|
1
|
Chen YP, Chan ATC, Le QT, Blanchard P, Sun
Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wee JT, Ha TC, Loong SL and Qian CN: Is
nasopharyngeal cancer really a 'Cantonese cancer'? Chin J Cancer.
29:517–526. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang LL, Chen YP, Mao YP, Wang ZX, Guo R,
Chen L, Tian L, Lin AH, Li L, Sun Y and Ma J: Validation of the 8th
edition of the uicc/ajcc staging system for nasopharyngeal
carcinoma from endemic areas in the intensity-modulated
radiotherapy era. J Natl Compr Canc Netw. 15:913–919. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Roy Chattopadhyay N, Das P, Chatterjee K
and Choudhuri T: Higher incidence of nasopharyngeal carcinoma in
some regions in the world confers for interplay between genetic
factors and external stimuli. Drug Discov Ther. 11:170–180. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chang ET and Adami HO: The enigmatic
epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol
Biomarkers Prev. 15:1765–1777. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Janvilisri T: Omics-based identification
of biomarkers for nasopharyngeal carcinoma. Dis Markers.
2015:7621282015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee KT, Tan JK, Lam AK and Gan SY:
MicroRNAs serving as potential biomarkers and therapeutic targets
in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol
Hematol. 103:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xiao L, Xiao T, Wang ZM, Cho WC and Xiao
ZQ: Biomarker discovery of nasopharyngeal carcinoma by proteomics.
Expert Rev Proteomics. 11:215–225. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang Y, Chen L, Hu GQ, Zhang N, Zhu XD,
Yang KY, Jin F, Shi M, Chen YP, Hu WH, et al: Gemcitabine and
cisplatin induction chemotherapy in nasopharyngeal carcinoma. N
Engl J Med. 381:1124–1135. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Song C, Cheng P, Cheng J, Zhang Y, Sun M,
Xie S and Zhang X: Differential diagnosis of nasopharyngeal
carcinoma and nasopharyngeal lymphoma based on DCE-MRI and
RESOLVE-DWI. Eur Radiol. 30:110–118. 2020. View Article : Google Scholar
|
|
12
|
Colevas AD, Yom SS, Pfister DG, Spencer S,
Adelstein D, Adkins D, Brizel DM, Burtness B, Busse PM, Caudell JJ,
et al: NCCN guidelines insights: Head and neck cancers, version 1.
2018.J Natl Compr Canc Netw. 16:479–490. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sun XS, Xiao BB, Lu ZJ, Liu SL, Chen QY,
Yuan L, Tang LQ and Mai HQ: Stratification of candidates for
induction chemotherapy in Stage III-IV nasopharyngeal carcinoma: A
large cohort study based on a comprehensive prognostic model. Front
Oncol. 28:2552020. View Article : Google Scholar
|
|
14
|
Wang YW, Ho SY, Lee SW, Chen CC, Litsu S,
Huang WT, Yang CC, Lin CH, Chen HY and Lin LC: Induction
chemotherapy improved long term outcomes in stage IV locoregional
advanced nasopharyngeal carcinoma. Int J Med Sci. 17:568–576. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cao SM, Yang Q, Guo L, Mai HQ, Mo HY, Cao
KJ, Qian CN, Zhao C, Xiang YQ, Zhang XP, et al: Neoadjuvant
chemotherapy followed by concurrent chemoradiotherapy versus
concurrent chemoradiotherapy alone in locoregionally advanced
nasopharyngeal carcinoma: A phase III multicentre randomised
controlled trial. Eur J Cancer. 75:14–23. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jin BY, Zhang GY, Lin KR, Chen XP, Cui JH,
Wang YJ and Luo W: Changes of plasma cytokines and chemokines
expression level in nasopharyngeal carcinoma patients after
treatment with definitive intensity-modulated radiotherapy (IMRT).
PLoS One. 12:e01722642017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang G, Zhang K, Li C, Li Y, Li Z, Li N,
Zhou Q and Shen L: Serum proteomics identify potential biomarkers
for nasopharyngeal carcinoma sensitivity to radiotherapy. Biosci
Rep. May 14–2019.Epub ahead of print. View Article : Google Scholar
|
|
18
|
Aftab O, Liao S, Zhang R, Tang N, Luo M,
Zhang B, Shahi S, Rai R, Ali J and Jiang W: Efficacy and safety of
intensity-modulated radiotherapy alone versus intensity-modulated
radiotherapy plus chemotherapy for treatment of intermediate-risk
nasopharyngeal carcinoma. Radiat Oncol. 15:662020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang HY, Chang YL, To KF, Hwang JS, Mai
HQ, Feng YF, Chang ET, Wang CP, Kam MK, Cheah SL, et al: A new
prognostic histopathologic classification of nasopharyngeal
carcinoma. Chin J Cancer. 35:412016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Al-Sarraf M, LeBlanc M, Giri PG, Fu KK,
Cooper J, Vuong T, Forastiere AA, Adams G, Sakr WA, Schuller DE and
Ensley JF: Chemoradiotherapy versus radiotherapy in patients with
advanced nasopharyngeal cancer: Phase III randomized inter-group
study 0099. J Clin Oncol. 16:1310–1317. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lee AW, Tung SY, Ngan RK, Chappell R, Chua
DT, Liu TX, Siu L, Tan T, Chan LK, Ng WT, et al: Factors
contributing to the efficacy of concurrent-adjuvant chemotherapy
for locoregionally advanced nasopharyngeal carcinoma: Combined
analysesof NPC-9901 and NPC-9902 trials. Eur J Cancer. 47:656–666.
2011. View Article : Google Scholar
|
|
22
|
Chen Y, Liu MZ, Liang SB, Zong JF, Mao YP,
Tang LL, Guo Y, Lin AH, Zeng XF and Ma J: Preliminary results of a
prospective randomized trial comparing concurrent chemoradiotherapy
plus adjuvant chemotherapy with radiotherapy alone in patients with
locoregionally advanced nasopharyngeal carcinoma in endemic regions
of China. Int J Radiat Oncol Biol Phys. 71:1356–1364. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liang H, Xu Y, Chen M, Zhong W, Wang M and
Zhao J: Patterns of response in metastatic NSCLC during PD-1 or
PD-L1 inhibitor therapy: Comparison of the RECIST 1.1 and iRECIST
criteria. Thorac Cancer. 11:1068–1075. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jiang W, Liu N, Chen XZ, Sun Y, Li B, Ren
XY, Qin WF, Jiang N, Xu YF, Li YQ, et al: Genome-wide
identification of a methylation gene panel as a prognostic
biomarker in nasopharyngeal carcinoma. Mol Cancer Ther.
14:2864–2873. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen ZT, Liang ZG and Zhu XD: A review:
Proteomics in nasopharyngeal carcinoma. Int J Mol Sci.
16:15497–15530. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Del Giacco and Cattaneo C: Introduction to
genomics. Methods Mol Biol. 823:79–88. 2012. View Article : Google Scholar
|
|
27
|
Berger MF and Mardis ER: The emerging
clinical relevance of genomics in cancer medicine. Nat Rev Clin
Oncol. 15:353–365. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Donnelly D III, Aung PP and Jour G: The
'-OMICS' facet of melanoma: Heterogeneity of genomic, proteomic and
metabolomic biomarkers. Semin Cancer Biol. 59:165–174. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tsang CM, Lui VW, Bruce JP, Pugh TJ and Lo
KW: Translational genomics of nasopharyngeal cancer. Semin Cancer
Biol. 61:84–100. 2020. View Article : Google Scholar
|
|
30
|
Yang H, Yu K, Zhang R, Li J, Wei X, Zhang
Y, Zhang C, Xiao F, Zhao D, Lin X, et al: The HLA-DRB1 allele
polymorphisms and nasopharyngeal carcinoma. Tumour Biol.
37:7119–7128. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Guo XG and Xia Y: The interleukin-18
promoter-607C>A polymorphism contributes to nasopharyngeal
carcinoma risk: Evidence from a meta-analysis including 1,886
subjects. Asian Pac J Cancer Prev. 14:7577–7781. 2013. View Article : Google Scholar
|
|
32
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q,
Ban Y, Zhou Y, Li X, Xiong W, et al: Rediscovery of NF-κB signaling
in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway
interplay with EBV in driving oncogenesis? J Cell Physiol.
233:5537–5549. 2018. View Article : Google Scholar
|
|
33
|
Tam V, Patel N, Turcotte M, Bosse Y, Paré
G and Meyre D: Benefits and limitations of genome-wide association
studies. Nat Rev Genet. 20:467–484. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou P, Liu S, Ji NN, Zhang S, Wang P, Lin
B, Yang P, Lin XT, Cai YZ, Wang ZM, et al: Association between
variant alleles of major histocompatibility complex class II
regulatory genes and nasopharyngeal carcinoma susceptibility. Eur J
Cancer Prev. 29:531–537. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Niu Y, Zhou G, Wang Y, Qin J, Ping J,
Zhang Q, Han BW, Liu YX, Yang C, Zhai Y, et al: Association of
MCP-1 promoter polymorphism with susceptibility to nasopharyngeal
carcinoma. J Cell Biochem. 120:6661–6670. 2019. View Article : Google Scholar
|
|
36
|
Ban EZ, Lye MS, Chong PP, Yap YY, Lim SY
and Abdul Rahman H: Haplotype CGC from XPD, hOGG1 and ITGA2
polymorphisms increases the risk of nasopharyngeal carcinoma in
Malaysia. PLoS One. 12:e01872002017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lourembam DS, Singh AR, Sharma TD, Singh
TS, Singh TR and Singh LS: Evaluation of risk factors for
nasopharyngeal carcinoma in a high-risk area of India, the
Northeastern region. Asian Pac J Cancer Prev. 16:4927–4935. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zheng H, Dai W, Cheung AK, Ko JM, Kan R,
Wong BW, Leong MM, Deng M, Kwok TC, Chan JY, et al: Whole-exome
sequencing identifies multiple loss-of-function mutations of NF-κB
pathway regulators in nasopharyngeal carcinoma. Proc Natl Acad Sci
USA. 113:11283–11288. 2016. View Article : Google Scholar
|
|
39
|
Li YY, Chung GT, Lui VW, To KF, Ma BB,
Chow C, Woo JK, Yip KY, Seo J, Hui EP, et al: Exome and genome
sequencing of nasopharynx cancer identifies NF-κB pathway
activating mutations. Nature Commun. 8:141212017. View Article : Google Scholar
|
|
40
|
Tsao SW, Yip YL, Ysang CM, Pang PS, Lau
VM, Zhang G and Lo KW: Etiology factors of nasopharyngeal
carcinoma. Oral Oncol. 50:330–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Anderson EN Jr, Anderson ML and Ho HC:
Environmental backgrounds of young Chinese nasopharyngeal carcinoma
patients. IARC Sci Publ. 231–239. 1978.PubMed/NCBI
|
|
42
|
Tan C, Chen H, Wu T and Xia C: The
prediction of nasopharyngeal carcinoma mortality based on soil
element levels in China. Biol Trace Elem Res. 138:139–147. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yu G, Hsu WL, Coghill AE, Yu KJ, Wang CP,
Lou PJ, Liu Z, Jones K, Vogt K, Wang M, et al: Whole-exome
sequencing of nasopharyngeal carcinoma families reveals novel
variants potentially involved in nasopharyngeal carcinoma. Sci Rep.
9:99162019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu Z, Goldstein AM, Hsu WL, Yu KJ, Chien
YC, Ko JY, Jian JJ, Tsou YA, Leu YS, Liao LJ, et al: Evaluation of
rare and common variants from suspected familial or sporadic
nasopharyngeal carcinoma (NPC) susceptibility genes in sporadic
NPC. Cancer Epidemiol Biomarkers Prev. 28:1682–1686. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sasaki MM, Skol AD, Bao R, Rhodes LV,
Chambers R, Vokes EE, Cohen EE and Onel K: Integrated genomic
analysis suggests MLL3 is a novel candidate susceptibility gene for
familial nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers
Prev. 24:1222–1228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mokni-Baizing N, Gorgi Y, Elghourabi M,
Makhlouf M, Boussen H, Gritli S, Elmay M, Gamoudi A and Elmay A:
HLA-A*26-A*30 and HLA-DRB1*10 could be predictors of nasopharyngeal
carcinoma risk in high-risk Tunisian families. J Oral Sci.
59:289–296. 2017. View Article : Google Scholar
|
|
47
|
Friborg J, Wohlfahrt J, Koch A, Storm H,
Olsen OR and Melbye M: Cancer susceptibility in nasopharyngeal
carcinoma families-a population-based cohort study. Cancer Res.
65:8567–8572. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kerns SL, West CM, Andreassen CN, Barnett
GC, Bentzen SM, Burnet NG, Dekker A, De Ruysscher D, Dunning A,
Parliament M, et al: Radiogenomics: The search for genetic
predictors of radiotherapy response. Future Oncol. 10:2391–2406.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen W and Hu GH: Biomarkers for enhancing
the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol Med.
12:23–32. 2015.PubMed/NCBI
|
|
50
|
Rattay T and Talbot CJ: Finding the
genetic determinants of adverse reactions to radiotherapy. Clin
Oncol (R Coll Radiol). 26:301–308. 2014. View Article : Google Scholar
|
|
51
|
Ma WL, Liu R, Huang LH, Zou C, Huang J,
Wang J, Chen SJ, Meng XG, Yang JK, Li H, et al: Impact of
polymorphisms in angiogenesis-related genes on clinical outcomes of
radiotherapy in patients with nasopharyngeal carcinoma. Clin Exp
Pharmacol Physiol. 44:539–548. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Le Z, Niu X, Chen Y, Ou X, Zhao G, Liu Q,
Tu W, Hu C, Kong L and Liu Y: Predictive single nucleotide
polymorphism markers for acute oral mucositis in patients with
nasopharyngeal carcinoma treated with radiotherapy. Oncotarget.
8:63026–63037. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yu J, Huang Y, Liu L, Wang J, Yin J, Huang
L, Chen S, Li J, Yuan H, Yang G, et al: Genetic polymorphisms of
Wnt/β-catenin pathway genes are associated with the efficacy and
toxicities of radiotherapy in patients with nasopharyngeal
carcinoma. Oncotarget. 7:82528–82537. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang J, Guo C, Gong X, Ao F, Huang Y,
Huang L, Tang Y, Jiang C, Xie X, Dong Q, et al: The impacts of
genetic polymorphisms in genes of base excision repair pathway on
the efficacy and acute toxicities of (chemo) radiotherapy in
patients with nasopharyngeal carcinoma. Oncotarget. 8:78633–78641.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhai XM, Hu QC, Gu K, Wang JP, Zhang JN
and Wu YW: Significance of XRCC1 Codon399 polymorphisms in Chinese
patients with locally advanced nasopharyngeal carcinoma treated
with radiation therapy. Asia Pac J Clin Oncol. 12:e125–e132. 2016.
View Article : Google Scholar
|
|
56
|
Chen H, Wu M, Li G, Hua L, Chen S and
Huang H: Association between XRCC1 single-nucleotide polymorphism
and acute radiation reaction in patients with nasopharyngeal
carcinoma: A cohort study. Medicine (Baltimore). 96:e82022017.
View Article : Google Scholar
|
|
57
|
Guo XB, Ma WL, Liu LJ, Huang YL, Wang J,
Huang LH, Peng XD, Yin JY, Li JG, Chen SJ, et al: Effects of gene
polymorphisms in the endoplasmic reticulum stress pathway on
clinical outcomes of chemoradiotherapy in Chinese patients with
nasopharyngeal carcinoma. Acta Pharmacol Sin. 38:571–580. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tan J, Jiang L, Cheng X, Wang C, Chen J,
Huang X, Xie P, Xia D, Wang R and Zhang Y: Association between
VEGF-460T/C gene polymorphism and clinical outcomes of
nasopharyngeal carcinoma treated with intensity-modulated radiation
therapy. Onco Targets Ther. 10:909–918. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tsao SW, Tsang CM and Lo KW: Epstein-barr
virus infection and nasopharyngeal carcinoma. Philos Trans R Soc
Lond B Biol Sci. 372:201602702017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shen JJ, Niu WN, Zhou M, Zhou F, Zhang HY
and Wang L: Association of Epstein Barr virus A73 gene polymorphism
with nasopharyngeal carcinoma. Genet Test Mol Biomarkers.
19:187–190. 2015. View Article : Google Scholar
|
|
61
|
Wu S, Liu W, Li H, Zhao Z, Yang Y, Xiao H,
Song Y and Luo B: Conservation and polymorphism of EBV RPMS1 gene
in EBV-associated tumors and healthy individuals from endemic and
non-endemic nasopharyngeal carcinoma areas in China. Virus Res.
250:75–80. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tay JK, Chan SH, Lim CM, Siow CH, Goh HL
and Loh KS: The role of Epstein-Barr virus DNA load and serology as
screening tools for nasopharyngeal carcinoma. Otolaryngol Head Neck
Surg. 155:274–280. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chan KC, Woo JK, King A, Zee BC, Lam WK,
Chan SL, Chu SW, Mak C, Tse IO, Leung SY, et al: Analysis of plasma
Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N Engl
J Med. 377:513–522. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lam WK, Chan KC and Lo YM: Plasma
Epstein-Barr virus DNA as an archetypal circulating tumour DNA
marker. J Pathol. 247:641–649. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zeng Z, Fan S, Zhang X, Li S, Zhou M,
Xiong W, Tan M, Zhang W and Li G: Epstein-Barr virus-encoded small
RNA 1 (EBER-1) could predict good prognosis in nasopharyngeal
carcinoma. Clin Transl Oncol. 18:206–211. 2016. View Article : Google Scholar
|
|
66
|
Arai A, Yamaguchi T, Komatsu H, Imadome K,
Kurata M, Nagata K and Miura O: Infectious mononucleosis
accompanied by clonal proliferation of EBV-infected cells and
infection of CD8-positive cells. Int J Hematol. 99:671–675. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Banko AV, Lazarevic IB, Karalic DZ, Djukic
VB, Cupic MD, Stevanovic G and Jovanovic TP: The sequence analysis
of Epstein-Barr virus EBNA1 gene: Could viral screening markers for
nasopharyngeal carcinoma be identified? Med Mircobiol Immunol.
208:81–88. 2019. View Article : Google Scholar
|
|
68
|
Banko AV, Lazarevic IB, Folic MM, Djukic
VB, Cirkovic AM, Karalic DZ, Cupic MD and Jovanovic TP:
Characterization of the variability of Epstein-Barr virus genes in
nasopharyngeal biopsies: Potential predictors for carcinoma
progression. PLoS One. 11:e01534982016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hui EP, Ma BB, Chan KC, Chan CM, Wong CS,
To KF, Chan AW, Tung SY, Ng WT, Cheng AC, et al: Clinical utility
of plasma Epstein-Barr virus DNA and ERCC1 single nucleotide
polymorphism in nasopharyngeal carcinoma. Cancer. 121:2720–2729.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chatsirisupachai K, Palmer D, Ferreira S
and de Magalhães JP: A human tissue-specific transcriptomic
analysis reveals a complex relationship between aging, cancer, and
cellular senescence. Aging Cell. 18:e130412019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sager M, Yeat NC, Pajaro-Van der Stadt S,
Lin C, Ren Q and Lin J: Transcriptomics in cancer diagnostics:
Developments in technology, clinical research and
commercialization. Expert Rev Mol Diagn. 15:1589–1603. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Moor AE and Itzkovitz S: Spatial
transcriptomics: Paving the way for tissue-level systems biology.
Curr Poin Biotechnol. 46:126–133. 2017. View Article : Google Scholar
|
|
73
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang LJ, Chou YF, Chen PR, Su B, Hsu YC,
Chang CH and Lee JW: Differential miRNA expression in repeated
recurrence of nasopharyngeal carcinoma. Cancer Lett. 344:188–194.
2014. View Article : Google Scholar
|
|
75
|
Li T, Chen JX, Fu XP, Yang S, Zhang Z,
Chen KH and Li Y: microRNA expression profiling of nasopharyngeal
carcinoma. Oncol Rep. 25:1353–1363. 2011.PubMed/NCBI
|
|
76
|
Lu T, Guo Q, Lin K, Chen H, Chen Y, Xu Y,
Lin C, Su Y, Chen Y, Chen M, et al: Circulating Epstein-Barr virus
microRNAs BART7-3p and BART13-3p as novel biomarkers in
nasopharyngeal carcinoma. Cancer Sci. 111:1711–1723. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu L, Wang J, Zhu D, Zhang S, Zhou X, Zhu
W, Zhu J and He X: Circulating Epstein-Barr virus microRNA profile
reveals novel biomarker for nasopharyngeal carcinoma diagnosis.
Cancer Biomark. 27:365–375. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hirai N, Wakisaka N, Knodo S, Aga M,
Moriyama-Kita M, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Murono S,
et al: Potential interest in circulating miR-BART17-5p as a
post-treatment biomarker for prediction of recurrence in
Epstein-Barr virus-related nasopharyngeal carcinoma. PLoS One.
11:e01636092016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang H, Zou X, Wu L, Zhang S, Wang T, Liu
P, Zhu W and Zhu J: Identification of a 7-microRNA signature in
plasma as promising biomarker for nasopharyngeal carcinoma
detection. Cancer Med. 9:1230–1241. 2020. View Article : Google Scholar
|
|
80
|
Yi SJ, Liu P, Chen BL, Ou-Yang L, Xiong WM
and Su JP: Circulating miR-31-5p may be a potential diagnostic
biomarker in nasopharyngeal carcinoma. Neoplasma. 66:825–829. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang H, Wei X, Wu B, Su J, Tan W and Yang
K: Tumor-educated platelet miR-34c-3p and miR-18a-5p as potential
liquid biopsy biomarkers for nasopharyngeal carcinoma diagnosis.
Cancer Manag Res. 11:3351–3360. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wen W, Mai SJ, Lin HX, Zhang MY, Huang JL,
Hua X, Lin C, Long ZQ, Lu ZJ, Sun XQ, et al: Identification of two
microRNA signatures in whole blood as novel biomarkers for
diagnosis of nasopharyngeal carcinoma. J Transl Med. 17:1862019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wu L, Zheng K, Yan C, Pan X, Liu Y, Liu J,
Wang F, Guo W, He X, Li J and Shen Y: Genome-wide study of salivary
microRNAs as potential noninvasive biomarkers for detection of
nasopharyngeal carcinoma. BMC Cancer. 19:8432019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang M, Gu B, Chen X, Wang Y, Li P and
Wang K: The function and therapeutic potential of Epstein-Barr
virus-encoded MicroRNAs in cancer. Mol Ther Nucleic Acids.
17:657–668. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fan C, Tang Y, Wang J, Xiong F, Guo C,
Wang Y, Xiang B, Zhou M, Li X, Wu X, et al: The emerging role of
Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J
Cancer. 9:2852–2864. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Best MG, Sol N, Kooi I, Tannous J,
Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E,
Koster J, et al: RNA-Seq of tumor-educated platelets enables
blood-based pan-cancer, multiclass, and molecular pathway cancer
diagnostics. Cancer Cell. 28:666–676. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li K, Zhu X, Li L, Ning R, Liang Z, Zeng
F, Su F, Huang S, Yang X and Qu S: Identification of non-invasive
biomarkers for predicting the radiosensitivity of nasopharyngeal
carcinoma from serum microRNAs. Sci Rep. 10:51612020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu J and Hann SS: Functions and roles of
long-non-coding RNAs in human nasopharyngeal carcinoma. Cell
Physiol Biochem. 45:1191–1204. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhao CX, Zhu W, Ba ZQ, Xu HJ, Liu WD, Zhu
B, Wang L, Song YJ, Yuan S and Ren CP: The regulatory network of
nasopharyngeal carcinoma metastasis with a focus on EBV, lncRNAs
and miRNAs. Am J Cancer Res. 8:2185–2209. 2018.PubMed/NCBI
|
|
90
|
He B, Zeng J, Chao W, Chen X, Huang Y,
Deng K, Huang Z, Li J, Dai M, Chen S, et al: Serum long non-coding
RNAs MALAT1, AFAP1-AS1 and AL359062 as diagnostic and prognostic
biomarkers for nasopharyngeal carcinoma. Oncotarget. 8:41166–41177.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yao Z, Zhang Y, Xu D, Zhou X, Peng P, Pan
Z, Xiao N, Yao J and Li Z: Research progress on long non-coding RNA
and radiotherapy. Med Sci Monit. 25:5757–5770. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu G, Zeng X, Wu B, Zhao J and Pan Y:
RNA-Seq analysis of peripheral blood mononuclear cells reveals
unique transcriptional signatures associated with radiotherapy
response of nasopharyngeal carcinoma and prognosis of head and neck
cancer. Cancer Biol Ther. 21:139–146. 2020. View Article : Google Scholar :
|
|
93
|
Shuai M, Hong J, Huang D, Zhang X and Tian
Y: Upregulation of circRNA_0000285 serves as a prognostic biomarker
for nasopharyngeal carcinoma and is involved in radiosensitivity.
Oncol Lett. 16:6495–6501. 2018.PubMed/NCBI
|
|
94
|
Gosho M, Nagashima K and Sato Y: Study
designs and statistical analyses for biomarker research. Sensors
(Basel). 12:8966–8986. 2012. View Article : Google Scholar
|
|
95
|
Cho WC: Mass spectrometry-based proteomics
in cancer research. Expert Rev Proteomics. 14:725–727. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tan HT, Lee YH and Chung MC: Cancer
proteomics. Mass Spectrom Rev. 31:583–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang Z, Wu S, Stenoien DL and Paša-Tolić
L: High-throughput proteomics. Annu Rev Anal Chem (Palo Alto
Calif). 7:427–454. 2014. View Article : Google Scholar
|
|
98
|
Aslam B, Basit M, Nisar MA, Khurshid M and
Rasool MH: Proteomics: Technologies and their applications. J
Chromatogr Sci. 55:182–196. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
EI-Sharkawy A, Al Zaidan L and Malki A:
Epstein-Barr virus-associated malignancies: Roles of viral
oncoproteins in carcinogenesis. Front Oncol. 8:2652018. View Article : Google Scholar
|
|
100
|
Zamanian Azodi M, Rezaei Tavirani M,
Rezaei Tavirani M, Vafaee R and Rostami-Nejad M: Nasopharyngeal
carcinoma protein interaction mapping analysis via proteomic
approaches. Asian Pac J Cancer Prev. 19:845–851. 2018.PubMed/NCBI
|
|
101
|
Cao Y: EBV based cancer prevention and
therapy in nasopharyngeal carcinoma. NPJ Precis Oncol. 1:102017.
View Article : Google Scholar
|
|
102
|
Schmidlin T, Garrigues L, Lane CS, Mulder
TC, van Doorn S, Post H, de Graaf EL, Lemeer S, Heck AJ and
Altelaar AF: Assessment of SRM, MRM(3), and DIA for the targeted
analysis of phosphorylation dynamics in non-small cell lung cancer.
Proteomics. 16:2193–2205. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo Y, Mok TS, Lin X, Zhang W, Cui Y, Guo
J, Chen X, Zhang T and Wang T: SWATH-based proteomics identified
carbonic anhydrase 2 as a potential diagnosis biomarker for
nasopharyngeal carcinoma. Sci Rep. 7:411912017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nguyen EV, Centenera MM, Moldovan M, Das
R, Irani S, Vincent AD, Chan H, Horvath LG, Lynn DJ, Daly RJ and
Butler LM: Identification of novel response and predictive
biomarkers to Hsp90 inhibitors through proteomic profiling of
patient-derived prostate tumor explants. Mol Cell Proteomics.
17:1470–1486. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Nakamura K, Hirayama-Kurogi M, Ito S, Kuno
T, Yoneyama T, Obuchi W, Terasaki T and Ohtsuki S: Large-scale
multiplex absolute protein quantification of drug-metabolizing
enzymes and transporters in human intestine, liver, and kidney
microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.
Proteomics. 16:2106–2117. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Sun X, Chen Y, Tan J and Qi X: Serum IRS-1
acts as a novel biomarker for diagnosis in patients with
nasopharyngeal carcinoma. Int J Clin Exp Pathol. 11:3685–3690.
2018.
|
|
107
|
Coghill AE, Pfeiffer RM, Proietti C, Hus
WL, Chien YC, Lekiffre L, Krause L, Teng A, Pablo J, Yu KJ, et al:
Identification of a novel, EBV-based antibody risk stratification
signature for early detection of nasopharyngeal carcinoma in
Taiwan. Clin Cancer Res. 24:1305–1314. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin LH, Xu YW, Huang LS, Hong CQ, Zhai TT,
Liao LD, Lin WJ, Xu LY, Zhang K, Li EM and Peng YH: Serum
proteomic-based analysis identifying autoantibodies against PRDX2
and PRDX3 as potential diagnostic biomarkers in nasopharyngeal
carcinoma. Clin Proteomics. 14:62017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Gong D, Li Z, Ding R, Cheng M, Huang H,
Liu A, Kang M, He H, Xu Y, Shao J, et al: Extensive serum biomarker
analysis in patients with nasopharyngeal carcinoma. Cytokine.
118:107–114. 2019. View Article : Google Scholar
|
|
110
|
Meng H, Zhu X, Li L, Liang Z, Li X, Pan X,
Zeng F and Qu S: Identification of CALM as the potential serum
biomarker for predicting the recurrence of nasopharyngeal carcinoma
using a mass spectrometry based comparative proteomic approach. Int
J Mol Med. 40:1152–1164. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Manes NP and Nita-Lazar A: Application of
targeted mass spectrometry in bottom-up proteomics for systems
biology research. J Proteomics. 189:75–90. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sun Y, Guo W, Bai Y, Ge M, Hu C, Wu S, Hao
J, Gao M, Pan J, Dong P, et al: Neoadjuvant dose-modified docetaxel
in squamous cell carcinoma of the head and neck: A phase 3 study.
Oral Dis. 26:285–294. 2020. View Article : Google Scholar
|
|
113
|
Monti C, Zilocchi M, Colugnat I and
Alberio T: Proteomics turns functional. J Proteomics. 198:36–44.
2019. View Article : Google Scholar
|
|
114
|
Xiao Z and Chen Z: Deciphering
nasopharyngeal carcinoma pathogenesis via proteomics. Expert Rev
Proteomics. 16:475–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang X: Cancer moonshot 2020: A new march
of clinical and translational medicine. Clin Transl Med. 5:112016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fiore LD, Rodriguez H and Shriver CD:
Collaboration to accelerate proteogenomics cancer care: The
department of veterans affairs, department of defense, and the
national cancer institute 's applied proteogenomics organizational
learning and outcomes (APOLLO) network. Clin Pharmacol Ther.
101:619–621. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Rinschen MM, Ivanisevic J, Giera M and
Siuzdak G: Identification of bioactive metabolites using activity
metabolomics. Nat Rev Mol Cell Biol. 20:353–367. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Guijas C, Montenegro-Burke JR, Warth B,
Spilker ME and Siuzdak G: Metabolomics activity screening for
identifying metabolites that modulate phenotype. Nat Biotechnol.
36:316–320. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Schrimpe-Rutledge AC, Codreanu SG, Sherrod
SD and McLean JA: Untargeted metabolomics strategies-challenges and
emerging directions. J Am Soc Mass Spectrom. 27:1897–1905. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li X, Wenes M, Romero P, Huang SC, Fendt
SM and Ho PC: Navigating metabolic pathways to enhance antitumour
immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yang M, Soga T and Pollard PJ:
Oncometabolites: Linking altered metabolism with cancer. J Clin
Invest. 123:3652–3658. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Li S, Fu L, Tian T, Deng L, Li H, Xia W
and Gong Q: Disrupting SOD1 activity inhibits cell growth and
enhances lipid accumulation in nasopharyngeal carcinoma. Cell
Commun Signal. 16:282018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tan Z, Xiao L, Tang M, Bai F, Li J, Li L,
Shi F, Li N, Li Y, Du Q, et al: Targeting CPT1A-mediated fatty acid
oxidation sensitizes nasopharyngeal carcinoma to radiation therapy.
Theranostics. 8:2329–2347. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Tang F, Xie C, Huang D, Wu Y, Zeng M, Yi
L, Wang L, Mei W, Cao Y and Sun L: Novel potential markers of
nasopharyngeal carcinoma for diagnosis and therapy. Clin Biochem.
44:711–718. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Yi L, Dong N, Shi S, Deng B, Yun Y, Yi Z
and Zhang Y: Metabolomic identification of novel biomarkers of
nasopharyngeal carcinoma. RSC Adv. 4:59094–59101. 2014. View Article : Google Scholar
|
|
126
|
Luo MS, Huang GJ and Liu HB: Oncologic
outcomes of IMRT versus CRT for nasopharyngeal carcinoma: A
meta-analysis. Medicine (Baltimore). 98:e159512019. View Article : Google Scholar
|
|
127
|
Carayol M, Leitzmann MF, Ferrari P,
Zamora-Ros R, Achaintre D, Stepien M, Schmidt JA, Travis RC,
Overvad K, Tjønneland A, et al: Blood metabolic signatures of body
mass index: A targeted metabolomics study in the EPIC cohort. J
Proteome Res. 16:3137–3146. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Xu J, Li J, Zhang R, He J, Chen Y, Bi N,
Song Y, Wang L, Zhan Q and Abliz Z: Development of a metabolic
pathway-based pseudo-targeted metabolomics method using liquid
chromatography coupled with mass spectrometry. Talanta.
192:160–168. 2019. View Article : Google Scholar
|
|
129
|
Allinson JL: Clinical biomarker
validation. Bioanalysis. 10:957–968. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Rhomdhoni AC, Kurniawan P and Hidayati T:
Correlation between superoxide dismutase serum level alteration
with neck metastatic tumor post cisplatin-paclitaxel chemotherapy
response in nasopharyngeal carcinoma patients. Indian J Otolaryngol
Head Neck Surg. 71(Suppl 1): S643–S646. 2019. View Article : Google Scholar
|
|
131
|
Jelonek K, Krzywon A, Jablonska P,
Slominska EM, Smolenski RT, Polanska J, Rutkowski T,
Mrochem-Kwarciak J, Skladowki K and Widlak P: Systemic effects of
radiotherapy and concurrent chemo-radiotherapy in head and neck
cancer patients-comparison of serum metabolome profiles.
Metabolites. 10:602020. View Article : Google Scholar
|
|
132
|
Geyer PE, Voytik E, Treit PV, Doll S,
Kleinhempel A, Niu L, Müller JB, Buchholtz ML, Bader JM, Teupser D,
et al: Plasma proteome profiling to detect and avoid sample-related
biases in biomarker studies. EMBO Mol Med. 11:e104272019.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Dufourd T, Robil N, Mallet D, Carcenac C,
Boulet S, Brishoual S, Rabois E, Houeto JL, de la Grange P and
Carnicella S: Plasma or serum? A qualitative study on rodents and
humans using high-throughput microRNA sequencing for circulating
biomarkers. Biol Methods Protoc. 4:bpz0062019. View Article : Google Scholar
|
|
134
|
Lippi G, Banfi G, Buttarello M, Ceriotti
F, Daves M, Dolci A, Caputo M, Giavarina D, Montagnana M, Miconi V,
et al: Recommendations for detection and management of unsuitable
samples in clinical laboratories. Clin Chem Lab Med. 45:728–736.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Lam WKJ, Jiang P, Chan KCA, Cheng SH,
Zhang H, Peng W, Tse OYO, Tong YK, Gai W, Zee BCY, et al:
Sequencing-based counting and size profiling of plasma Epstein-Barr
virus DNA enhance population screening of nasopharyngeal carcinoma.
Proc Natl Acad Sci USA. 115:E5115–E5124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Elliott P and Peakman TC; UK Biobank: The
UK biobank sample handling and storage protocol for the collection,
processing and archiving of human blood and urine. Int J Epidemiol.
37:234–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Gautam A, Donohue D, Hoke A, Miller SA,
Srinivasan S, Sowe B, Detwiler L, Lynch J, Levangie M, Hammamieh R
and Jett M: Investigating gene expression profiles of whole blood
and peripheral blood mononuclear cells using multiple collection
and processing methods. PLoS One. 14:e02251372019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Leidinger P, Backes C, Rheinheimer S,
Keller A and Meese E: Towards clinical applications of blood-borne
miRNA signatures: The influence of the anticoagulant EDTA on miRNA
abundance. PLoS One. 10:e01433212015. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Mathé E, Hays JL, Stover DG and Chen JL:
The omics revolution continues: The maturation of high-throughput
biological data sources. Yearb Med Inform. 27:211–222. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hasin Y, Seldin M and Lusis A: Multi-omics
Approaches to Disease. Genome Biol. 18:832017. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Chakraborty S, Hosen MI, Ahmed M and
Shekhar HU: Onco-multi-OMICS approach: A new frontier in cancer
research. Biomed Res Int. 2018:98362562018. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Nicora G, Vitali F, Dagliati A, Geifman N
and Bellazzi R: Integrated multi-omics analyses in oncology: A
review of machine learning methods and tools. Front Oncol.
10:10302020. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Olivier M, Asmis R, Hawkins GA, Howard TD
and Cox LA: The need for multi-omics biomarker signatures in
precision medicine. Int J Mol Sci. 20:47812019. View Article : Google Scholar :
|