Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2021 Volume 58 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 58 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review)

  • Authors:
    • Hongxiang Mu
    • Wenmao Zhang
    • Ye Qiu
    • Ting Tao
    • Hongliang Wu
    • Zhuo Chen
    • Gaosheng Xu
  • View Affiliations / Copyright

    Affiliations: Yueyang Maternal and Child Health Hospital, Yueyang, Hunan 414000, P.R. China
  • Article Number: 16
    |
    Published online on: March 3, 2021
       https://doi.org/10.3892/ijo.2021.5196
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer (BC) is one of the most common malignancies affecting women. BC is a heterogeneous disease that involves multiple oncogenic pathways and/or genetic alterations. MicroRNAs (miRNAs or miRs) are a type of small endogenous single‑stranded RNA that pairs with the 3'untranslated region of target mRNAs to negatively regulate the gene expression of specific mRNA targets. miRNAs are thus involved in various cellular processes, including proliferation, differentiation, apoptosis, migration, metabolism and the stress response. Over the past decade, a number of studies have demonstrated that the expression levels of miRNAs are dysregulated in a number of types of cancer, including BC. In the present review, recent research on miRNAs involved in the occurrence and development of BC, as well as the current findings on miRNAs as potential biomarkers for BC are summarized. In addition, the association between miRNA dysregulation and BC development, and the current status of BC treatment and prognosis are discussed. Finally, several signaling pathways involved in the development of BC and the potential roles of miRNAs in these pathways are reviewed. The present review aims to provide insight into the roles of miRNAs in BC.
View Figures

Figure 1

View References

1 

Ding L, Li J, Wu C, Yan F, Li X and Zhang S: A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J Mater Chem B. 8:3527–3533. 2020. View Article : Google Scholar

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Li Y, Song Y, Wang Z, Zhang Z, Lu M and Wang Y: Long Non-coding RNA LINC01787 drives breast cancer progression via disrupting miR-125b generation. Front Oncol. 9:11402019. View Article : Google Scholar : PubMed/NCBI

4 

Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J and Cui Q: MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells. 8:14922019. View Article : Google Scholar

5 

Denkiewicz M, Saha I, Rakshit S, Sarkar JP and Plewczynski D: Identification of breast cancer subtype specific MicroRNAs using survival analysis to find their role in transcriptomic regulation. Front Genet. 10:10472019. View Article : Google Scholar : PubMed/NCBI

6 

Xiao Y, Humphries B, Yang C and Wang Z: MiR-205 Dysregulations in breast cancer: The complexity and opportunities. Noncoding RNA. 5:532019.

7 

Ediriweera MK and Cho SK: Targeting miRNAs by histone deacetylase inhibitors (HDACi): Rationalizing epigenetics-based therapies for breast cancer. Pharmacol Ther. 206:1074372020. View Article : Google Scholar

8 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J and Shi B: Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 5:2929–2943. 2015.PubMed/NCBI

10 

Kapadia CH, Ioele SA and Day ES: Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. J Biomed Mater Res A. 108:601–613. 2020. View Article : Google Scholar :

11 

Tian Y, Xia S, Ma M and Zuo Y: LINC00096 promotes the proliferation and invasion by sponging miR-383-5p and regulating RBM3 expression in triple-negative breast cancer. Onco Targets Ther. 12:10569–10578. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Zheng S, Li M, Miao K and Xu H: lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J Cell Biochem. 121:2225–2235. 2020. View Article : Google Scholar

13 

Umeh-Garcia M, Simion C, Ho PY, Batra N, Berg AL, Carraway KL, Yu A and Sweeney C: A novel bioengineered miR-127 prodrug suppresses the growth and metastatic potential of triple-negative breast cancer cells. Cancer Res. 80:418–429. 2020. View Article : Google Scholar

14 

Das PK, Siddika MA, Asha SY, Aktar S, Rakib MA, Khanam JA, Pillai S and Islam F: MicroRNAs, a promising target for breast cancer stem cells. Mol Diagn Ther. 24:69–83. 2020. View Article : Google Scholar

15 

Ge JH, Zhu JW, Fu HY, Shi WB and Zhang CL: An antisense oligonucleotide drug targeting miR-21 induces H1650 apoptosis and caspase activation. Technol Cancer Res Treat. 18:15330338198922632019. View Article : Google Scholar : PubMed/NCBI

16 

Guo H, Ingolia NT, Weissman JS and Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Di Leva G, Garofalo M and Croce CM: MicroRNAs in cancer. Ann Rev Pathol. 9:287–314. 2014. View Article : Google Scholar

18 

Bertoli G, Cava C and Castiglioni I: MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 5:1122–1143. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Abdolvahabi Z, Nourbakhsh M, Hosseinkhani S, Hesari Z, Alipour M, Jafarzadeh M, Ghorbanhosseini SS, Seiri P, Yousefi Z, Yarahmadi S and Golpour P: MicroRNA-590-3P suppresses cell survival and triggers breast cancer cell apoptosis via targeting sirtuin-1 and deacetylation of p53. J Cell Biochem. 120:9356–9368. 2019. View Article : Google Scholar

20 

Shaffi SK, Galas D, Etheridge A and Argyropoulos C: Role of MicroRNAs in renal parenchymal diseases-a new dimension. Int J Mol Sci. 19:17972018. View Article : Google Scholar

21 

Chen E, Xu X, Liu R and Liu T: Small but heavy role: MicroRNAs in hepatocellular carcinoma progression. Biomed Res Int. 2018:67846072018.PubMed/NCBI

22 

Svoronos AA, Engelman DM and Slack FJ: OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Wu H, Wang Q, Zhong H, Li L, Zhang Q, Huang Q and Yu Z: Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next-generation sequencing. Oncol Rep. 43:240–250. 2020.

24 

Farazi TA, Spitzer JI, Morozov P and Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011. View Article : Google Scholar :

25 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Visone R and Croce CM: MiRNAs and cancer. Am J Pathol. 174:1131–1138. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Reis-Filho JS, Weigelt B, Fumagalli D and Sotiriou C: Molecular profiling: Moving away from tumor philately. Sci Transl Med. 2:47ps432010. View Article : Google Scholar : PubMed/NCBI

28 

Sotiriou C and Pusztai L: Gene-expression signatures in breast cancer. N Engl J Med. 360:790–800. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Liu X, Yu H, Qiao Y, Yang J, Shu J, Zhang J, Zhang Z, He J and Li Z: Salivary Glycopatterns as potential biomarkers for screening of early-stage breast cancer. EBioMedicine. 28:70–79. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Gong C, Tan W, Chen K, You N, Zhu S, Liang G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a BCSC-associated MicroRNA signature in hormone receptor-positive HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016. View Article : Google Scholar :

31 

Do SI, Kim HS, Kim K, Lee H, Do IG, Kim DH, Chae SW and Sohn JH: Predictive and prognostic value of sphingosine kinase 1 expression in patients with invasive ductal carcinoma of the breast. Am J Transl Res. 9:5684–5695. 2017.

32 

Phillips SL, Williams CB, Zambrano JN, Williams CJ and Yeh ES: Connexin 43 in the development and progression of breast cancer: What's the connection? (Review) Int J Oncol. 51:1005–1013. 2017. View Article : Google Scholar

33 

Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Javadian M, Shekari N, Soltani-Zangbar MS, Mohammadi A, Mansoori B, Maralbashi S, Shanehbandi D, Baradaran B, Darabi M and Kazemi T: Docosahexaenoic acid suppresses migration of triple-negative breast cancer cell through targeting metastasis-related genes and microRNA under normoxic and hypoxic conditions. J Cell Biochem. 121:2416–2427. 2020. View Article : Google Scholar

35 

Zhao CH, Qu L, Zhang H and Qu R: Identification of breast cancer-related circRNAs by analysis of microarray and RNA-sequencing data: An observational study. Medicine. 98:e180422019. View Article : Google Scholar : PubMed/NCBI

36 

Tang W, Li GS, Li JD, Pan WY, Shi Q, Xiong DD, Mo CH, Zeng JJ, Chen G, Feng ZB, et al: The role of upregulated miR-375 expression in breast cancer: An in vitro and in silico study. Pathol Res Pract. 216:1527542020. View Article : Google Scholar

37 

Tungsukruthai S, Petpiroon N and Chanvorachote P: Molecular mechanisms of breast cancer metastasis and potential Anti-metastatic compounds. Anticancer Res. 38:2607–2618. 2018.PubMed/NCBI

38 

Li X, Dai D, Chen B, Tang H, Xie X and Wei W: Determination of the prognostic value of preoperative CA15-3 and CEA in predicting the prognosis of young patients with breast cancer. Oncol Lett. 16:4679–4688. 2018.PubMed/NCBI

39 

Duffy MJ, Evoy D and McDermott EW: CA 15-3: Uses and limitation as a biomarker for breast cancer. Clin Chim Acta. 411:1869–1874. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Xie S, Ding X, Mo W and Chen J: Serum tissue polypeptide-specific antigen is an independent predictor in breast cancer. Acta Histochem. 116:372–376. 2014. View Article : Google Scholar

41 

Duffy MJ: Serum tumor markers in breast cancer: Are they of clinical value? Clin Chem. 52:345–351. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Weigel MT and Dowsett M: Current and emerging biomarkers in breast cancer: Prognosis and prediction. Endocr Relat Cancer. 17:R245–R262. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Guo S, Zhang J, Wang B, Zhang B, Wang X, Huang L, Liu H and Jia B: A 5-serum miRNA panel for the early detection of colorectal cancer. Onco Targets Ther. 11:2603–2614. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Adams BD, Arem H, Hubal MJ, Cartmel B, Li F, Harrigan M, Sanft T, Cheng CJ, Pusztai L and Irwin ML: Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Res Treat. 170:55–67. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Paszek S, Gabło N, Barnaś E, Szybka M, Morawiec J, Kołacińska A and Zawlik I: Dysregulation of microRNAs in triple-negative breast cancer. Ginekol Pol. 88:530–536. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J and Kerin MJ: Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 251:499–505. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Zhao H, Shen J, Medico L, Wang D, Ambrosone CB and Liu S: A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 5:e137352010. View Article : Google Scholar : PubMed/NCBI

48 

Wang N, Wang L, Yang Y, Gong L, Xiao B and Liu X: A serum exosomal microRNA panel as a potential biomarker test for gastric cancer. Biochem Biophys Res Commun. 493:1322–1328. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Zhou X, Wen W, Zhu J, Huang Z, Zhang L, Zhang H, Qi LW, Shan X, Wang T, Cheng W, et al: A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget. 8:34468–34480. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Motamedi M, Hashemzadeh Chaleshtori M, Ghasemi S and Mokarian F: Plasma level of miR-21 and miR-451 in primary and recurrent breast cancer patients. Breast Cancer (Dove Med Press). 11:293–301. 2019.

51 

Raheem AR, Abdul-Rasheed OF and Al-Naqqash MA: The diagnostic power of circulating micro ribonucleic acid 34a in combination with cancer antigen 15-3 as a potential biomarker of breast cancer. Saudi Med J. 40:1218–1226. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Zhang Z, Xu L, He L, Wang J, Shi X, Li Z, Shi S, Hou K, Teng Y and Qu X: MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J Cancer. 11:3771–3782. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Wu B, Liu G, Jin Y, Yang T, Zhang D, Ding L, Zhou F, Pan Y and Wei Y: miR-15b-5p promotes growth and metastasis in breast cancer by targeting HPSE2. Front Oncol. 10:1082020. View Article : Google Scholar : PubMed/NCBI

54 

Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K and Ju J: Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 13:1668–1674. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Treiber T, Treiber N and Meister G: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019. View Article : Google Scholar

57 

Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154–D158. 2008. View Article : Google Scholar :

58 

Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T and Margalit H: Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33:2697–2706. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Kim VN: MicroRNA precursors in motion: Exportin-5 mediates their nuclear export. Trends Cell Biol. 14:156–159. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Lund E, Güttinger S, Calado A, Dahlberg JE and Kutay U: Nuclear export of microRNA precursors. Science. 303:95–98. 2004. View Article : Google Scholar

64 

Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G and Mello CC: Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 106:23–34. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Bernstein E, Caudy AA, Hammond SM and Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI

66 

Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T and Zamore PD: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 293:834–838. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Valencia-Sanchez MA, Liu J, Hannon GJ and Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Parker R and Song H: The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 11:121–127. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Mathe A, Scott RJ and Avery-Kiejda KA: MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer. Int J Mol Sci. 16:28347–28376. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Petersen CP, Bordeleau ME, Pelletier J and Sharp PA: Short RNAs repress translation after initiation in mammalian cells. Mol Cell. 21:533–542. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Sharma S and Lu HC: microRNAs in Neurodegeneration: Current findings and potential impacts. J Alzheimers Dis Parkinsonism. 8:4202018. View Article : Google Scholar : PubMed/NCBI

73 

Mohr AM and Mott JL: Overview of microRNA biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Ma F, Liu X, Li D, Wang P, Li N, Lu L and Cao X: MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 184:6053–6059. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, et al: MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol. 235:5008–5029. 2020. View Article : Google Scholar

77 

Tavakolian S, Goudarzi H, Eslami G and Faghihloo E: Transcriptional regulation of epithelial to mesenchymal transition related genes by lipopolysaccharide in human cervical cancer cell line HeLa. Asian Pac J Cancer Prev. 20:2455–2461. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et al: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Brennecke J, Hipfner DR, Stark A, Russell RB and Cohen SM: Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 113:25–36. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Pourbagheri-Sigaroodi A, Bashash D, Safaroghli-Azar A, Farshi-Paraasghari M, Momeny M, Mansoor FN and Ghaffari SH: Contributory role of microRNAs in anti-cancer effects of small molecule inhibitor of telomerase (BIBR1532) on acute promyelocytic leukemia cell line. Eur J Pharmacol. 846:49–62. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Wang W and Luo YP: MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 16:18–31. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Toda H, Seki N, Kurozumi S, Shinden Y, Yamada Y, Nohata N, Moriya S, Idichi T, Maemura K, Fujii T, et al: RNA-sequence-based microRNA expression signature in breast cancer: Tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol Oncol. 14:426–446. 2020. View Article : Google Scholar

83 

Ma J and Zhou Z: Downregulation of miR-302b is associated with poor prognosis and tumor progression of breast cancer. Breast Cancer. 27:291–298. 2020. View Article : Google Scholar

84 

Tavakolian S, Goudarzi H, Torfi F and Faghihloo E: Evaluation of microRNA-9 and -192 expression levels as biomarkers in patients suffering from breast cancer. Biomed Rep. 12:30–34. 2020.

85 

Sun WM, Tao W, Li JC, Zhu DM and Miao Y: MicroRNA-296 functions as a tumor suppressor in breast cancer by targeting FGFR1 and regulating the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 23:10422–10432. 2019.PubMed/NCBI

86 

Cai F, Chen L, Sun Y, He C, Fu D and Tang J: MiR-539 inhibited the malignant behaviors of breast cancer cells by targeting SP1. Biochem Cell Biol. 98:426–433. 2020. View Article : Google Scholar

87 

Cai WL, Huang WD, Li B, Chen TR, Li ZX, Zhao CL, Li HY, Wu YM, Yan WJ and Xiao JR: microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer. 17:92018. View Article : Google Scholar : PubMed/NCBI

88 

Niu XY, Zhang ZQ and Ma PL: MiRNA-221-5p promotes breast cancer progression by regulating E-cadherin expression. Eur Rev Med Pharmacol Sci. 23:6983–6990. 2019.PubMed/NCBI

89 

Orangi E and Motovali-Bashi M: Evaluation of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of breast cancer in Iranian women. Gene. 687:272–279. 2019. View Article : Google Scholar

90 

Jiang H, Cheng L, Hu P and Liu R: MicroRNA-663b mediates TAM resistance in breast cancer by modulating TP73 expression. Mol Med Rep. 18:1120–1126. 2018.PubMed/NCBI

91 

Aoki N, Amano S, Ando M, Fukuda A, Ami K, Imai K, Ganno H, Sugita H, Amagasa H, Arai K, et al: A study of therapy for locally advanced breast cancer with metastasis. Gan To Kagaku Ryoho. 43:1432–1434. 2016.In Japanese.

92 

Anderson GM: Breast-cancer recurrence after stopping endocrine therapy. N Engl J Med. 378:8702018. View Article : Google Scholar : PubMed/NCBI

93 

Neophytou C, Boutsikos P and Papageorgis P: Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front Oncol. 8:312018. View Article : Google Scholar : PubMed/NCBI

94 

Huang L, Tang X, Shi X and Su L: miR-532-5p promotes breast cancer proliferation and migration by targeting RERG. Exp Ther Med. 19:400–408. 2020.

95 

Robertson NM and Yigit MV: The role of microRNA in resistance to breast cancer therapy. Wiley Interdiscip Rev RNA. 5:823–33. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Vranic S, Palazzo J, Sanati S, Florento E, Contreras E, Xiu J, Swensen J and Gatalica Z: Potential novel therapy targets in neuroendocrine carcinomas of the breast. Clin Breast Cancer. 19:131–136. 2019. View Article : Google Scholar

97 

Ang D, Ballard M, Beadling C, Warrick A, Schilling A, O'Gara R, Pukay M, Neff TL, West RB, Corless CL and Troxell ML: Novel mutations in neuroendocrine carcinoma of the breast: Possible therapeutic targets. Appl Immunohistochem Mol Morphol. 23:97–103. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Folgueira MA, Carraro DM, Brentani H, Patrão DF, Barbosa EM, Netto MM, Caldeira JR, Katayama ML, Soares FA, Oliveira CT, et al: Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res. 11:7434–7443. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Shackelford RE, Mayhall K, Maxwell NM, Kandil E and Coppola D: Nicotinamide phosphoribosyltransferase in malignancy: A review. Genes Cancer. 4:447–456. 2013. View Article : Google Scholar

100 

Grolla AA, Travelli C, Genazzani AA and Sethi JK: Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br J Pharmacol. 173:2182–2194. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Bolandghamat Pour Z, Nourbakhsh M, Mousavizadeh K, Madjd Z, Ghorbanhosseini SS, Abdolvahabi Z, Hesari Z and Ezzati Mobasser S: Suppression of nicotinamide phosphoribosyltransferase expression by miR-154 reduces the viability of breast cancer cells and increases their susceptibility to doxorubicin. BMC Cancer. 19:10272019. View Article : Google Scholar : PubMed/NCBI

102 

Liu J, Yang L, Guo X, Jin G, Wang Q, Lv D, Liu J, Chen Q, Song Q and Li B: Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells. Mol Med Rep. 18:455–460. 2018.PubMed/NCBI

103 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Nie H, Xie X, Zhang D, Zhou Y, Li B, Li F, Li F, Cheng Y, Mei H, Meng H and Jia L: Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale. 12:877–887. 2020. View Article : Google Scholar

105 

Li XJ, Ren ZJ, Tang JH and Yu Q: Exosomal MicroRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem. 44:1741–1748. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Li Y, Dai Y, Zhang X and Chen J: Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy. Nanotechnology. 28:2851012017. View Article : Google Scholar : PubMed/NCBI

107 

Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, Rahmati M, Mirzaei H and Kianmehr M: Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol. 233:5200–5213. 2018. View Article : Google Scholar

108 

Zarredar H, Ansarin K, Baradaran B, Shekari N, Eyvazi S, Safari F and Farajnia S: Critical microRNAs in lung cancer: Recent advances and potential applications. Anticancer Agents Med Chem. 18:1991–2005. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Hu J, Markowitz GJ and Wang X: Noncoding RNAs regulating cancer signaling network. Adv Exp Med Biol. 927:297–315. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Chen W, Zhou S, Mao L, Zhang H, Sun D, Zhang J, Li J and Tang JH: Crosstalk between TGF-beta signaling and miRNAs in breast cancer metastasis. Tumour Biol. 37:10011–10019. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Smith B, Agarwal P and Bhowmick NA: MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine. Endocr Relat Cancer. 24:R157–R172. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Kia V, Sharif Beigli M, Hosseini V, Koochaki A, Paryan M and Mohammadi-Yeganeh S: Is miR-144 an effective inhibitor of PTEN mRNA: A controversy in breast cancer. In vitro Cell Dev Biol Anim. 54:621–628. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Yue D and Qin X: miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells. Cancer Gene Ther. 26:1–10. 2019. View Article : Google Scholar

114 

Zhang Y, Zhao Z, Li S, Dong L, Li Y, Mao Y, Liang Y, Tao Y and Ma J: Inhibition of miR-214 attenuates the migration and invasion of triple-negative breast cancer cells. Mol Med Rep. 19:4035–4042. 2019.PubMed/NCBI

115 

Samadi P, Saki S, Dermani FK, Pourjafar M and Saidijam M: Emerging ways to treat breast cancer: Will promises be met? Cell Oncol (Dordr). 41:605–621. 2018. View Article : Google Scholar

116 

Xu C, Sun X, Qin S, Wang H, Zheng Z, Xu S, Luo G, Liu P, Liu J, Du N, et al: Let-7a regulates mammosphere formation capacity through Ras/NF-κB and Ras/MAPK/ERK pathway in breast cancer stem cells. Cell Cycle. 14:1686–1697. 2015. View Article : Google Scholar :

117 

Zhao Y, Yang F, Li W, Xu C, Li L, Chen L, Liu Y and Sun P: miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1. Tumour Biol. 39:10104283176922642017. View Article : Google Scholar : PubMed/NCBI

118 

Wang R and Nakshatri H: Systemic actions of breast cancer facilitate functional limitations. Cancers. 12:1942020. View Article : Google Scholar :

119 

Ruan L and Qian X: MiR-16-5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway. Biosci Rep. 39:BSR201916112019. View Article : Google Scholar

120 

D'Souza LC, Mishra S, Chakraborty A, Shekher A, Sharma A and Gupta SC: Oxidative stress and cancer development: Are noncoding RNAs the missing links? Antioxid Redox Signal. 33:1209–1229. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Mohammady M, Ghetmiri SI, Baharizade M, Morowvat MH and Torabi S: Expanding the Biotherapeutics realm via miR-34a: 'Potent Clever Little' agent in breast cancer therapy. Curr Pharm Biotechnol. 20:665–673. 2019. View Article : Google Scholar

122 

Pan JY, Zhang F, Sun CC, Li SJ, Li G, Gong FY, Bo T, He J, Hua RX, Hu WD, et al: miR-134: A human cancer suppressor? Mol Ther Nucleic Acids. 6:140–149. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Majumder M, Dunn L, Liu L, Hasan A, Vincent K, Brackstone M, Hess D and Lala PK: COX-2 induces oncogenic micro RNA miR655 in human breast cancer. Sci Rep. 8:3272018. View Article : Google Scholar : PubMed/NCBI

124 

Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, Mo H, Tang Y, Fang W and Wu Z: Timeless-Stimulated miR-5188-FOXO1/β-Catenin-c-Jun feedback loop promotes stemness via Ubiquitination of β-catenin in breast cancer. Mol Ther. 28:313–327. 2020. View Article : Google Scholar

125 

Han B, Peng X, Cheng D, Zhu Y, Du J, Li J and Yu X: Delphinidin suppresses breast carcinogenesis through the HOTAIR/microRNA-34a axis. Cancer Sci. 110:3089–3097. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Ju J, Zhu AJ and Yuan P: Progress in targeted therapy for breast cancer. Chronic Dis Transl Med. 4:164–175. 2018.PubMed/NCBI

127 

Liu H, Li A, Sun Z, Zhang J and Xu H: Long non-coding RNA NEAT1 promotes colorectal cancer progression by regulating miR-205-5p/VEGFA axis. Hum Cell. 33:386–396. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Kaban K, Salva E and Akbuga J: Modulation of the dual-faced effects of miR-141 with chitosan/miR-141 nanoplexes in breast cancer cells. J Gene Med. 21:e31162019. View Article : Google Scholar : PubMed/NCBI

129 

Han M, Wang F, Gu Y, Pei X, Guo G, Yu C, Li L, Zhu M, Xiong Y and Wang Y: MicroRNA-21 induces breast cancer cell invasion and migration by suppressing smad7 via EGF and TGF-β pathways. Oncol Rep. 35:73–80. 2016. View Article : Google Scholar

130 

Qian B, Katsaros D, Lu L, Preti M, Durando A, Arisio R, Mu L and Yu H: High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat. 117:131–140. 2009. View Article : Google Scholar

131 

Citron F, Segatto I, Vinciguerra GLR, Musco L, Russo F, Mungo G, D'Andrea S, Mattevi MC, Perin T, Schiappacassi M, et al: Downregulation of miR-223 expression is an early event during mammary transformation and confers resistance to CDK4/6 inhibitors in luminal breast cancer. Cancer Res. 80:1064–1077. 2020. View Article : Google Scholar

132 

Lee A, Moon BI and Kim TH: BRCA1/BRCA2 pathogenic variant breast cancer: Treatment and prevention strategies. Ann Lab Med. 40:114–121. 2020. View Article : Google Scholar

133 

Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, Wahner-Hendrickson AE, Forero A, Anders C, Wulf GM, et al: Open-label clinical trial of Niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 5:1132–1140. 2019. View Article : Google Scholar :

134 

Wang X and Liu Y: PD-L1 expression in tumor infiltrated lymphocytes predicts survival in triple-negative breast cancer. Pathol Res Pract. 216:1528022020. View Article : Google Scholar : PubMed/NCBI

135 

Yahya SM and Elsayed GH: A summary for molecular regulations of miRNAs in breast cancer. Clin Biochem. 48:388–396. 2015. View Article : Google Scholar

136 

Grelet S and Howe PH: hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition. J Cancer Metastasis Treat. 5:162019.PubMed/NCBI

137 

Campbell K and Casanova J: A common framework for EMT and collective cell migration. Development. 143:4291–4300. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Schaeffer D, Somarelli JA, Hanna G, Palmer GM and Garcia-Blanco MA: Cellular migration and invasion uncoupled: Increased migration is not an inexorable consequence of epithelial-to-mesenchymal transition. Mol Cell Biol. 34:3486–3499. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Son H and Moon A: Epithelial-mesenchymal transition and cell invasion. Toxicol Res. 26:245–252. 2010. View Article : Google Scholar : PubMed/NCBI

140 

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Wardhani BW, Puteri MU, Watanabe Y, Louisa M, Setiabudy R and Kato M: TGF-β-induced TMEPAI attenuates the response of triple-negative breast cancer cells to doxorubicin and paclitaxel. J Exp Pharmacol. 12:17–26. 2020. View Article : Google Scholar :

142 

Wang S, Huang M, Wang Z, Wang W, Zhang Z, Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit TGF-β-induced epithelial-to-mesenchymal transition and metastasis by suppressing the TGF-β/SMAD pathway in breast cancer. Int J Oncol. 55:1097–1109. 2019.PubMed/NCBI

143 

Zeng Y, Gao T, Huang W, Yang Y, Qiu R, Hou Y, Yu W, Leng S, Feng D, Liu W, et al: MicroRNA-455-3p mediates GATA3 tumor suppression in mammary epithelial cells by inhibiting TGF-β signaling. J Biol Chem. 294:15808–15825. 2019. View Article : Google Scholar : PubMed/NCBI

144 

Guerrero-Zotano A, Mayer IA and Arteaga CL: PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 35:515–524. 2016. View Article : Google Scholar : PubMed/NCBI

145 

Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell. 170:605–635. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Li S, Xu JJ and Zhang QY: MicroRNA-132-3p inhibits tumor malignant progression by regulating lysosomal-associated protein transmembrane 4 beta in breast cancer. Cancer Sci. 110:3098–3109. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Yu X, Li R, Shi W, Jiang T, Wang Y, Li C and Qu X: Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother. 77:37–44. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Wang B, Wang H and Yang Z: MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS One. 7:e470532012. View Article : Google Scholar : PubMed/NCBI

149 

Thompson KN, Whipple RA, Yoon JR, Lipsky M, Charpentier MS, Boggs AE, Chakrabarti KR, Bhandary L, Hessler LK, Martin SS and Vitolo MI: The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence. Oncotarget. 6:35231–35246. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Carlomagno F and Chiariello M: Growth factor transduction pathways: Paradigm of anti-neoplastic targeted therapy. J Mol Med (Berl). 92:723–733. 2014. View Article : Google Scholar

151 

Osaki LH and Gama P: MAPKs and signal transduction in the control of gastrointestinal epithelial cell proliferation and differentiation. Int J Mol Sci. 14:10143–10161. 2013. View Article : Google Scholar : PubMed/NCBI

152 

Johnston SR, Semiglazov VF, Manikhas GM, Spaeth D, Romieu G, Dodwell DJ, Wardley AM, Neven P, Bessems A, Park YC, et al: A phase II, randomized, blinded study of the farnesyltransferase inhibitor tipifarnib combined with letrozole in the treatment of advanced breast cancer after antiestrogen therapy. Breast Cancer Res Treat. 110:327–335. 2008. View Article : Google Scholar

153 

Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye F and Xie X, Chen J, Tang H and Xie X: miR-200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget. 6:34968–34978. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Chen P, Xu W, Luo Y, Zhang Y, He Y, Yang S and Yuan Z: MicroRNA 543 suppresses breast cancer cell proliferation, blocks cell cycle and induces cell apoptosis via direct targeting of ERK/MAPK. Onco Targets Ther. 10:1423–1431. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, et al: A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 5:3–13. 2013. View Article : Google Scholar :

156 

Wu H, Wang G, Wang Z, An S, Ye P and Luo S: A negative feedback loop between miR-200b and the nuclear factor-κB pathway via IKBKB/IKK-β in breast cancer cells. FEBS J. 283:2259–2271. 2016. View Article : Google Scholar

157 

Xie M, Fu Z, Cao J, Liu Y, Wu J, Li Q and Chen Y: MicroRNA-132 and microRNA-212 mediate doxorubicin resistance by down-regulating the PTEN-AKT/NF-κB signaling pathway in breast cancer. Biomed Pharmacother. 102:286–294. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Wang L, Wang YX, Chen LP and Ji ML: Upregulation of microRNA-181b inhibits CCL18-induced breast cancer cell metastasis and invasion via the NF-κB signaling pathway. Oncol Lett. 12:4411–4418. 2016. View Article : Google Scholar

159 

Senthil Kumar KJ, Gokila Vani M, Hsieh HW, Lin CC, Liao JW, Chueh PJ and Wang SY: MicroRNA-708 activation by glucocorticoid receptor agonists regulate breast cancer tumorigenesis and metastasis via downregulation of NF-κB signaling. Carcinogenesis. 40:335–348. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Jiang H, Li X, Wang W and Dong H: Long non-coding RNA SNHG3 promotes breast cancer cell proliferation and metastasis by binding to microRNA-154-3p and activating the notch signaling pathway. BMC Cancer. 20:8382020. View Article : Google Scholar : PubMed/NCBI

161 

Sun X, Huang T, Liu Z, Sun M and Luo S: LncRNA SNHG7 contributes to tumorigenesis and progression in breast cancer by interacting with miR-34a through EMT initiation and the Notch-1 pathway. Eur J Pharmacol. 856:1724072019. View Article : Google Scholar : PubMed/NCBI

162 

Lan L, Wang Y, Pan Z, Wang B, Yue Z, Jiang Z, Li L, Wang C and Tang H: Rhamnetin induces apoptosis in human breast cancer cells via the miR-34a/Notch-1 signaling pathway. Oncol Lett. 17:676–682. 2019.PubMed/NCBI

163 

Kang L, Mao J, Tao Y, Song B, Ma W, Lu Y, Zhao L, Li J, Yang B and Li L: MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci. 106:700–708. 2015. View Article : Google Scholar : PubMed/NCBI

164 

Li WJ, Xie XX, Bai J, Wang C, Zhao L and Jiang DQ: Increased expression of miR-1179 inhibits breast cancer cell metastasis by modulating Notch signaling pathway and correlates with favorable prognosis. Eur Rev Med Pharmacol Sci. 22:8374–8382. 2018.PubMed/NCBI

165 

Ren L, Chen H, Song J, Chen X, Lin C, Zhang X, Hou N, Pan J, Zhou Z, Wang L, et al: MiR-454-3p-Mediated Wnt/β-catenin signaling Antagonists suppression promotes breast cancer metastasis. Theranostics. 9:449–465. 2019. View Article : Google Scholar :

166 

Xie Q, Wang S, Zhao Y, Zhang Z, Qin C and Yang X: MicroRNA-216a suppresses the proliferation and migration of human breast cancer cells via the Wnt/β-catenin signaling pathway. Oncol Rep. 41:2647–2656. 2019.PubMed/NCBI

167 

Liu S, Wang Z, Liu Z, Shi S, Zhang Z, Zhang J and Lin H: miR-221/222 activate the Wnt/β-catenin signaling to promote triple-negative breast cancer. J Mol Cell Biol. 10:302–315. 2018. View Article : Google Scholar : PubMed/NCBI

168 

Tan Z, Zheng H, Liu X, Zhang W, Zhu J, Wu G, Cao L, Song J, Wu S, Song L and Li J: MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/β-catenin signaling in breast cancer. Oncotarget. 7:24076–24087. 2016. View Article : Google Scholar : PubMed/NCBI

169 

Liu F, Liu Y, Shen J, Zhang G and Han J: MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression. Oncotarget. 7:49130–49142. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mu H, Zhang W, Qiu Y, Tao T, Wu H, Chen Z and Xu G: miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). Int J Oncol 58: 16, 2021.
APA
Mu, H., Zhang, W., Qiu, Y., Tao, T., Wu, H., Chen, Z., & Xu, G. (2021). miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). International Journal of Oncology, 58, 16. https://doi.org/10.3892/ijo.2021.5196
MLA
Mu, H., Zhang, W., Qiu, Y., Tao, T., Wu, H., Chen, Z., Xu, G."miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review)". International Journal of Oncology 58.5 (2021): 16.
Chicago
Mu, H., Zhang, W., Qiu, Y., Tao, T., Wu, H., Chen, Z., Xu, G."miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review)". International Journal of Oncology 58, no. 5 (2021): 16. https://doi.org/10.3892/ijo.2021.5196
Copy and paste a formatted citation
x
Spandidos Publications style
Mu H, Zhang W, Qiu Y, Tao T, Wu H, Chen Z and Xu G: miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). Int J Oncol 58: 16, 2021.
APA
Mu, H., Zhang, W., Qiu, Y., Tao, T., Wu, H., Chen, Z., & Xu, G. (2021). miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). International Journal of Oncology, 58, 16. https://doi.org/10.3892/ijo.2021.5196
MLA
Mu, H., Zhang, W., Qiu, Y., Tao, T., Wu, H., Chen, Z., Xu, G."miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review)". International Journal of Oncology 58.5 (2021): 16.
Chicago
Mu, H., Zhang, W., Qiu, Y., Tao, T., Wu, H., Chen, Z., Xu, G."miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review)". International Journal of Oncology 58, no. 5 (2021): 16. https://doi.org/10.3892/ijo.2021.5196
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team