|
1
|
Ding L, Li J, Wu C, Yan F, Li X and Zhang
S: A self-assembled RNA-triple helix hydrogel drug delivery system
targeting triple-negative breast cancer. J Mater Chem B.
8:3527–3533. 2020. View Article : Google Scholar
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li Y, Song Y, Wang Z, Zhang Z, Lu M and
Wang Y: Long Non-coding RNA LINC01787 drives breast cancer
progression via disrupting miR-125b generation. Front Oncol.
9:11402019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W,
Yu M, Lin J and Cui Q: MicroRNAs involved in carcinogenesis,
prognosis, therapeutic resistance and applications in human
triple-negative breast cancer. Cells. 8:14922019. View Article : Google Scholar
|
|
5
|
Denkiewicz M, Saha I, Rakshit S, Sarkar JP
and Plewczynski D: Identification of breast cancer subtype specific
MicroRNAs using survival analysis to find their role in
transcriptomic regulation. Front Genet. 10:10472019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xiao Y, Humphries B, Yang C and Wang Z:
MiR-205 Dysregulations in breast cancer: The complexity and
opportunities. Noncoding RNA. 5:532019.
|
|
7
|
Ediriweera MK and Cho SK: Targeting miRNAs
by histone deacetylase inhibitors (HDACi): Rationalizing
epigenetics-based therapies for breast cancer. Pharmacol Ther.
206:1074372020. View Article : Google Scholar
|
|
8
|
Perou CM, Sørlie T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J
and Shi B: Breast cancer intrinsic subtype classification, clinical
use and future trends. Am J Cancer Res. 5:2929–2943.
2015.PubMed/NCBI
|
|
10
|
Kapadia CH, Ioele SA and Day ES:
Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo
inhibit the proliferation and cell cycle progression of
triple-negative breast cancer cells. J Biomed Mater Res A.
108:601–613. 2020. View Article : Google Scholar :
|
|
11
|
Tian Y, Xia S, Ma M and Zuo Y: LINC00096
promotes the proliferation and invasion by sponging miR-383-5p and
regulating RBM3 expression in triple-negative breast cancer. Onco
Targets Ther. 12:10569–10578. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zheng S, Li M, Miao K and Xu H: lncRNA
GAS5-promoted apoptosis in triple-negative breast cancer by
targeting miR-378a-5p/SUFU signaling. J Cell Biochem.
121:2225–2235. 2020. View Article : Google Scholar
|
|
13
|
Umeh-Garcia M, Simion C, Ho PY, Batra N,
Berg AL, Carraway KL, Yu A and Sweeney C: A novel bioengineered
miR-127 prodrug suppresses the growth and metastatic potential of
triple-negative breast cancer cells. Cancer Res. 80:418–429. 2020.
View Article : Google Scholar
|
|
14
|
Das PK, Siddika MA, Asha SY, Aktar S,
Rakib MA, Khanam JA, Pillai S and Islam F: MicroRNAs, a promising
target for breast cancer stem cells. Mol Diagn Ther. 24:69–83.
2020. View Article : Google Scholar
|
|
15
|
Ge JH, Zhu JW, Fu HY, Shi WB and Zhang CL:
An antisense oligonucleotide drug targeting miR-21 induces H1650
apoptosis and caspase activation. Technol Cancer Res Treat.
18:15330338198922632019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Di Leva G, Garofalo M and Croce CM:
MicroRNAs in cancer. Ann Rev Pathol. 9:287–314. 2014. View Article : Google Scholar
|
|
18
|
Bertoli G, Cava C and Castiglioni I:
MicroRNAs: New biomarkers for diagnosis, prognosis, therapy
prediction and therapeutic tools for breast cancer. Theranostics.
5:1122–1143. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Abdolvahabi Z, Nourbakhsh M, Hosseinkhani
S, Hesari Z, Alipour M, Jafarzadeh M, Ghorbanhosseini SS, Seiri P,
Yousefi Z, Yarahmadi S and Golpour P: MicroRNA-590-3P suppresses
cell survival and triggers breast cancer cell apoptosis via
targeting sirtuin-1 and deacetylation of p53. J Cell Biochem.
120:9356–9368. 2019. View Article : Google Scholar
|
|
20
|
Shaffi SK, Galas D, Etheridge A and
Argyropoulos C: Role of MicroRNAs in renal parenchymal diseases-a
new dimension. Int J Mol Sci. 19:17972018. View Article : Google Scholar
|
|
21
|
Chen E, Xu X, Liu R and Liu T: Small but
heavy role: MicroRNAs in hepatocellular carcinoma progression.
Biomed Res Int. 2018:67846072018.PubMed/NCBI
|
|
22
|
Svoronos AA, Engelman DM and Slack FJ:
OncomiR or tumor suppressor? The duplicity of microRNAs in cancer.
Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wu H, Wang Q, Zhong H, Li L, Zhang Q,
Huang Q and Yu Z: Differentially expressed microRNAs in exosomes of
patients with breast cancer revealed by next-generation sequencing.
Oncol Rep. 43:240–250. 2020.
|
|
24
|
Farazi TA, Spitzer JI, Morozov P and
Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011.
View Article : Google Scholar :
|
|
25
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Visone R and Croce CM: MiRNAs and cancer.
Am J Pathol. 174:1131–1138. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Reis-Filho JS, Weigelt B, Fumagalli D and
Sotiriou C: Molecular profiling: Moving away from tumor philately.
Sci Transl Med. 2:47ps432010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sotiriou C and Pusztai L: Gene-expression
signatures in breast cancer. N Engl J Med. 360:790–800. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu X, Yu H, Qiao Y, Yang J, Shu J, Zhang
J, Zhang Z, He J and Li Z: Salivary Glycopatterns as potential
biomarkers for screening of early-stage breast cancer.
EBioMedicine. 28:70–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gong C, Tan W, Chen K, You N, Zhu S, Liang
G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a
BCSC-associated MicroRNA signature in hormone receptor-positive
HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016.
View Article : Google Scholar :
|
|
31
|
Do SI, Kim HS, Kim K, Lee H, Do IG, Kim
DH, Chae SW and Sohn JH: Predictive and prognostic value of
sphingosine kinase 1 expression in patients with invasive ductal
carcinoma of the breast. Am J Transl Res. 9:5684–5695. 2017.
|
|
32
|
Phillips SL, Williams CB, Zambrano JN,
Williams CJ and Yeh ES: Connexin 43 in the development and
progression of breast cancer: What's the connection? (Review) Int J
Oncol. 51:1005–1013. 2017. View Article : Google Scholar
|
|
33
|
Katoh M: Canonical and non-canonical WNT
signaling in cancer stem cells and their niches: Cellular
heterogeneity, omics reprogramming, targeted therapy and tumor
plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Javadian M, Shekari N, Soltani-Zangbar MS,
Mohammadi A, Mansoori B, Maralbashi S, Shanehbandi D, Baradaran B,
Darabi M and Kazemi T: Docosahexaenoic acid suppresses migration of
triple-negative breast cancer cell through targeting
metastasis-related genes and microRNA under normoxic and hypoxic
conditions. J Cell Biochem. 121:2416–2427. 2020. View Article : Google Scholar
|
|
35
|
Zhao CH, Qu L, Zhang H and Qu R:
Identification of breast cancer-related circRNAs by analysis of
microarray and RNA-sequencing data: An observational study.
Medicine. 98:e180422019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tang W, Li GS, Li JD, Pan WY, Shi Q, Xiong
DD, Mo CH, Zeng JJ, Chen G, Feng ZB, et al: The role of upregulated
miR-375 expression in breast cancer: An in vitro and in silico
study. Pathol Res Pract. 216:1527542020. View Article : Google Scholar
|
|
37
|
Tungsukruthai S, Petpiroon N and
Chanvorachote P: Molecular mechanisms of breast cancer metastasis
and potential Anti-metastatic compounds. Anticancer Res.
38:2607–2618. 2018.PubMed/NCBI
|
|
38
|
Li X, Dai D, Chen B, Tang H, Xie X and Wei
W: Determination of the prognostic value of preoperative CA15-3 and
CEA in predicting the prognosis of young patients with breast
cancer. Oncol Lett. 16:4679–4688. 2018.PubMed/NCBI
|
|
39
|
Duffy MJ, Evoy D and McDermott EW: CA
15-3: Uses and limitation as a biomarker for breast cancer. Clin
Chim Acta. 411:1869–1874. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xie S, Ding X, Mo W and Chen J: Serum
tissue polypeptide-specific antigen is an independent predictor in
breast cancer. Acta Histochem. 116:372–376. 2014. View Article : Google Scholar
|
|
41
|
Duffy MJ: Serum tumor markers in breast
cancer: Are they of clinical value? Clin Chem. 52:345–351. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Weigel MT and Dowsett M: Current and
emerging biomarkers in breast cancer: Prognosis and prediction.
Endocr Relat Cancer. 17:R245–R262. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Guo S, Zhang J, Wang B, Zhang B, Wang X,
Huang L, Liu H and Jia B: A 5-serum miRNA panel for the early
detection of colorectal cancer. Onco Targets Ther. 11:2603–2614.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Adams BD, Arem H, Hubal MJ, Cartmel B, Li
F, Harrigan M, Sanft T, Cheng CJ, Pusztai L and Irwin ML: Exercise
and weight loss interventions and miRNA expression in women with
breast cancer. Breast Cancer Res Treat. 170:55–67. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Paszek S, Gabło N, Barnaś E, Szybka M,
Morawiec J, Kołacińska A and Zawlik I: Dysregulation of microRNAs
in triple-negative breast cancer. Ginekol Pol. 88:530–536. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Heneghan HM, Miller N, Lowery AJ, Sweeney
KJ, Newell J and Kerin MJ: Circulating microRNAs as novel minimally
invasive biomarkers for breast cancer. Ann Surg. 251:499–505. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhao H, Shen J, Medico L, Wang D,
Ambrosone CB and Liu S: A pilot study of circulating miRNAs as
potential biomarkers of early stage breast cancer. PLoS One.
5:e137352010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang N, Wang L, Yang Y, Gong L, Xiao B and
Liu X: A serum exosomal microRNA panel as a potential biomarker
test for gastric cancer. Biochem Biophys Res Commun. 493:1322–1328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou X, Wen W, Zhu J, Huang Z, Zhang L,
Zhang H, Qi LW, Shan X, Wang T, Cheng W, et al: A six-microRNA
signature in plasma was identified as a potential biomarker in
diagnosis of esophageal squamous cell carcinoma. Oncotarget.
8:34468–34480. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Motamedi M, Hashemzadeh Chaleshtori M,
Ghasemi S and Mokarian F: Plasma level of miR-21 and miR-451 in
primary and recurrent breast cancer patients. Breast Cancer (Dove
Med Press). 11:293–301. 2019.
|
|
51
|
Raheem AR, Abdul-Rasheed OF and Al-Naqqash
MA: The diagnostic power of circulating micro ribonucleic acid 34a
in combination with cancer antigen 15-3 as a potential biomarker of
breast cancer. Saudi Med J. 40:1218–1226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang Z, Xu L, He L, Wang J, Shi X, Li Z,
Shi S, Hou K, Teng Y and Qu X: MiR-891a-5p as a prognostic marker
and therapeutic target for hormone receptor-positive breast cancer.
J Cancer. 11:3771–3782. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu B, Liu G, Jin Y, Yang T, Zhang D, Ding
L, Zhou F, Pan Y and Wei Y: miR-15b-5p promotes growth and
metastasis in breast cancer by targeting HPSE2. Front Oncol.
10:1082020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Xi Y, Nakajima G, Gavin E, Morris CG, Kudo
K, Hayashi K and Ju J: Systematic analysis of microRNA expression
of RNA extracted from fresh frozen and formalin-fixed
paraffin-embedded samples. RNA. 13:1668–1674. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Treiber T, Treiber N and Meister G:
Regulation of microRNA biogenesis and its crosstalk with other
cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019. View Article : Google Scholar
|
|
57
|
Griffiths-Jones S, Saini HK, van Dongen S
and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids
Res. 36:D154–D158. 2008. View Article : Google Scholar :
|
|
58
|
Altuvia Y, Landgraf P, Lithwick G, Elefant
N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T and Margalit H:
Clustering and conservation patterns of human microRNAs. Nucleic
Acids Res. 33:2697–2706. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek
SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II.
EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kim VN: MicroRNA precursors in motion:
Exportin-5 mediates their nuclear export. Trends Cell Biol.
14:156–159. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase
III Drosha initiates microRNA processing. Nature. 425:415–419.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gregory RI, Yan KP, Amuthan G, Chendrimada
T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor
complex mediates the genesis of microRNAs. Nature. 432:235–240.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lund E, Güttinger S, Calado A, Dahlberg JE
and Kutay U: Nuclear export of microRNA precursors. Science.
303:95–98. 2004. View Article : Google Scholar
|
|
64
|
Grishok A, Pasquinelli AE, Conte D, Li N,
Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G and Mello CC: Genes
and mechanisms related to RNA interference regulate expression of
the small temporal RNAs that control C. elegans developmental
timing. Cell. 106:23–34. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentate ribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hutvágner G, McLachlan J, Pasquinelli AE,
Bálint E, Tuschl T and Zamore PD: A cellular function for the
RNA-interference enzyme Dicer in the maturation of the let-7 small
temporal RNA. Science. 293:834–838. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Valencia-Sanchez MA, Liu J, Hannon GJ and
Parker R: Control of translation and mRNA degradation by miRNAs and
siRNAs. Genes Dev. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Parker R and Song H: The enzymes and
control of eukaryotic mRNA turnover. Nat Struct Mol Biol.
11:121–127. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mathe A, Scott RJ and Avery-Kiejda KA:
MiRNAs and other epigenetic changes as biomarkers in triple
negative breast cancer. Int J Mol Sci. 16:28347–28376. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Petersen CP, Bordeleau ME, Pelletier J and
Sharp PA: Short RNAs repress translation after initiation in
mammalian cells. Mol Cell. 21:533–542. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sharma S and Lu HC: microRNAs in
Neurodegeneration: Current findings and potential impacts. J
Alzheimers Dis Parkinsonism. 8:4202018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mohr AM and Mott JL: Overview of microRNA
biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ma F, Liu X, Li D, Wang P, Li N, Lu L and
Cao X: MicroRNA-466l upregulates IL-10 expression in TLR-triggered
macrophages by antagonizing RNA-binding protein
tristetraprolin-mediated IL-10 mRNA degradation. J Immunol.
184:6053–6059. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Abolghasemi M, Tehrani SS, Yousefi T,
Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M,
Kafil HS, Bastami M, et al: MicroRNAs in breast cancer: Roles,
functions, and mechanism of actions. J Cell Physiol. 235:5008–5029.
2020. View Article : Google Scholar
|
|
77
|
Tavakolian S, Goudarzi H, Eslami G and
Faghihloo E: Transcriptional regulation of epithelial to
mesenchymal transition related genes by lipopolysaccharide in human
cervical cancer cell line HeLa. Asian Pac J Cancer Prev.
20:2455–2461. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Calin GA, Ferracin M, Cimmino A, Di Leva
G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et
al: A MicroRNA signature associated with prognosis and progression
in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Brennecke J, Hipfner DR, Stark A, Russell
RB and Cohen SM: Bantam encodes a developmentally regulated
microRNA that controls cell proliferation and regulates the
proapoptotic gene hid in Drosophila. Cell. 113:25–36. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Pourbagheri-Sigaroodi A, Bashash D,
Safaroghli-Azar A, Farshi-Paraasghari M, Momeny M, Mansoor FN and
Ghaffari SH: Contributory role of microRNAs in anti-cancer effects
of small molecule inhibitor of telomerase (BIBR1532) on acute
promyelocytic leukemia cell line. Eur J Pharmacol. 846:49–62. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang W and Luo YP: MicroRNAs in breast
cancer: Oncogene and tumor suppressors with clinical potential. J
Zhejiang Univ Sci B. 16:18–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Toda H, Seki N, Kurozumi S, Shinden Y,
Yamada Y, Nohata N, Moriya S, Idichi T, Maemura K, Fujii T, et al:
RNA-sequence-based microRNA expression signature in breast cancer:
Tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol
Oncol. 14:426–446. 2020. View Article : Google Scholar
|
|
83
|
Ma J and Zhou Z: Downregulation of
miR-302b is associated with poor prognosis and tumor progression of
breast cancer. Breast Cancer. 27:291–298. 2020. View Article : Google Scholar
|
|
84
|
Tavakolian S, Goudarzi H, Torfi F and
Faghihloo E: Evaluation of microRNA-9 and -192 expression levels as
biomarkers in patients suffering from breast cancer. Biomed Rep.
12:30–34. 2020.
|
|
85
|
Sun WM, Tao W, Li JC, Zhu DM and Miao Y:
MicroRNA-296 functions as a tumor suppressor in breast cancer by
targeting FGFR1 and regulating the Wnt/β-catenin signaling pathway.
Eur Rev Med Pharmacol Sci. 23:10422–10432. 2019.PubMed/NCBI
|
|
86
|
Cai F, Chen L, Sun Y, He C, Fu D and Tang
J: MiR-539 inhibited the malignant behaviors of breast cancer cells
by targeting SP1. Biochem Cell Biol. 98:426–433. 2020. View Article : Google Scholar
|
|
87
|
Cai WL, Huang WD, Li B, Chen TR, Li ZX,
Zhao CL, Li HY, Wu YM, Yan WJ and Xiao JR: microRNA-124 inhibits
bone metastasis of breast cancer by repressing Interleukin-11. Mol
Cancer. 17:92018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Niu XY, Zhang ZQ and Ma PL: MiRNA-221-5p
promotes breast cancer progression by regulating E-cadherin
expression. Eur Rev Med Pharmacol Sci. 23:6983–6990.
2019.PubMed/NCBI
|
|
89
|
Orangi E and Motovali-Bashi M: Evaluation
of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of
breast cancer in Iranian women. Gene. 687:272–279. 2019. View Article : Google Scholar
|
|
90
|
Jiang H, Cheng L, Hu P and Liu R:
MicroRNA-663b mediates TAM resistance in breast cancer by
modulating TP73 expression. Mol Med Rep. 18:1120–1126.
2018.PubMed/NCBI
|
|
91
|
Aoki N, Amano S, Ando M, Fukuda A, Ami K,
Imai K, Ganno H, Sugita H, Amagasa H, Arai K, et al: A study of
therapy for locally advanced breast cancer with metastasis. Gan To
Kagaku Ryoho. 43:1432–1434. 2016.In Japanese.
|
|
92
|
Anderson GM: Breast-cancer recurrence
after stopping endocrine therapy. N Engl J Med. 378:8702018.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Neophytou C, Boutsikos P and Papageorgis
P: Molecular mechanisms and emerging therapeutic targets of
triple-negative breast cancer metastasis. Front Oncol. 8:312018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Huang L, Tang X, Shi X and Su L:
miR-532-5p promotes breast cancer proliferation and migration by
targeting RERG. Exp Ther Med. 19:400–408. 2020.
|
|
95
|
Robertson NM and Yigit MV: The role of
microRNA in resistance to breast cancer therapy. Wiley Interdiscip
Rev RNA. 5:823–33. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Vranic S, Palazzo J, Sanati S, Florento E,
Contreras E, Xiu J, Swensen J and Gatalica Z: Potential novel
therapy targets in neuroendocrine carcinomas of the breast. Clin
Breast Cancer. 19:131–136. 2019. View Article : Google Scholar
|
|
97
|
Ang D, Ballard M, Beadling C, Warrick A,
Schilling A, O'Gara R, Pukay M, Neff TL, West RB, Corless CL and
Troxell ML: Novel mutations in neuroendocrine carcinoma of the
breast: Possible therapeutic targets. Appl Immunohistochem Mol
Morphol. 23:97–103. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Folgueira MA, Carraro DM, Brentani H,
Patrão DF, Barbosa EM, Netto MM, Caldeira JR, Katayama ML, Soares
FA, Oliveira CT, et al: Gene expression profile associated with
response to doxorubicin-based therapy in breast cancer. Clin Cancer
Res. 11:7434–7443. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shackelford RE, Mayhall K, Maxwell NM,
Kandil E and Coppola D: Nicotinamide phosphoribosyltransferase in
malignancy: A review. Genes Cancer. 4:447–456. 2013. View Article : Google Scholar
|
|
100
|
Grolla AA, Travelli C, Genazzani AA and
Sethi JK: Extracellular nicotinamide phosphoribosyltransferase, a
new cancer metabokine. Br J Pharmacol. 173:2182–2194. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bolandghamat Pour Z, Nourbakhsh M,
Mousavizadeh K, Madjd Z, Ghorbanhosseini SS, Abdolvahabi Z, Hesari
Z and Ezzati Mobasser S: Suppression of nicotinamide
phosphoribosyltransferase expression by miR-154 reduces the
viability of breast cancer cells and increases their susceptibility
to doxorubicin. BMC Cancer. 19:10272019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu J, Yang L, Guo X, Jin G, Wang Q, Lv D,
Liu J, Chen Q, Song Q and Li B: Sevoflurane suppresses
proliferation by upregulating microRNA-203 in breast cancer cells.
Mol Med Rep. 18:455–460. 2018.PubMed/NCBI
|
|
103
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nie H, Xie X, Zhang D, Zhou Y, Li B, Li F,
Li F, Cheng Y, Mei H, Meng H and Jia L: Use of lung-specific
exosomes for miRNA-126 delivery in non-small cell lung cancer.
Nanoscale. 12:877–887. 2020. View Article : Google Scholar
|
|
105
|
Li XJ, Ren ZJ, Tang JH and Yu Q: Exosomal
MicroRNA MiR-1246 promotes cell proliferation, invasion and drug
resistance by targeting CCNG2 in breast cancer. Cell Physiol
Biochem. 44:1741–1748. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li Y, Dai Y, Zhang X and Chen J:
Three-layered polyplex as a microRNA targeted delivery system for
breast cancer gene therapy. Nanotechnology. 28:2851012017.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jafari SH, Saadatpour Z, Salmaninejad A,
Momeni F, Mokhtari M, Nahand JS, Rahmati M, Mirzaei H and Kianmehr
M: Breast cancer diagnosis: Imaging techniques and biochemical
markers. J Cell Physiol. 233:5200–5213. 2018. View Article : Google Scholar
|
|
108
|
Zarredar H, Ansarin K, Baradaran B,
Shekari N, Eyvazi S, Safari F and Farajnia S: Critical microRNAs in
lung cancer: Recent advances and potential applications. Anticancer
Agents Med Chem. 18:1991–2005. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hu J, Markowitz GJ and Wang X: Noncoding
RNAs regulating cancer signaling network. Adv Exp Med Biol.
927:297–315. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen W, Zhou S, Mao L, Zhang H, Sun D,
Zhang J, Li J and Tang JH: Crosstalk between TGF-beta signaling and
miRNAs in breast cancer metastasis. Tumour Biol. 37:10011–10019.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Smith B, Agarwal P and Bhowmick NA:
MicroRNA applications for prostate, ovarian and breast cancer in
the era of precision medicine. Endocr Relat Cancer. 24:R157–R172.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kia V, Sharif Beigli M, Hosseini V,
Koochaki A, Paryan M and Mohammadi-Yeganeh S: Is miR-144 an
effective inhibitor of PTEN mRNA: A controversy in breast cancer.
In vitro Cell Dev Biol Anim. 54:621–628. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yue D and Qin X: miR-182 regulates
trastuzumab resistance by targeting MET in breast cancer cells.
Cancer Gene Ther. 26:1–10. 2019. View Article : Google Scholar
|
|
114
|
Zhang Y, Zhao Z, Li S, Dong L, Li Y, Mao
Y, Liang Y, Tao Y and Ma J: Inhibition of miR-214 attenuates the
migration and invasion of triple-negative breast cancer cells. Mol
Med Rep. 19:4035–4042. 2019.PubMed/NCBI
|
|
115
|
Samadi P, Saki S, Dermani FK, Pourjafar M
and Saidijam M: Emerging ways to treat breast cancer: Will promises
be met? Cell Oncol (Dordr). 41:605–621. 2018. View Article : Google Scholar
|
|
116
|
Xu C, Sun X, Qin S, Wang H, Zheng Z, Xu S,
Luo G, Liu P, Liu J, Du N, et al: Let-7a regulates mammosphere
formation capacity through Ras/NF-κB and Ras/MAPK/ERK pathway in
breast cancer stem cells. Cell Cycle. 14:1686–1697. 2015.
View Article : Google Scholar :
|
|
117
|
Zhao Y, Yang F, Li W, Xu C, Li L, Chen L,
Liu Y and Sun P: miR-29a suppresses MCF-7 cell growth by
downregulating tumor necrosis factor receptor 1. Tumour Biol.
39:10104283176922642017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang R and Nakshatri H: Systemic actions
of breast cancer facilitate functional limitations. Cancers.
12:1942020. View Article : Google Scholar :
|
|
119
|
Ruan L and Qian X: MiR-16-5p inhibits
breast cancer by reducing AKT3 to restrain NF-κB pathway. Biosci
Rep. 39:BSR201916112019. View Article : Google Scholar
|
|
120
|
D'Souza LC, Mishra S, Chakraborty A,
Shekher A, Sharma A and Gupta SC: Oxidative stress and cancer
development: Are noncoding RNAs the missing links? Antioxid Redox
Signal. 33:1209–1229. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mohammady M, Ghetmiri SI, Baharizade M,
Morowvat MH and Torabi S: Expanding the Biotherapeutics realm via
miR-34a: 'Potent Clever Little' agent in breast cancer therapy.
Curr Pharm Biotechnol. 20:665–673. 2019. View Article : Google Scholar
|
|
122
|
Pan JY, Zhang F, Sun CC, Li SJ, Li G, Gong
FY, Bo T, He J, Hua RX, Hu WD, et al: miR-134: A human cancer
suppressor? Mol Ther Nucleic Acids. 6:140–149. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Majumder M, Dunn L, Liu L, Hasan A,
Vincent K, Brackstone M, Hess D and Lala PK: COX-2 induces
oncogenic micro RNA miR655 in human breast cancer. Sci Rep.
8:3272018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y,
Mo H, Tang Y, Fang W and Wu Z: Timeless-Stimulated
miR-5188-FOXO1/β-Catenin-c-Jun feedback loop promotes stemness via
Ubiquitination of β-catenin in breast cancer. Mol Ther. 28:313–327.
2020. View Article : Google Scholar
|
|
125
|
Han B, Peng X, Cheng D, Zhu Y, Du J, Li J
and Yu X: Delphinidin suppresses breast carcinogenesis through the
HOTAIR/microRNA-34a axis. Cancer Sci. 110:3089–3097. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ju J, Zhu AJ and Yuan P: Progress in
targeted therapy for breast cancer. Chronic Dis Transl Med.
4:164–175. 2018.PubMed/NCBI
|
|
127
|
Liu H, Li A, Sun Z, Zhang J and Xu H: Long
non-coding RNA NEAT1 promotes colorectal cancer progression by
regulating miR-205-5p/VEGFA axis. Hum Cell. 33:386–396. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kaban K, Salva E and Akbuga J: Modulation
of the dual-faced effects of miR-141 with chitosan/miR-141
nanoplexes in breast cancer cells. J Gene Med. 21:e31162019.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Han M, Wang F, Gu Y, Pei X, Guo G, Yu C,
Li L, Zhu M, Xiong Y and Wang Y: MicroRNA-21 induces breast cancer
cell invasion and migration by suppressing smad7 via EGF and TGF-β
pathways. Oncol Rep. 35:73–80. 2016. View Article : Google Scholar
|
|
130
|
Qian B, Katsaros D, Lu L, Preti M, Durando
A, Arisio R, Mu L and Yu H: High miR-21 expression in breast cancer
associated with poor disease-free survival in early stage disease
and high TGF-beta1. Breast Cancer Res Treat. 117:131–140. 2009.
View Article : Google Scholar
|
|
131
|
Citron F, Segatto I, Vinciguerra GLR,
Musco L, Russo F, Mungo G, D'Andrea S, Mattevi MC, Perin T,
Schiappacassi M, et al: Downregulation of miR-223 expression is an
early event during mammary transformation and confers resistance to
CDK4/6 inhibitors in luminal breast cancer. Cancer Res.
80:1064–1077. 2020. View Article : Google Scholar
|
|
132
|
Lee A, Moon BI and Kim TH: BRCA1/BRCA2
pathogenic variant breast cancer: Treatment and prevention
strategies. Ann Lab Med. 40:114–121. 2020. View Article : Google Scholar
|
|
133
|
Vinayak S, Tolaney SM, Schwartzberg L,
Mita M, McCann G, Tan AR, Wahner-Hendrickson AE, Forero A, Anders
C, Wulf GM, et al: Open-label clinical trial of Niraparib combined
with pembrolizumab for treatment of advanced or metastatic
triple-negative breast cancer. JAMA Oncol. 5:1132–1140. 2019.
View Article : Google Scholar :
|
|
134
|
Wang X and Liu Y: PD-L1 expression in
tumor infiltrated lymphocytes predicts survival in triple-negative
breast cancer. Pathol Res Pract. 216:1528022020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Yahya SM and Elsayed GH: A summary for
molecular regulations of miRNAs in breast cancer. Clin Biochem.
48:388–396. 2015. View Article : Google Scholar
|
|
136
|
Grelet S and Howe PH: hnRNP E1 at the
crossroads of translational regulation of epithelial-mesenchymal
transition. J Cancer Metastasis Treat. 5:162019.PubMed/NCBI
|
|
137
|
Campbell K and Casanova J: A common
framework for EMT and collective cell migration. Development.
143:4291–4300. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Schaeffer D, Somarelli JA, Hanna G, Palmer
GM and Garcia-Blanco MA: Cellular migration and invasion uncoupled:
Increased migration is not an inexorable consequence of
epithelial-to-mesenchymal transition. Mol Cell Biol. 34:3486–3499.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Son H and Moon A: Epithelial-mesenchymal
transition and cell invasion. Toxicol Res. 26:245–252. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Gregory PA, Bert AG, Paterson EL, Barry
SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ:
The miR-200 family and miR-205 regulate epithelial to mesenchymal
transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wardhani BW, Puteri MU, Watanabe Y, Louisa
M, Setiabudy R and Kato M: TGF-β-induced TMEPAI attenuates the
response of triple-negative breast cancer cells to doxorubicin and
paclitaxel. J Exp Pharmacol. 12:17–26. 2020. View Article : Google Scholar :
|
|
142
|
Wang S, Huang M, Wang Z, Wang W, Zhang Z,
Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit
TGF-β-induced epithelial-to-mesenchymal transition and metastasis
by suppressing the TGF-β/SMAD pathway in breast cancer. Int J
Oncol. 55:1097–1109. 2019.PubMed/NCBI
|
|
143
|
Zeng Y, Gao T, Huang W, Yang Y, Qiu R, Hou
Y, Yu W, Leng S, Feng D, Liu W, et al: MicroRNA-455-3p mediates
GATA3 tumor suppression in mammary epithelial cells by inhibiting
TGF-β signaling. J Biol Chem. 294:15808–15825. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Guerrero-Zotano A, Mayer IA and Arteaga
CL: PI3K/AKT/mTOR: Role in breast cancer progression, drug
resistance, and treatment. Cancer Metastasis Rev. 35:515–524. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S,
Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell.
170:605–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Li S, Xu JJ and Zhang QY: MicroRNA-132-3p
inhibits tumor malignant progression by regulating
lysosomal-associated protein transmembrane 4 beta in breast cancer.
Cancer Sci. 110:3098–3109. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Yu X, Li R, Shi W, Jiang T, Wang Y, Li C
and Qu X: Silencing of MicroRNA-21 confers the sensitivity to
tamoxifen and fulvestrant by enhancing autophagic cell death
through inhibition of the PI3K-AKT-mTOR pathway in breast cancer
cells. Biomed Pharmacother. 77:37–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Wang B, Wang H and Yang Z: MiR-122
inhibits cell proliferation and tumorigenesis of breast cancer by
targeting IGF1R. PLoS One. 7:e470532012. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Thompson KN, Whipple RA, Yoon JR, Lipsky
M, Charpentier MS, Boggs AE, Chakrabarti KR, Bhandary L, Hessler
LK, Martin SS and Vitolo MI: The combinatorial activation of the
PI3K and Ras/MAPK pathways is sufficient for aggressive tumor
formation, while individual pathway activation supports cell
persistence. Oncotarget. 6:35231–35246. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Carlomagno F and Chiariello M: Growth
factor transduction pathways: Paradigm of anti-neoplastic targeted
therapy. J Mol Med (Berl). 92:723–733. 2014. View Article : Google Scholar
|
|
151
|
Osaki LH and Gama P: MAPKs and signal
transduction in the control of gastrointestinal epithelial cell
proliferation and differentiation. Int J Mol Sci. 14:10143–10161.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Johnston SR, Semiglazov VF, Manikhas GM,
Spaeth D, Romieu G, Dodwell DJ, Wardley AM, Neven P, Bessems A,
Park YC, et al: A phase II, randomized, blinded study of the
farnesyltransferase inhibitor tipifarnib combined with letrozole in
the treatment of advanced breast cancer after antiestrogen therapy.
Breast Cancer Res Treat. 110:327–335. 2008. View Article : Google Scholar
|
|
153
|
Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye
F and Xie X, Chen J, Tang H and Xie X: miR-200c inhibits breast
cancer proliferation by targeting KRAS. Oncotarget. 6:34968–34978.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Chen P, Xu W, Luo Y, Zhang Y, He Y, Yang S
and Yuan Z: MicroRNA 543 suppresses breast cancer cell
proliferation, blocks cell cycle and induces cell apoptosis via
direct targeting of ERK/MAPK. Onco Targets Ther. 10:1423–1431.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y,
Qi YT, Xu Q, Li W, Lu B, et al: A regulatory circuit of
miR-148a/152 and DNMT1 in modulating cell transformation and tumor
angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 5:3–13.
2013. View Article : Google Scholar :
|
|
156
|
Wu H, Wang G, Wang Z, An S, Ye P and Luo
S: A negative feedback loop between miR-200b and the nuclear
factor-κB pathway via IKBKB/IKK-β in breast cancer cells. FEBS J.
283:2259–2271. 2016. View Article : Google Scholar
|
|
157
|
Xie M, Fu Z, Cao J, Liu Y, Wu J, Li Q and
Chen Y: MicroRNA-132 and microRNA-212 mediate doxorubicin
resistance by down-regulating the PTEN-AKT/NF-κB signaling pathway
in breast cancer. Biomed Pharmacother. 102:286–294. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Wang L, Wang YX, Chen LP and Ji ML:
Upregulation of microRNA-181b inhibits CCL18-induced breast cancer
cell metastasis and invasion via the NF-κB signaling pathway. Oncol
Lett. 12:4411–4418. 2016. View Article : Google Scholar
|
|
159
|
Senthil Kumar KJ, Gokila Vani M, Hsieh HW,
Lin CC, Liao JW, Chueh PJ and Wang SY: MicroRNA-708 activation by
glucocorticoid receptor agonists regulate breast cancer
tumorigenesis and metastasis via downregulation of NF-κB signaling.
Carcinogenesis. 40:335–348. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Jiang H, Li X, Wang W and Dong H: Long
non-coding RNA SNHG3 promotes breast cancer cell proliferation and
metastasis by binding to microRNA-154-3p and activating the notch
signaling pathway. BMC Cancer. 20:8382020. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Sun X, Huang T, Liu Z, Sun M and Luo S:
LncRNA SNHG7 contributes to tumorigenesis and progression in breast
cancer by interacting with miR-34a through EMT initiation and the
Notch-1 pathway. Eur J Pharmacol. 856:1724072019. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Lan L, Wang Y, Pan Z, Wang B, Yue Z, Jiang
Z, Li L, Wang C and Tang H: Rhamnetin induces apoptosis in human
breast cancer cells via the miR-34a/Notch-1 signaling pathway.
Oncol Lett. 17:676–682. 2019.PubMed/NCBI
|
|
163
|
Kang L, Mao J, Tao Y, Song B, Ma W, Lu Y,
Zhao L, Li J, Yang B and Li L: MicroRNA-34a suppresses the breast
cancer stem cell-like characteristics by downregulating Notch1
pathway. Cancer Sci. 106:700–708. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Li WJ, Xie XX, Bai J, Wang C, Zhao L and
Jiang DQ: Increased expression of miR-1179 inhibits breast cancer
cell metastasis by modulating Notch signaling pathway and
correlates with favorable prognosis. Eur Rev Med Pharmacol Sci.
22:8374–8382. 2018.PubMed/NCBI
|
|
165
|
Ren L, Chen H, Song J, Chen X, Lin C,
Zhang X, Hou N, Pan J, Zhou Z, Wang L, et al: MiR-454-3p-Mediated
Wnt/β-catenin signaling Antagonists suppression promotes breast
cancer metastasis. Theranostics. 9:449–465. 2019. View Article : Google Scholar :
|
|
166
|
Xie Q, Wang S, Zhao Y, Zhang Z, Qin C and
Yang X: MicroRNA-216a suppresses the proliferation and migration of
human breast cancer cells via the Wnt/β-catenin signaling pathway.
Oncol Rep. 41:2647–2656. 2019.PubMed/NCBI
|
|
167
|
Liu S, Wang Z, Liu Z, Shi S, Zhang Z,
Zhang J and Lin H: miR-221/222 activate the Wnt/β-catenin signaling
to promote triple-negative breast cancer. J Mol Cell Biol.
10:302–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Tan Z, Zheng H, Liu X, Zhang W, Zhu J, Wu
G, Cao L, Song J, Wu S, Song L and Li J: MicroRNA-1229
overexpression promotes cell proliferation and tumorigenicity and
activates Wnt/β-catenin signaling in breast cancer. Oncotarget.
7:24076–24087. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Liu F, Liu Y, Shen J, Zhang G and Han J:
MicroRNA-224 inhibits proliferation and migration of breast cancer
cells by down-regulating Fizzled 5 expression. Oncotarget.
7:49130–49142. 2016. View Article : Google Scholar : PubMed/NCBI
|