Mol Med Rep. 13:3466–3474. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Pál A, Méhn D, Molnár E, Gedey S, Mészáros P, Nagy T, Glavinas H, Janáky T, von Richter O, Báthori G, et al: Cholesterol potentiates ABCG2 activity in a heterologous expression system: Improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther. 321:1085–1094. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Telbisz A, Müller M, Ozvegy-Laczka C, Homolya L, Szente L, Váradi A and Sarkadi B: Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochem Biophys Acta. 1768:2698–2713. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Takano M, Higashi M, Ito H, Toyota S, Hirabayashi Y and Yumoto R: Functional expression of breast cancer resistance protein and cholesterol effect in human erythrocyte membranes. Pharmazie. 73:700–705. 2018.PubMed/NCBI

93 

Marbeuf-Gueye C, Stierle V, Sudwan P, Salerno M and Garnier-Suillerot A: Perturbation of membrane microdomains in GLC4 multidrug-resistant lung cancer cells-modification of ABCC1 (MRP1) localization and functionality. FEBS J. 274:1470–1480. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Pallarés-Trujillo J, Domènech C, Grau-Oliete MR and Rivera-Fillat MP: Role of cell cholesterol in modulating vincristine uptake and resistance. Int J Cancer. 55:667–671. 1993. View Article : Google Scholar : PubMed/NCBI

95 

Rivel T, Ramseyer C and Yesylevskyy S: The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep. 9:56272019. View Article : Google Scholar : PubMed/NCBI

96 

Sharma B, Gupta V, Dahiya D, Kumar H, Vaiphei K and Agnihotri N: Clinical relevance of cholesterol homeostasis genes in colorectal cancer. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1314–1327. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, Folkerd E, Thompson A, Bhamra A, Dowsett M and Martin LA: Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 18:582016. View Article : Google Scholar : PubMed/NCBI

98 

Kimbung S, Lettiero B, Feldt M, Bosch A and Borgquist S: High expression of cholesterol biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast cancer. Oncotarget. 7:59640–59651. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Kim S, Lee M, Dhanasekaran DN and Song YS: Activation of LXRa/beta by cholesterol in malignant ascites promotes chemo-resistance in ovarian cancer. BMC Cancer. 18:12322018. View Article : Google Scholar

100 

Zhou P, Li B, Liu B, Chen T and Xiao J: Prognostic role of serum total cholesterol and high-density lipoprotein cholesterol in cancer survivors: A systematic review and meta-analysis. Clin Chim Acta. 477:94–104. 2018. View Article : Google Scholar

101 

Rodrigues Dos Santos C, Fonseca I, Dias S and de Almeida JC: Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer. 14:1322014. View Article : Google Scholar : PubMed/NCBI

102 

Lofterød T, Mortensen ES, Nalwoga H, Wilsgaard T, Frydenberg H, Risberg T, Eggen AE, McTiernan A, Aziz S, Wist EA, et al: Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. BMC Cancer. 18:6542018. View Article : Google Scholar : PubMed/NCBI

103 

Wulaningsih W, Vahdaninia M, Rowley M, Holmberg L, Garmo H, Malmstrom H, Lambe M, Hammar N, Walldius G, Jungner I, et al: Prediagnostic serum glucose and lipids in relation to survival in breast cancer patients: A competing risk analysis. BMC Cancer. 15:9132015. View Article : Google Scholar : PubMed/NCBI

104 

Tamura T, Inagawa S, Hisakura K, Enomoto T and Ohkohchi N: Evaluation of serum high-density lipoprotein cholesterol levels as a prognostic factor in gastric cancer patients. J Gastroenterol Hepatol. 27:1635–1640. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Que Y, Jiang F, Liu L, Li Y, Chen Y, Qiu H, Zhou Z and Zhang X: Clinical significance of preoperative serum high density lipoprotein cholesterol levels in soft tissue sarcoma. Medicine (Baltimore). 94:e8442015. View Article : Google Scholar

106 

Wei LJ, Zhang C, Zhang H, Wei X, Li SX, Liu JT and Ren XB: A case-control study on the association between serum lipid level and the risk of breast cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 50:1091–1095. 2016.In Chinese.

107 

Cambien F, Ducimetiere P and Richard J: Total serum cholesterol and cancer mortality in a middle-aged male population. Am J Epidemiol. 112:388–394. 1980. View Article : Google Scholar : PubMed/NCBI

108 

Sherwin RW, Wentworth DN, Cutler JA, Hulley SB, Kuller LH and Stamler J: Serum cholesterol levels and cancer mortality in 361,662 men screened for the multiple risk factor intervention trial. JAMA. 257:943–948. 1987. View Article : Google Scholar : PubMed/NCBI

109 

Kim TH, Ahn SJ, Jung WT, Lee OJ, Ha WS and Jang JS: Clinical significance of the levels of serum cholesterol in patients with gastric cancer. Cancer Res Treat. 35:335–340. 2003. View Article : Google Scholar : PubMed/NCBI

110 

Ohno Y, Nakashima J, Nakagami Y, Gondo T, Ohori M, Hatano T and Tachibana M: Clinical implications of preopera-tive serum total cholesterol in patients with clear cell renal cell carcinoma. Urology. 83:154–158. 2014. View Article : Google Scholar

111 

Sok M, Ravnik J and Ravnik M: Preoperative total serum cholesterol as a prognostic factor for survival in patients with resectable non-small-cell lung cancer. Wien Klin Wochenschr. 121:314–317. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Larsen SB, Dehlendorff C, Skriver C, Dalton SQ, Jespersen CG, Borre M, Brasso K, Nørgaard M, Johansen C, Sørensen HT, et al: Postdiagnosis statin use and mortality in danish patients with prostate cancer. J Clin Oncol. 35:3290–3297. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Liu B, Yi Z, Guan X, Zeng YX and Ma F: The relationship between statins and breast cancer prognosis varies by statin type and exposure time: A meta-analysis. Breast Cancer Res Treat. 164:1–11. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Kim HY, Kim DK, Bae SH, Gwak H, Jeon JH, Kim JK, Lee BI, You HJ, Shin DH, Kim YH, et al: Farnesyl diphosphate synthase is important for the maintenance of glioblastoma stemness. Exp Mol Med. 50:1–12. 2018.PubMed/NCBI

115 

Ginestier C, Monville F, Wicinski J, Cabaud O, Cervera N, Josselin E, Finetti P, Guille A, Larderet G, Viens P, et al: Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target. Stem Cells. 30:1327–1337. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Yang CM, Lu YL, Chen HY and Hu ML: Lycopene and the LXRalpha agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem. 23:1155–1162. 2012. View Article : Google Scholar

117 

EL Roz A, Bard JM, Huvelin JM and Nazih H: LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast cancer cells: Relation to proliferation and apoptosis. Anticancer Res. 32:3007–3013. 2012.PubMed/NCBI

118 

El Roz A, Bard JM, Huvelin JM and Nazih H: The anti-proliferative and pro-apoptotic effects of the trans9, trans11 conjugated linoleic acid isomer on MCF-7 breast cancer cells are associated with LXR activation. Prostaglandins Leukot Essent Fatty Acids. 88:265–272. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Zhang L, Jiang M, Shui Y, Chen Y, Wang Q, Hu W, Ma X, Li X, Liu X, Cao X, et al: DNA topoisomerase II inhibitors induce macro-phage ABCA1 expression and cholesterol efflux-an LXR-dependent mechanism. Biochim Biophys Acta. 1831:1134–1145. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Naren D, Wu J, Gong Y, Yan T, Wang K, Xu W, Yang X, Shi F and Shi R: Niemann-Pick disease type C1(NPC1) is involved in resistance against imatinib in the imatinib-resistant Ph+ acute lymphoblastic leukemia cell line SUP-B15/RI. Leuk Res. 42:59–67. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Kuzu OF, Gowda R, Sharma A and Robertson GP: Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol Cancer Ther. 13:1690–1703. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Gowda R, Inamdar GS, Kuzu O, Dinavahi SS, Krzeminski J, Battu MB, Voleti SR, Amin S and Robertson GP: Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport. Oncotarget. 8:28260–28277. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Rios-Marco P, Martín-Fernández M, Soria-Bretones I, Ríos A, Carrasco MP and Marco C: Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. Biochim Biophys Acta. 1831:1322–1334. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Liu R, Li J, Zhang T, Zou L, Chen Y, Wang K, Lei Y, Yuan K, Li Y, Lan J, et al: Itraconazole suppresses the growth of glioblastoma through induction of autophagy: Involvement of abnormal cholesterol trafficking. Autophagy. 10:1241–1255. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Kuzu OF, Gowda R, Noory MA and Robertson GP: Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer. 117:513–524. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Pelton K, Coticchia CM, Curatolo AS, Schaffner CP, Zurakowski D, Solomon KR and Moses MA: Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. Am J Pathol. 184:2099–2110. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Lin X, Liu L, Fu Y, Gao J, He Y, Wu Y and Lian X: Dietary cholesterol intake and risk of lung cancer: A meta-analysis. Nutrients. 10:1852018. View Article : Google Scholar :

128 

Li C, Yang L, Zhang D and Jiang W: Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 36:627–635. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Hu J, La Vecchia C, de Groh M, Negri E, Morrison H and Mery L; Canadian Cancer Registries Epidemiology Research Group: Dietary cholesterol intake and cancer. Ann Oncol. 23:491–500. 2012. View Article : Google Scholar

130 

Genkinger JM, Hunter DJ, Spiegelman D, Anderson KE, Beeson WL, Buring JE, Colditz GA, Fraser GE, Freudenheim JL, Goldbohm RA, et al: A pooled analysis of 12 cohort studies of dietary fat, cholesterol and egg intake and ovarian cancer. Cancer Causes Control. 17:273–285. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Solomon KR, Pelton K, Boucher K, Joo J, Tully C, Zurakowski D, Schaffner CP, Kim J and Freeman MR: Ezetimibe is an inhibitor of tumor angiogenesis. Am J Pathol. 174:1017–1026. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Xu X, Han K, Zhu J, Mao H, Lin X, Zhang Z, Cao B, Zeng Y and Mao X: An inhibitor of cholesterol absorption displays anti-myeloma activity by targeting the JAK2-STAT3 signaling pathway. Oncotarget. 7:75539–75550. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Menendez JA, Vellon L and Lupu R: Targeting fatty acid synthase-driven lipid rafts: A novel strategy to overcome trastuzumab resistance in breast cancer cells. Med Hypotheses. 64:997–1001. 2005. View Article : Google Scholar : PubMed/NCBI

134 

Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, et al: De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res. 77:5503–5517. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Vijayaraghavalu S, Peetla C, Lu S and Labhasetwar V: Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions. Mol Pharm. 9:2730–2742. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Todor IN, Lukyanova NY and Chekhun VF: The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells. Exp Oncol. 34:97–100. 2012.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan A, Jia Z, Qiao C, Wang M and Ding X: Cholesterol metabolism in drug‑resistant cancer (Review). Int J Oncol 57: 1103-1115, 2020.
APA
Yan, A., Jia, Z., Qiao, C., Wang, M., & Ding, X. (2020). Cholesterol metabolism in drug‑resistant cancer (Review). International Journal of Oncology, 57, 1103-1115. https://doi.org/10.3892/ijo.2020.5124
MLA
Yan, A., Jia, Z., Qiao, C., Wang, M., Ding, X."Cholesterol metabolism in drug‑resistant cancer (Review)". International Journal of Oncology 57.5 (2020): 1103-1115.
Chicago
Yan, A., Jia, Z., Qiao, C., Wang, M., Ding, X."Cholesterol metabolism in drug‑resistant cancer (Review)". International Journal of Oncology 57, no. 5 (2020): 1103-1115. https://doi.org/10.3892/ijo.2020.5124
Copy and paste a formatted citation
x
Spandidos Publications style
Yan A, Jia Z, Qiao C, Wang M and Ding X: Cholesterol metabolism in drug‑resistant cancer (Review). Int J Oncol 57: 1103-1115, 2020.
APA
Yan, A., Jia, Z., Qiao, C., Wang, M., & Ding, X. (2020). Cholesterol metabolism in drug‑resistant cancer (Review). International Journal of Oncology, 57, 1103-1115. https://doi.org/10.3892/ijo.2020.5124
MLA
Yan, A., Jia, Z., Qiao, C., Wang, M., Ding, X."Cholesterol metabolism in drug‑resistant cancer (Review)". International Journal of Oncology 57.5 (2020): 1103-1115.
Chicago
Yan, A., Jia, Z., Qiao, C., Wang, M., Ding, X."Cholesterol metabolism in drug‑resistant cancer (Review)". International Journal of Oncology 57, no. 5 (2020): 1103-1115. https://doi.org/10.3892/ijo.2020.5124
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team