|
1
|
Global Burden of Disease Cancer
Collaboration; Fitzmaurice C, Abate D, Abbasi N, Abbastabar H,
Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I,
et al: Global, regional, and national cancer incidence, mortality,
years of life lost, years lived with disability, and
disability-adjusted life-years for 29 cancer groups, 1990 to 2017:
A systematic analysis for the global burden of disease study. JAMA
Oncol. 5:1749–1768. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fojo A, Hamilton TC, Young RC and Ozols
RF: Multidrug resistance in ovarian cancer. Cancer. 60:2075–2080.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yang F, Gao B, Li R, Li W, Chen W, Yu Z
and Zhang J: Expression levels of resistant genes affect cervical
cancer prognosis. Mol Med Rep. 15:2802–2806. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chun SY, Kwon YS, Nam KS and Kim S:
Lapatinib enhances the cytotoxic effects of doxorubicin in MCF-7
tumorspheres by inhibiting the drug efflux function of ABC
transporters. Biomed Pharmacother. 72:37–43. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
International Transporter Consortium;
Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X,
Dahlin A, Evers R, Fischer V, et al: Membrane transporters in drug
development. Nat Rev Drug Discov. 9:215–236. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Longley DB and Johnston PG: Molecular
mechanisms of drug resistance. J Pathol. 205:275–292. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bedi A, Barber JP, Bedi GC, el-Deiry WS,
Sidransky D, Vala MS, Akhtar AJ, Hilton J and Jones RJ:
BCR-ABL-mediated inhibition of apoptosis with delay of G2/M
transition after DNA damage: A mechanism of resistance to multiple
anticancer agents. Blood. 86:1148–1158. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Camidge DR, Pao W and Sequist LV: Acquired
resistance to TKIs in solid tumours: Learning from lung cancer. Nat
Rev Clin Oncol. 11:473–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maier S, Dahlstroem C, Haefliger C, Plum A
and Piepenbrock C: Identifying DNA methylation biomarkers of cancer
drug response. Am J Pharmacogenomics. 5:223–232. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Taylor ST, Hickman JA and Dive C:
Epigenetic determinants of resistance to etoposide regulation of
Bcl-X(L) and Bax by tumor microenvironmental factors. J Natl Cancer
Inst. 92:18–23. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Maxfield FR and Tabas I: Role of
cholesterol and lipid organization in disease. Nature. 438:612–621.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gabitova L, Gorin A and Astsaturov I:
Molecular pathways: Sterols and receptor signaling in cancer. Clin
Cancer Res. 20:28–34. 2014. View Article : Google Scholar
|
|
13
|
Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye
Z, Wang S, Pan CW, Zhu Y, Yan Y, et al: Intrinsic BET inhibitor
resistance in SPOP-mutated prostate cancer is mediated by BET
protein stabi-lization and AKT-mTORC1 activation. Nat Med.
23:1055–1062. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wu Y, Si R, Tang H, He Z, Zhu H, Wang L,
Fan Y, Xia S, He Z and Wang Q: Cholesterol reduces the sensitivity
to platinum-based chemotherapy via upregulating ABCG2 in lung
adenocarcinoma. Biochem Biophyes Res Commun. 457:614–620. 2015.
View Article : Google Scholar
|
|
15
|
Sperling CD, Verdoodt F, Hansen MK,
Dehlendorff C, Friis S and Kjaer SK: Statin use and mortality among
endometrial cancer patients: A danish nationwide cohort study. Int
J Cancer. 143:2668–2676. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Murtola TJ, Peltomaa AI, Talala K,
Määttänen L, Taari K, Tammela TL and Auvinen A: Statin use and
prostate cancer survival in the finnish randomized study of
screening for prostate cancer. Eur Urol Focus. 3:212–220. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rezen T, Rozman D, Pascussi JM and
Monostory K: Interplay between cholesterol and drug metabolism.
Biochim Biophys Acta. 1814:146–160. 2011. View Article : Google Scholar
|
|
18
|
Cerqueira NM, Oliveira EF, Gesto DS,
Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ and Fernandes PA:
Cholesterol biosynthesis: A mechanistic overview. Biochemistry.
55:5483–5506. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bloch K: Summing up. Ann Rev Biochem.
56:1–19. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Goldstein JL and Brown MS: Regulation of
the mevalonate pathway. Nature. 343:425–430. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Williamson IP and Kekwick RG: The
formation of 5-phospho-mevalonate by mevalonate kinase in hevea
brasiliensis latex. Biochem J. 96:862–871. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ačimovič J and Rozman D: Steroidal
triterpenes of cholesterol synthesis. Molecules. 18:4002–4017.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Brown MS and Goldstein JL: Multivalent
feedback regulation of HMG CoA reductase, a control mechanism
coordinating isoprenoid synthesis and cell growth. J Lipid Res.
21:505–517. 1980.PubMed/NCBI
|
|
24
|
Gilardi F, Mitro N, Godio C, Scotti E,
Caruso D, Crestani M and De Fabiani E: The pharmacological
exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in
bile acid synthesis: From binding resins to chromatin remodelling
to reduce plasma cholesterol. Pharmacol Ther. 116:449–472. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sakakura Y, Shimano H, Sone H, Takahashi
A, Inoue N, Toyoshima H, Suzuki S and Yamada N: Sterol regulatory
element-binding proteins induce an entire pathway of cholesterol
synthesis. Biochem Biophys Res Commun. 286:176–183. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Montero J, Morales A, Llacuna L, Lluis JM,
Terrones O, Basañez G, Antonsson B, Prieto J, García-Ruiz C, Colell
A, et al: Mitochondrial cholesterol contributes to chemotherapy
resistance in hepatocellular carcinoma. Cancer Res. 68:5246–5256.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Weber P, Wagner M and Schneckenburger H:
Cholesterol dependent uptake and interaction of doxorubicin in
MCF-7 breast cancer cells. Int J Mol Sci. 14:8358–8366. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen QF, Pan ZZ, Zhao M, Wang Q, Qiao C,
Miao L and Ding X: High cholesterol in lipid rafts reduces the
sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J
Cell Physiol. 233:6722–6732. 2018. View Article : Google Scholar
|
|
29
|
Yun UJ, Lee JH, Shim J, Yoon K, Goh SH, Yi
EH, Ye SK, Lee JS, Lee H, Park J, et al: Anti-Cancer effect of
doxorubicin is mediated by downregulation of HMG-Co A reductase via
inhibition of EGFR/Src pathway. Lab Invest. 99:1157–1172. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Greife A, Tukova J, Steinhoff C, Scott SD,
Schulz WA and Hatina J: Establishment and characterization of a
bladder cancer cell line with enhanced doxorubicin resistance by
mevalonate pathway activation. Tumor Biol. 36:3293–3300. 2015.
View Article : Google Scholar
|
|
31
|
Kong YF, Cheng LJ, Mao FY, Zhang ZZ, Zhang
YQ, Farah E, Bosler J, Bai YF, Ahmad N, Kuang S, et al: Inhibition
of cholesterol biosynthesis overcomes enzalutamide resistance in
castration-resistant prostate cancer (CRPC). J Biol Chem.
293:14328–14341. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim YN, Jin H, He Y, Zhao P, Hu Y, Tao J,
Chen J and Huang Y: Targeting lipid metabolism to overcome
EMT-associated drug resistance via integrin β3/FAK pathway and
tumor-associated macrophage repolarization using
legumain-activatable delivery. Theranostics. 9:265–278. 2019.
View Article : Google Scholar
|
|
33
|
Gupta VK, Sharma NS, Kesh K, Dauer P,
Nomura A, Giri B, Dudeja V and Banerjee S, Bhattacharya S, Saluja A
and Banerjee S: Metastasis and chemoresistance in CD133 expressing
pancreatic cancer cells are dependent on their lipid raft
integrity. Cancer Lett. 439:101–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Glod kowska-M rowka E, M rowka P, Basa k
GW, Niesiobedzka-Krezel J, Seferynska I, Wlodarski PK, Jakobisiak M
and Stoklosa T: Statins inhibit ABCB1 and ABCG2 drug trans-porter
activity in chronic myeloid leukemia cells and potentiate
antileukemic effects of imatinib. Exp Hematol. 42:439–447. 2014.
View Article : Google Scholar
|
|
35
|
Chen Y, Liu G, Guo L, Wang H, Fu Y and Luo
Y: Enhancement of tumor uptake and therapeutic efficacy of
EGFR-targeted antibody cetuximab and antibody-drug conjugates by
cholesterol sequestration. Int J Cancer. 136:182–194. 2015.
View Article : Google Scholar
|
|
36
|
Chen X, Liu Y, Wu J, Huang HR, Du ZY,
Zhang K, Zhou DY, Hung K, Goodin S and Zheng X: Mechanistic study
of inhibitory effects of atorvastatin and docetaxel in combination
on prostate cancer. Cancer Genomics Proteomics. 13:151–160.
2016.PubMed/NCBI
|
|
37
|
Brown MS and Goldstein JL:
Receptor-Mediated control of cholesterol metabolism. Science.
191:150–154. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Brown MS and Goldstein JL: A
receptor-mediated pathway for cholesterol homeostasis. Science.
232:34–47. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Acton S, Rigotti A, Landschulz KT, Xu S,
Hobbs HH and Krieger M: Identification of scavenger receptor SR-BI
as a high density lipoprotein receptor. Science. 271:518–520. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Landschulz KT, Pathak RK, Rigotti A,
Krieger M and Hobbs HH: Regulation of scavenger receptor, class B,
type I, a high density lipoprotein receptor, in liver and
steroidogenic tissues of the rat. J Clin Invest. 98:984–995. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Betters JL and Yu L: NPC1L1 and
cholesterol transport. FEBS Lett. 584:2740–2747. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rader DJ, Alexander ET, Weibel GL,
Billheimer J and Rothblat GH: The role of reverse cholesterol
transport in animals and humans and relationship to
atherosclerosis. J Lipid Res. 50(Suppl): S189–S194. 2009.
View Article : Google Scholar :
|
|
43
|
Maranghi M, Truglio G, Gallo A, Grieco E,
Verrienti A, Montali A, Gallo P, Alesini F, Arca M and Lucarelli M:
A novel splicing mutation in the ABCA1 gene, causing tangier
disease and familial HDL deficiency in a large family. Biochem
Biophys Res Commun. 508:487–493. 2019. View Article : Google Scholar
|
|
44
|
Vedhachalam C, Duong PT, Nickel M, Nguyen
D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S and Phillips
MC: Mechanism of ATP-binding cassette transporter A1-mediated
cellular lipid efflux to apolipoprotein A-I and formation of high
density lipoprotein particles. J Biol Chem. 282:25123–25130. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gelissen IC, Harris M, Rye KA, Quinn C,
Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L and
Jessup W: ABCA1 and ABCG1 synergize to mediate cholesterol export
to apoA-I. Arterioscler Thromb Vasc Biol. 26:534–540. 2006.
View Article : Google Scholar
|
|
46
|
Jessup W, Gelissen IC, Gaus K and
Kritharides L: Roles of ATP binding cassette transporters A1 and
G1, scavenger receptor BI and membrane lipid domains in cholesterol
export from macro-phages. Curr Opin Lipidol. 17:247–257. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang J, Mitsche MA, Lutjohann D, Cohen JC,
Xie XS and Hobbs HH: Relative roles of ABCG5/ABCG8 in liver and
intestine. J Lipid Res. 56:319–330. 2015. View Article : Google Scholar :
|
|
48
|
Connelly MA and Williams DL: Scavenger
receptor BI: A scavenger receptor with a mission to transport high
density lipo-protein lipids. Curr Opin Lipidol. 15:287–295. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang ZH, Gu D, Lange Y and Mazzone T:
Expression of scavenger receptor BI facilitates sterol movement
between the plasma membrane and the endoplasmic reticulum in
macrophages. Biochemistry. 42:3949–3955. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Calkin AC and Tontonoz P: Transcriptional
integration of metabolism by the nuclear sterol-activated receptors
LXR and FXR. Nat Rev Mol Cell Biol. 13:213–224. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Goldstein JL, DeBose-Boyd RA and Brown MS:
Protein sensors for membrane sterols. Cell. 124:35–46. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Brown MS and Goldstein JL: The SREBP
pathway: Regulation of cholesterol metabolism by proteolysis of a
membrane-bound transcription factor. Cell. 89:331–340. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shimano H: SREBPs: Physiology and
pathophysiology of the SREBP family. FEBS J. 276:616–621. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Radhakrishnan A, Goldstein JL, McDonald JG
and Brown MS: Switch-Like control of SREBP-2 transport triggered by
small changes in ER cholesterol: A delicate balance. Cell Metab.
8:512–521. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lo Sasso G, Murzilli S, Salvatore L,
D'Errico I, Petruzzelli M, Conca P, Jiang ZY, Calabresi L, Parini P
and Moschetta A: Intestinal specific LXR activation stimulates
reverse cholesterol transport and protects from atherosclerosis.
Cell Metab. 12:187–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Duval C, Touche V, Tailleux A, Fruchart
JC, Fievet C, Clavey V, Staels B and Lestavel S: Niemann-Pick C1
like 1 gene expression is downregulated by LXR activators in the
intestine. Biochem Biophys Res Commun. 340:1259–1263. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cancer Genome Atlas Research Network;
Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA,
Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome
atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kuzu OF, Noory MA and Robertson GP: The
role of cholesterol in cancer. Cancer Res. 76:2063–2070. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li JJ, Qu XC, Tian J, Zhang JT and Cheng
JX: Cholesterol esterification inhibition and gemcitabine
synergistically suppress pancreatic ductal adenocarcinoma
proliferation. PLoS One. 13:e01933182018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hultsch S, Kankainen M, Paavolainen L,
Kovanen RM, Ikonen E, Kangaspeska S, Pietiäinen V and Kallioniemi
O: Association of tamoxifen resistance and lipid reprogramming in
breast cancer. BMC Cancer. 18:8502018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
May GL, Wright LC, Dyne M, Mackinnon WB,
Fox RM and Mountford CE: Plasma membrane lipid composition of
vinblastine sensitive and resistant human leukaemic lymphoblasts.
Int J Cancer. 42:728–733. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nguyen VT, Barozzi I, Faronato M, Lombardo
Y, Steel JH, Patel N, Darbre P, Castellano L, Győrffy B, Woodley L,
et al: Differential epigenetic reprogramming in response to
specific endocrine therapies promotes cholesterol biosynthesis and
cellular invasion. Nat Commun. 6:100442015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Souchek JJ, Baine MJ, Lin C, Rachagani S,
Gupta S, Kaur S, Lester K, Zheng D, Chen S, Smith L, et al:
Unbiased analysis of pancreatic cancer radiation resistance reveals
cholesterol biosynthesis as a novel target for radiosensitisation.
Br J Cancer. 111:1139–1149. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bandyopadhyay S, Li J, Traer E, Tyner JW,
Zhou A, Oh ST and Cheng JX: Cholesterol esterification inhibition
and imatinib treatment synergistically inhibit growth of BCR-ABL
mutation-independent resistant chronic myelogenous leukemia. PLoS
One. 12:e01795582017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dominguez-Perez M, Simoni-Nieves A,
Rosales P, Nuño-Lámbarri N, Rosas-Lemus M, Souza V, Miranda RU,
Bucio L, Carvajal SU, Marquardt JU, et al: Cholesterol burden in
the liver induces mitochondrial dynamic changes and resistance to
apoptosis. J Cell Physiol. 234:7213–7223. 2019. View Article : Google Scholar
|
|
66
|
Smith B and Land H: Anticancer activity of
the cholesterol exporter ABCA1 gene. Cell Rep. 2:580–590. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Crain RC, Clark RW and Harvey BE: Role of
lipid transfer proteins in the abnormal lipid content of morris
hepatoma mitochondria and microsomes. Cancer Res. 43:3197–3202.
1983.PubMed/NCBI
|
|
68
|
Yamamoto Y, Tomiyama A, Sasaki N,
Yamaguchi H, Shirakihara T, Nakashima T, Kumagai K, Takeuchi S,
Toyooka T, Otani N, et al: Intracellular cholesterol level
regulates sensitivity of glioblastoma cells against
temozolo-mide-induced cell death by modulation of caspase-8
activation via death receptor 5-accumulation and activation in the
plasma membrane lipid raft. Biochem Biophys Res Commun.
495:1292–1299. 2018. View Article : Google Scholar
|
|
69
|
Ikonen E: Cellular cholesterol trafficking
and compartmentalization. Nat Rev Mol Cell Biol. 9:125–138. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Pike LJ: Lipid rafts: Heterogeneity on the
high seas. Biochem J. 378:281–292. 2004. View Article : Google Scholar
|
|
71
|
Li YC, Park MJ, Ye SK, Kim CW and Kim YN:
Elevated levels of cholesterol-rich lipid rafts in cancer cells are
correlated with apoptosis sensitivity induced by
cholesterol-depleting agents. Am J Pathol. 168:1107–1118. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vieira AV, Lamaze C and Schmid SL: Control
of EGF receptor signaling by clathrin-mediated endocytosis.
Science. 274:2086–2089. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sigismund S, Argenzio E, Tosoni D,
Cavallaro E, Polo S and Di Fiore PP: Clathrin-Mediated
internalization is essential for sustained EGFR signaling but
dispensable for degradation. Dev Cell. 15:209–219. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jiang S, Wang X, Song D, Liu X, Gu Y, Xu
Z, Wang X, Zhang X, Ye Q, Tong Z, et al: Cholesterol induces
epithelial-to-mesenchymal transition of prostate cancer cells by
suppressing degradation of EGFR through APMAP. Cancer Res.
15:3063–3075. 2019. View Article : Google Scholar
|
|
75
|
Su YJ, Lin WH, Chang YW, Wei KC, Liang CL,
Chen SC and Lee JL: Polarized cell migration induces cancer
type-specific CD133/integrin/Src/Akt/GSK3 beta/beta-catenin
signaling required for maintenance of cancer stem cell properties.
Oncotarget. 6:38029–38045. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Prieto-Vila M, Takahashi RU, Usuba W,
Kohama I and Ochiya T: Drug resistance driven by cancer stem cells
and their niche. Int J Mol Sci. 18:25742017. View Article : Google Scholar
|
|
77
|
Drab M, Verkade P, Elger M, Kasper M, Lohn
M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, et al:
Loss of caveolae, vascular dysfunction, and pulmonary defects in
caveolin-1 gene-disrupted mice. Science. 293:2449–2452. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chatterjee M, Ben-Josef E, Thomas DG,
Morgan MA, Zalupski MM, Khan G, Andrew Robinson C, Griffith KA,
Chen CS, Ludwig T, et al: Caveolin-1 is associated with tumor
progression and confers a multi-modality resistance phenotype in
pancreatic cancer. Sci Rep. 5:108672015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li Z, Wang N, Huang C, Bao Y, Jiang Y and
Zhu G: Downregulation of caveolin-1 increases the sensitivity of
drug-resistant colorectal cancer HCT116 cells to 5-fluorouracil.
Oncol Lett. 13:483–487. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Karantanos T, Karanika S, Wang J, Yang G,
Dobashi M, Park S, Ren C, Li L, Basourakos SP, Hoang A, et al:
Caveolin-1 regulates hormone resistance through lipid synthesis,
creating novel therapeutic opportunities for castration-resistant
prostate cancer. Oncotarget. 7:46321–46334. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mohammad N, Malvi P, Meena AS, Singh SV,
Chaube B, Vannuruswamy G, Kulkarni MJ and Bhat MK: Cholesterol
depletion by methyl-beta-cyclodextrin augments tamoxifen induced
cell death by enhancing its uptake in melanoma. Mol Cancer.
13:2042014. View Article : Google Scholar
|
|
82
|
Troost J, Albermann N, Haefeli WE and
Weiss J: Cholesterol modulates P-glycoprotein activity in human
peripheral blood mononuclear cells. Biochem Biophys Res Commun.
316:705–711. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Rothnie A, Theron D, Soceneantu L, Martin
C, Traikia M, Berridge G, Higgins CF, Devaux PF and Callaghan R:
The importance of cholesterol in maintenance of P-glycoprotein
activity and its membrane perturbing influence. Eur Biophys J.
30:430–442. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kamau SW, Krämer SD, Günthert M and
Wunderli-Allenspach H: Effect of the modulation of the membrane
lipid composition on the localization and function of
P-glycoprotein in MDR1-MDCK cells. In Vitro Cell Dev Anim.
41:207–216. 2005. View Article : Google Scholar
|
|
85
|
Gayet L, Dayan G, Barakat S, Labialle S,
Michaud M, Cogne S, Mazane A, Coleman AW, Rigal D and Baggetto LG:
Control of P-glycoprotein activity by membrane cholesterol amounts
and their relation to multidrug resistance in human CEM leukemia
cells. Biochemistry. 44:4499–4509. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Eckford PD and Sharom FJ: Interaction of
the P-glycoprotein multidrug efflux pump with cholesterol: Effects
on ATPase activity, drug binding and transport. Biochemistry.
47:13686–13698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Subramanian N, Schumann-Gillett A, Mark AE
and O'Mara ML: Understanding the accumulation of P-glycoprotein
substrates within cells: The effect of cholesterol on membrane
partitioning. Biochim Biophys Acta. 1858:776–782. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gelsomino G, Corsetto PA, Campia I,
Montorfano G, Kopecka J, Castella B, Gazzano E, Ghigo D, Rizzo AM
and Riganti C: Omega 3 fatty acids chemosensitize multidrug
resistant colon cancer cells by down-regulating cholesterol
synthesis and altering detergent resistant membranes composition.
Mol Cancer. 12:1372013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen W, Zhang YW, Li Y, Zhang JW, Zhang T,
Fu BS, Zhang Q and Jiang N: Constitutive expression of
wnt/betacatenin target genes promotes proliferation and invasion of
liver cancer stem cells. Mol Med Rep. 13:3466–3474. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pál A, Méhn D, Molnár E, Gedey S, Mészáros
P, Nagy T, Glavinas H, Janáky T, von Richter O, Báthori G, et al:
Cholesterol potentiates ABCG2 activity in a heterologous expression
system: Improved in vitro model to study function of human ABCG2. J
Pharmacol Exp Ther. 321:1085–1094. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Telbisz A, Müller M, Ozvegy-Laczka C,
Homolya L, Szente L, Váradi A and Sarkadi B: Membrane cholesterol
selectively modulates the activity of the human ABCG2 multidrug
transporter. Biochem Biophys Acta. 1768:2698–2713. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Takano M, Higashi M, Ito H, Toyota S,
Hirabayashi Y and Yumoto R: Functional expression of breast cancer
resistance protein and cholesterol effect in human erythrocyte
membranes. Pharmazie. 73:700–705. 2018.PubMed/NCBI
|
|
93
|
Marbeuf-Gueye C, Stierle V, Sudwan P,
Salerno M and Garnier-Suillerot A: Perturbation of membrane
microdomains in GLC4 multidrug-resistant lung cancer
cells-modification of ABCC1 (MRP1) localization and functionality.
FEBS J. 274:1470–1480. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Pallarés-Trujillo J, Domènech C,
Grau-Oliete MR and Rivera-Fillat MP: Role of cell cholesterol in
modulating vincristine uptake and resistance. Int J Cancer.
55:667–671. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rivel T, Ramseyer C and Yesylevskyy S: The
asymmetry of plasma membranes and their cholesterol content
influence the uptake of cisplatin. Sci Rep. 9:56272019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sharma B, Gupta V, Dahiya D, Kumar H,
Vaiphei K and Agnihotri N: Clinical relevance of cholesterol
homeostasis genes in colorectal cancer. Biochim Biophys Acta Mol
Cell Biol Lipids. 1864:1314–1327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Simigdala N, Gao Q, Pancholi S,
Roberg-Larsen H, Zvelebil M, Ribas R, Folkerd E, Thompson A, Bhamra
A, Dowsett M and Martin LA: Cholesterol biosynthesis pathway as a
novel mechanism of resistance to estrogen deprivation in estrogen
receptor-positive breast cancer. Breast Cancer Res. 18:582016.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kimbung S, Lettiero B, Feldt M, Bosch A
and Borgquist S: High expression of cholesterol biosynthesis genes
is associated with resistance to statin treatment and inferior
survival in breast cancer. Oncotarget. 7:59640–59651. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kim S, Lee M, Dhanasekaran DN and Song YS:
Activation of LXRa/beta by cholesterol in malignant ascites
promotes chemo-resistance in ovarian cancer. BMC Cancer.
18:12322018. View Article : Google Scholar
|
|
100
|
Zhou P, Li B, Liu B, Chen T and Xiao J:
Prognostic role of serum total cholesterol and high-density
lipoprotein cholesterol in cancer survivors: A systematic review
and meta-analysis. Clin Chim Acta. 477:94–104. 2018. View Article : Google Scholar
|
|
101
|
Rodrigues Dos Santos C, Fonseca I, Dias S
and de Almeida JC: Plasma level of LDL-cholesterol at diagnosis is
a predictor factor of breast tumor progression. BMC Cancer.
14:1322014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lofterød T, Mortensen ES, Nalwoga H,
Wilsgaard T, Frydenberg H, Risberg T, Eggen AE, McTiernan A, Aziz
S, Wist EA, et al: Impact of pre-diagnostic triglycerides and
HDL-cholesterol on breast cancer recurrence and survival by breast
cancer subtypes. BMC Cancer. 18:6542018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wulaningsih W, Vahdaninia M, Rowley M,
Holmberg L, Garmo H, Malmstrom H, Lambe M, Hammar N, Walldius G,
Jungner I, et al: Prediagnostic serum glucose and lipids in
relation to survival in breast cancer patients: A competing risk
analysis. BMC Cancer. 15:9132015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tamura T, Inagawa S, Hisakura K, Enomoto T
and Ohkohchi N: Evaluation of serum high-density lipoprotein
cholesterol levels as a prognostic factor in gastric cancer
patients. J Gastroenterol Hepatol. 27:1635–1640. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Que Y, Jiang F, Liu L, Li Y, Chen Y, Qiu
H, Zhou Z and Zhang X: Clinical significance of preoperative serum
high density lipoprotein cholesterol levels in soft tissue sarcoma.
Medicine (Baltimore). 94:e8442015. View Article : Google Scholar
|
|
106
|
Wei LJ, Zhang C, Zhang H, Wei X, Li SX,
Liu JT and Ren XB: A case-control study on the association between
serum lipid level and the risk of breast cancer. Zhonghua Yu Fang
Yi Xue Za Zhi. 50:1091–1095. 2016.In Chinese.
|
|
107
|
Cambien F, Ducimetiere P and Richard J:
Total serum cholesterol and cancer mortality in a middle-aged male
population. Am J Epidemiol. 112:388–394. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sherwin RW, Wentworth DN, Cutler JA,
Hulley SB, Kuller LH and Stamler J: Serum cholesterol levels and
cancer mortality in 361,662 men screened for the multiple risk
factor intervention trial. JAMA. 257:943–948. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kim TH, Ahn SJ, Jung WT, Lee OJ, Ha WS and
Jang JS: Clinical significance of the levels of serum cholesterol
in patients with gastric cancer. Cancer Res Treat. 35:335–340.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ohno Y, Nakashima J, Nakagami Y, Gondo T,
Ohori M, Hatano T and Tachibana M: Clinical implications of
preopera-tive serum total cholesterol in patients with clear cell
renal cell carcinoma. Urology. 83:154–158. 2014. View Article : Google Scholar
|
|
111
|
Sok M, Ravnik J and Ravnik M: Preoperative
total serum cholesterol as a prognostic factor for survival in
patients with resectable non-small-cell lung cancer. Wien Klin
Wochenschr. 121:314–317. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Larsen SB, Dehlendorff C, Skriver C,
Dalton SQ, Jespersen CG, Borre M, Brasso K, Nørgaard M, Johansen C,
Sørensen HT, et al: Postdiagnosis statin use and mortality in
danish patients with prostate cancer. J Clin Oncol. 35:3290–3297.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Liu B, Yi Z, Guan X, Zeng YX and Ma F: The
relationship between statins and breast cancer prognosis varies by
statin type and exposure time: A meta-analysis. Breast Cancer Res
Treat. 164:1–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kim HY, Kim DK, Bae SH, Gwak H, Jeon JH,
Kim JK, Lee BI, You HJ, Shin DH, Kim YH, et al: Farnesyl
diphosphate synthase is important for the maintenance of
glioblastoma stemness. Exp Mol Med. 50:1–12. 2018.PubMed/NCBI
|
|
115
|
Ginestier C, Monville F, Wicinski J,
Cabaud O, Cervera N, Josselin E, Finetti P, Guille A, Larderet G,
Viens P, et al: Mevalonate metabolism regulates Basal breast cancer
stem cells and is a potential therapeutic target. Stem Cells.
30:1327–1337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yang CM, Lu YL, Chen HY and Hu ML:
Lycopene and the LXRalpha agonist T0901317 synergistically inhibit
the proliferation of androgen-independent prostate cancer cells via
the PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem. 23:1155–1162. 2012.
View Article : Google Scholar
|
|
117
|
EL Roz A, Bard JM, Huvelin JM and Nazih H:
LXR agonists and ABCG1-dependent cholesterol efflux in MCF-7 breast
cancer cells: Relation to proliferation and apoptosis. Anticancer
Res. 32:3007–3013. 2012.PubMed/NCBI
|
|
118
|
El Roz A, Bard JM, Huvelin JM and Nazih H:
The anti-proliferative and pro-apoptotic effects of the trans9,
trans11 conjugated linoleic acid isomer on MCF-7 breast cancer
cells are associated with LXR activation. Prostaglandins Leukot
Essent Fatty Acids. 88:265–272. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhang L, Jiang M, Shui Y, Chen Y, Wang Q,
Hu W, Ma X, Li X, Liu X, Cao X, et al: DNA topoisomerase II
inhibitors induce macro-phage ABCA1 expression and cholesterol
efflux-an LXR-dependent mechanism. Biochim Biophys Acta.
1831:1134–1145. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Naren D, Wu J, Gong Y, Yan T, Wang K, Xu
W, Yang X, Shi F and Shi R: Niemann-Pick disease type C1(NPC1) is
involved in resistance against imatinib in the imatinib-resistant
Ph+ acute lymphoblastic leukemia cell line SUP-B15/RI. Leuk Res.
42:59–67. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kuzu OF, Gowda R, Sharma A and Robertson
GP: Leelamine mediates cancer cell death through inhibition of
intracellular cholesterol transport. Mol Cancer Ther. 13:1690–1703.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gowda R, Inamdar GS, Kuzu O, Dinavahi SS,
Krzeminski J, Battu MB, Voleti SR, Amin S and Robertson GP:
Identifying the structure-activity relationship of leelamine
necessary for inhibiting intracellular cholesterol transport.
Oncotarget. 8:28260–28277. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Rios-Marco P, Martín-Fernández M,
Soria-Bretones I, Ríos A, Carrasco MP and Marco C:
Alkylphospholipids deregulate cholesterol metabolism and induce
cell-cycle arrest and autophagy in U-87 MG glioblastoma cells.
Biochim Biophys Acta. 1831:1322–1334. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Liu R, Li J, Zhang T, Zou L, Chen Y, Wang
K, Lei Y, Yuan K, Li Y, Lan J, et al: Itraconazole suppresses the
growth of glioblastoma through induction of autophagy: Involvement
of abnormal cholesterol trafficking. Autophagy. 10:1241–1255. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kuzu OF, Gowda R, Noory MA and Robertson
GP: Modulating cancer cell survival by targeting intracellular
cholesterol transport. Br J Cancer. 117:513–524. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Pelton K, Coticchia CM, Curatolo AS,
Schaffner CP, Zurakowski D, Solomon KR and Moses MA:
Hypercholesterolemia induces angiogenesis and accelerates growth of
breast tumors in vivo. Am J Pathol. 184:2099–2110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Lin X, Liu L, Fu Y, Gao J, He Y, Wu Y and
Lian X: Dietary cholesterol intake and risk of lung cancer: A
meta-analysis. Nutrients. 10:1852018. View Article : Google Scholar :
|
|
128
|
Li C, Yang L, Zhang D and Jiang W:
Systematic review and meta-analysis suggest that dietary
cholesterol intake increases risk of breast cancer. Nutr Res.
36:627–635. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hu J, La Vecchia C, de Groh M, Negri E,
Morrison H and Mery L; Canadian Cancer Registries Epidemiology
Research Group: Dietary cholesterol intake and cancer. Ann Oncol.
23:491–500. 2012. View Article : Google Scholar
|
|
130
|
Genkinger JM, Hunter DJ, Spiegelman D,
Anderson KE, Beeson WL, Buring JE, Colditz GA, Fraser GE,
Freudenheim JL, Goldbohm RA, et al: A pooled analysis of 12 cohort
studies of dietary fat, cholesterol and egg intake and ovarian
cancer. Cancer Causes Control. 17:273–285. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Solomon KR, Pelton K, Boucher K, Joo J,
Tully C, Zurakowski D, Schaffner CP, Kim J and Freeman MR:
Ezetimibe is an inhibitor of tumor angiogenesis. Am J Pathol.
174:1017–1026. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Xu X, Han K, Zhu J, Mao H, Lin X, Zhang Z,
Cao B, Zeng Y and Mao X: An inhibitor of cholesterol absorption
displays anti-myeloma activity by targeting the JAK2-STAT3
signaling pathway. Oncotarget. 7:75539–75550. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Menendez JA, Vellon L and Lupu R:
Targeting fatty acid synthase-driven lipid rafts: A novel strategy
to overcome trastuzumab resistance in breast cancer cells. Med
Hypotheses. 64:997–1001. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Tadros S, Shukla SK, King RJ, Gunda V,
Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, et al:
De novo lipid synthesis facilitates gemcitabine resistance through
endoplasmic reticulum stress in pancreatic cancer. Cancer Res.
77:5503–5517. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Vijayaraghavalu S, Peetla C, Lu S and
Labhasetwar V: Epigenetic modulation of the biophysical properties
of drug-resistant cell lipids to restore drug transport and
endocytic functions. Mol Pharm. 9:2730–2742. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Todor IN, Lukyanova NY and Chekhun VF: The
lipid content of cisplatin- and doxorubicin-resistant MCF-7 human
breast cancer cells. Exp Oncol. 34:97–100. 2012.PubMed/NCBI
|