|
1
|
Mallo GV, Fiedler F, Calvo EL, Ortiz EM,
Vasseur S, Keim V, Morisset J and Iovanna JL: Cloning and
expression of the rat p8 cDNA, a new gene activated in pancreas
during the acute phase of pancreatitis, pancreatic development, and
regeneration, and which promotes cellular growth. J Biol Chem.
272:32360–32369. 1997. View Article : Google Scholar
|
|
2
|
Vasseur S, Vidal Mallo G, Fiedler F,
Bödeker H, Cánepa E, Moreno S and Iovanna JL: Cloning and
expression of the human p8, a nuclear protein with mitogenic
activity. Eur J Biochem. 259:670–675. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ree AH, Tvermyr M, Engebraaten O, Rooman
M, Røsok O, Hovig E, Meza-Zepeda LA, Bruland OS and Fodstad O:
Expression of a novel factor in human breast cancer cells with
metastatic potential. Cancer Res. 59:4675–4680. 1999.PubMed/NCBI
|
|
4
|
Quirk CC, Seachrist DD and Nilson JH:
Embryonic expression of the luteinizing hormone β gene appears to
be coupled to the transient appearance of p8, a high mobility
group-related transcription factor. J Biol Chem. 278:1680–1685.
2003. View Article : Google Scholar
|
|
5
|
Lopez MB, Garcia MN, Grasso D, Bintz J,
Molejon MI, Velez G, Lomberk G, Neira JL, Urrutia R and Iovanna J:
Functional characterization of Nupr1L, A Novel p53-regulated
isoform of the high-mobility group (HMG)-related protumoral protein
Nupr1. J Cell Physiol. 230:2936–2950. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lan W, Santofimia-Castaño P, Swayden M,
Xia Y, Zhou Z, Audebert S, Camoin L, Huang C, Peng L,
Jiménez-Alesanco A, et al: ZZW-115-dependent inhibition of NUPR1
nuclear translocation sensitizes cancer cells to genotoxic agents.
JCI Insight. 5:e1381172020. View Article : Google Scholar
|
|
7
|
Santofimia-Castaño P, Rizzuti B, Xia Y,
Abian O, Peng L, Velázquez-Campoy A, Iovanna JL and Neira JL:
Designing and repurposing drugs to target intrinsically disordered
proteins for cancer treatment: Using NUPR1 as a paradigm. Mol Cell
Oncol. 6:e16126782019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pommier RM, Gout J, Vincent DF, Cano CE,
Kaniewski B, Martel S, Rodriguez J, Fourel G, Valcourt U, Marie JC,
et al: The human NUPR1/P8 gene is transcriptionally activated by
transforming growth factor β via the SMAD signalling pathway.
Biochem J. 445:285–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hamidi T, Cano CE, Grasso D, Garcia MN,
Sandi MJ, Calvo EL, Dagorn JC, Lomberk G, Urrutia R, Goruppi S, et
al: Nupr1-aurora kinase A pathway provides protection against
metabolic stress-mediated autophagic-associated cell death. Clin
Cancer Res. 18:5234–5246. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gironella M, Malicet C, Cano C, Sandi MJ,
Hamidi T, Tauil RM, Baston M, Valaco P, Moreno S, Lopez F, et al:
p8/nupr1 regulates DNA-repair activity after double-strand gamma
irradiation-induced DNA damage. J Cell Physiol. 221:594–602. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Carracedo A, Lorente M, Egia A, Blázquez
C, García S, Giroux V, Malicet C, Villuendas R, Gironella M,
González-Feria L, et al: The stress-regulated protein p8 mediates
cannabinoid-induced apoptosis of tumor cells. Cancer Cell.
9:301–312. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Emma MR, Iovanna JL, Bachvarov D, Puleio
R, Loria GR, Augello G, Candido S, Libra M, Gulino A, Cancila V, et
al: NUPR1, a new target in liver cancer: Implication in controlling
cell growth, migration, invasion and sorafenib resistance. Cell
Death Dis. 7:e22692016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Santofimia-Castaño P, Lan W, Bintz J,
Gayet O, Carrier A, Lomberk G, Neira JL, González A, Urrutia R,
Soubeyran P and Iovanna J: Inactivation of NUPR1 promotes cell
death by coupling ER-stress responses with necrosis. Sci Rep.
8:169992018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brannon KM, Million Passe CM, White CR,
Bade NA, King MW and Quirk CC: Expression of the high mobility
group A family member p8 is essential to maintaining tumorigenic
potential by promoting cell cycle dysregulation in LbetaT2 cells.
Cancer Lett. 254:146–155. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kong DK, Georgescu SP, Cano C, Aronovitz
MJ, Iovanna JL, Patten RD, Kyriakis JM and Goruppi S: Deficiency of
the transcriptional regulator p8 results in increased autophagy and
apoptosis, and causes impaired heart function. Mol Biol Cell.
21:1335–1349. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li A, Li X, Chen X, Zeng C, Wang Z, Li Z
and Chen J: NUPR1 Silencing induces autophagy-mediated apoptosis in
multiple myeloma cells through the PI3K/AKT/mTOR pathway. DNA Cell
Biol. 39:368–378. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mu Y, Yan X, Li D, Zhao D, Wang L, Wang X,
Gao D, Yang J, Zhang H, Li Y, et al: NUPR1 maintains autolysosomal
efflux by activating SNAP25 transcription in cancer cells.
Autophagy. 14:654–670. 2018. View Article : Google Scholar :
|
|
18
|
Grasso D, Garcia MN, Hamidi T, Cano C,
Calvo E, Lomberk G, Urrutia R and Iovanna JL: Genetic inactivation
of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by
modulating KrasG12D-induced senescence. Cell Death Differ.
21:1633–1641. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Grasso D, Bintz J, Lomberk G, Molejon MI,
Loncle C, Garcia MN, Lopez MB, Urrutia R and Iovanna JL: Pivotal
role of the chromatin protein Nupr1 in Kras-induced senescence and
transformation. Sci Rep. 5:175492015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cai D, Huang E, Luo B, Yang Y, Zhang F,
Liu C, Lin Z, Xie WB and Wang H: Nupr1/Chop signal axis is involved
in mitochondrion-related endothelial cell apoptosis induced by
methamphetamine. Cell Death Dis. 7:e21612016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tang B, Li Q, Zhao XH, Wang HG, Li N, Fang
Y, Wang K, Jia YP, Zhu P, Gu J, et al: Shiga toxins induce
autophagic cell death in intestinal epithelial cells via the
endoplasmic reticulum stress pathway. Autophagy. 11:344–354. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shiraki M, Xu X, Iovanna JL, Kukita T,
Hirata H, Kamohara A, Kubota Y, Miyamoto H, Mawatari M and Kukita
A: Deficiency of stress-associated gene Nupr1 increases bone volume
by attenuating differentiation of osteoclasts and enhancing
differentiation of osteoblasts. FASEB J. 33:8836–8852. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Maida A, Zota A, Sjøberg KA, Schumacher J,
Sijmonsma TP, Pfenninger A, Christensen MM, Gantert T, Fuhrmeister
J, Rothermel U, et al: A liver stress-endocrine nexus promotes
metabolic integrity during dietary protein dilution. J Clin Invest.
126:3263–3278. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hoffmeister A, Ropolo A, Vasseur S, Mallo
GV, Bodeker H, Ritz-Laser B, Dressler GR, Vaccaro MI, Dagorn JC,
Moreno S and Iovanna JL: The HMG-I/Y-related protein p8 binds to
p300 and Pax2 trans-activation domain-interacting protein to
regulate the transactivation activity of the Pax2A and Pax2B
transcription factors on the glucagon gene promoter. J Biol Chem.
277:22314–22319. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Päth G, Opel A, Knoll A and Seufert J:
Nuclear protein p8 is associated with glucose-induced pancreatic
beta-cell growth. Diabetes. 53(Suppl 1): S82–S85. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhong C, Yu J, Li D, Jiang K, Tang Y, Yang
M, Shen H, Fang X, Ding K, Zheng S and Yuan Y: Zyxin as a potential
cancer prognostic marker promotes the proliferation and metastasis
of colorectal cancer cells. J Cell Physiol. Jan 29–2019.Epub ahead
of print.
|
|
27
|
Vasseur S, Hoffmeister A, Garcia S, Bagnis
C, Dagorn JC and Iovanna JL: p8 is critical for tumour development
induced by rasV12 mutated protein and E1A oncogene. EMBO Rep.
3:165–170. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Iovanna JL: Expression of the
stress-associated protein p8 is a requisite for tumor development.
Int J Gastrointest Cancer. 31:89–98. 2002. View Article : Google Scholar
|
|
29
|
Clark DW, Mitra A, Fillmore RA, Jiang WG,
Samant RS, Fodstad O and Shevde LA: NUPR1 interacts with p53,
transcriptionally regulates p21 and rescues breast epithelial cells
from doxorubicin-induced genotoxic stress. Curr Cancer Drug
Targets. 8:421–430. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Simpson NE, Lambert WM, Watkins R,
Giashuddin S, Huang SJ, Oxelmark E, Arju R, Hochman T, Goldberg JD,
Schneider RJ, et al: High levels of Hsp90 cochaperone p23 promote
tumor progression and poor prognosis in breast cancer by increasing
lymph node metastases and drug resistance. Cancer Res.
70:8446–8456. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jiang WG, Watkins G, Douglas-Jones A,
Mokbel K, Mansel RE and Fodstad O: Expression of Com-1/P8 in human
breast cancer and its relevance to clinical outcome and ER status.
Int J Cancer. 117:730–737. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jiang WG, Davies G and Fodstad O: Com-1/P8
in oestrogen regulated growth of breast cancer cells, the ER-beta
connection. Biochem Biophys Res Commun. 330:253–262. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jung SH, Lee A, Yim SH, Hu HJ, Choe C and
Chung YJ: Simultaneous copy number gains of NUPR1 and ERBB2
predicting poor prognosis in early-stage breast cancer. BMC Cancer.
12:3822012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hollern DP, Honeysett J, Cardiff RD and
Andrechek ER: The E2F transcription factors regulate tumor
development and metastasis in a mouse model of metastatic breast
cancer. Mol Cell Biol. 34:3229–3243. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jia Q, Zhou W, Yao W, Yang F, Zhang S,
Singh R, Chen J, Chen JJ, Zhang Y, Wei F, et al: Downregulation of
YAP-dependent Nupr1 promotes tumor-repopulating cell growth in soft
matrices. Oncogenesis. 5:e2202016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fish L, Zhang S, Yu JX, Culbertson B, Zhou
AY, Goga A and Goodarzi H: Cancer cells exploit an orphan RNA to
drive meta-static progression. Nat Med. 24:1743–1751. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Matsunaga K, Fujisawa K, Takami T,
Burganova G, Sasai N, Matsumoto T, Yamamoto N and Sakaida I: NUPR1
acts as a pro-survival factor in human bone marrow-derived
mesenchymal stem cells and is induced by the hypoxia mimetic
reagent deferoxamine. J Clin Biochem Nutr. 64:209–216. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Davies ML, Parr C, Sanders AJ, Fodstad O
and Jiang WG: The transcript expression and protein distribution
pattern in human colorectal carcinoma reveal a pivotal role of
COM-1/p8 as a tumour suppressor. Cancer Genomics Proteomics.
7:75–80. 2010.PubMed/NCBI
|
|
39
|
Wang L, Jiang F, Xia X and Zhang B: LncRNA
FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway
in colorectal cancer. Int J Biochem Cell Biol. 106:46–56. 2019.
View Article : Google Scholar
|
|
40
|
Li X, Martin TA and Jiang WG: COM-1/p8
acts as a tumour growth enhancer in colorectal cancer cell lines.
Anticancer Res. 32:1229–1237. 2012.PubMed/NCBI
|
|
41
|
Gao Q, Lei F, Zeng Q, Gao Z, Niu P,
Junnan, Ning, Li J and Zhang J: Functional passenger-strand miRNAs
in exosomes derived from human colon cancer cells and their
heterogeneous paracrine effects. Int J Biol Sci. 16:1044–1058.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Su SB, Motoo Y, Iovanna JL, Berthézène P,
Xie MJ, Mouri H, Ohtsubo K, Matsubara F and Sawabu N:
Overexpression of p8 is inversely correlated with apoptosis in
pancreatic cancer. Clin Cancer Res. 7:1320–1324. 2001.PubMed/NCBI
|
|
43
|
Su SB, Motoo Y, Iovanna JL, Xie MJ, Mouri
H, Ohtsubo K, Yamaguchi Y, Watanabe H, Okai T, Matsubara F and
Sawabu N: Expression of p8 in human pancreatic cancer. Clin Cancer
Res. 7:309–313. 2001.PubMed/NCBI
|
|
44
|
Hamidi T, Algül H, Cano CE, Sandi MJ,
Molejon MI, Riemann M, Calvo EL, Lomberk G, Dagorn JC, Weih F, et
al: Nuclear protein 1 promotes pancreatic cancer development and
protects cells from stress by inhibiting apoptosis. J Clin Invest.
122:2092–2103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cano CE, Hamidi T, Sandi MJ and Iovanna
JL: Nupr1: The Swiss-knife of cancer. J Cell Physiol.
226:1439–1443. 2011. View Article : Google Scholar
|
|
46
|
Cano CE, Hamidi T, Garcia MN, Grasso D,
Loncle C, Garcia S, Calvo E, Lomberk G, Dusetti N, Bartholin L, et
al: Genetic inactivation of Nupr1 acts as a dominant suppressor
event in a two-hit model of pancreatic carcinogenesis. Gut.
63:984–995. 2014. View Article : Google Scholar
|
|
47
|
Ito Y, Yoshida H, Motoo Y, Miyoshi E,
Iovanna JL, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et
al: Expression and cellular localization of p8 protein in thyroid
neoplasms. Cancer Lett. 201:237–244. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ito Y, Yoshida H, Motoo Y, Iovanna JL,
Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, et
al: Expression of p8 protein in medullary thyroid carcinoma.
Anticancer Res. 25:3419–3423. 2005.PubMed/NCBI
|
|
49
|
Jiang WG, Davies G, Martin TA, Kynaston H,
Mason MD and Fodstad O: Com-1/p8 acts as a putative tumour
suppressor in prostate cancer. Int J Mol Med. 18:981–986.
2006.PubMed/NCBI
|
|
50
|
Du P, Ye L, Yang Y and Jiang WG: Candidate
of metastasis 1 regulates in vitro growth and invasion of bladder
cancer cells. Int J Oncol. 42:1249–1256. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Veerla S, Panagopoulos I, Jin Y, Lindgren
D and Höglund M: Promoter analysis of epigenetically controlled
genes in bladder cancer. Genes Chromosomes Cancer. 47:368–378.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guo X, Wang W, Hu J, Feng K, Pan Y, Zhang
L and Feng Y: Lentivirus-mediated RNAi knockdown of NUPR1 inhibits
human nonsmall cell lung cancer growth in vitro and in vivo. Anat
Rec (Hoboken). 295:2114–2121. 2012. View Article : Google Scholar
|
|
53
|
Ghandhi SA, Ponnaiya B, Panigrahi SK,
Hopkins KM, Cui Q, Hei TK, Amundson SA and Lieberman HB: RAD9
deficiency enhances radiation induced bystander DNA damage and
transcriptomal response. Radiat Oncol Lond Engl. 9:2062014.
View Article : Google Scholar
|
|
54
|
Wu H, Wang W and Xu H: Depletion of
C3orf1/TIMMDC1 inhibits migration and proliferation in 95D lung
carcinoma cells. Int J Mol Sci. 15:20555–20571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Frances D, Sharma N, Pofahl R, Maneck M,
Behrendt K, Reuter K, Krieg T, Klein CA, Haase I and Niemann C: A
role for Rac1 activity in malignant progression of sebaceous skin
tumors. Oncogene. 34:5505–5512. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Niessner H, Sinnberg T, Kosnopfel C,
Smalley KSM, Beck D, Praetorius C, Mai M, Beissert S, Kulms D,
Schaller M, et al: BRAF inhibitors amplify the proapoptotic
activity of MEK inhibitors by inducing ER stress in NRAS-mutant
melanoma. Clin Cancer Res. 23:6203–6214. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pedrola N, Devis L, Llauradó M, Campoy I,
Martinez-Garcia E, Garcia M, Muinelo-Romay L, Alonso-Alconada L,
Abal M, Alameda F, et al: Nidogen 1 and Nuclear Protein 1: Novel
targets of ETV5 transcription factor involved in endometrial cancer
invasion. Clin Exp Metastasis. 32:467–478. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Di Martino MT, Guzzi PH, Caracciolo D,
Agnelli L, Neri A, Walker BA, Morgan GJ, Cannataro M, Tassone P and
Tagliaferri P: Integrated analysis of microRNAs, transcription
factors and target genes expression discloses a specific molecular
architecture of hyperdiploid multiple myeloma. Oncotarget.
6:19132–19147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zeng C, Li X, Li A, Yi B, Peng X, Huang X
and Chen J: Knockdown of NUPR1 inhibits the growth of U266 and
RPMI8226 multiple myeloma cell lines via activating PTEN and
caspase activation-dependent apoptosis. Oncol Rep. 40:1487–1494.
2018.PubMed/NCBI
|
|
60
|
Kim KS, Jin DI, Yoon S, Baek SY, Kim BS
and Oh SO: Expression and roles of NUPR1 in cholangiocarcinoma
cells. Anat Cell Biol. 45:17–25. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Seshachalam VP, Sekar K and Hui KM:
Insights into the etiology-associated gene regulatory networks in
hepatocellular carcinoma from The Cancer Genome Atlas. J
Gastroenterol Hepatol. 33:2037–2047. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lee YK, Jee BA, Kwon SM, Yoon YS, Xu WG,
Wang HJ, Wang XW, Thorgeirsson SS, Lee JS, Woo HG and Yoon G:
Identification of a mitochondrial defect gene signature reveals
NUPR1 as a key regulator of liver cancer progression. Hepatology.
62:1174–1189. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bak Y and Shin H: Hepatitis B virus X
promotes hepatocellular carcinoma development via nuclear protein 1
pathway. Biochem Biophys Res Commun. 466:676–681. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
de Conti A, Dreval K, Tryndyak V, Orisakwe
OE, Ross SA, Beland FA and Pogribny IP: Inhibition of the cell
death pathway in nonalcoholic steatohepatitis (NASH)-related
hepatocarcino-genesis is associated with histone H4 lysine 16
deacetylation. Mol Cancer Res. 15:1163–1172. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ji Y, Wang Z, Chen H, Zhang L, Zhuo F and
Yang Q: Serum from chronic hepatitis B patients promotes growth and
proliferation via the IGF-II/IGF-IR/MEK/ERK signaling pathway in
hepato-cellular carcinoma cells. Cell Physiol Biochem. 47:39–53.
2018. View Article : Google Scholar
|
|
66
|
Chen CY, Wu SM, Lin YH, Chi HC, Lin SL,
Yeh CT, Chuang WY and Lin KH: Induction of nuclear protein-1 by
thyroid hormone enhances platelet-derived growth factor A mediated
angiogen-esis in liver cancer. Theranostics. 9:2361–2379. 2019.
View Article : Google Scholar :
|
|
67
|
Zhou C, Xu J, Lin J, Lin R, Chen K, Kong J
and Shui X: Long non-coding RNA FEZF1-AS1 promotes osteosarcoma
progression by regulating miR-4443/NUPR1 axis. Oncol Res.
26:1335–1343. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li J, Ren S, Liu Y, Lian Z, Dong B, Yao Y
and Xu Y: Knockdown of NUPR1 inhibits the proliferation of
glioblastoma cells via ERK1/2, p38 MAPK and caspase-3. J
Neurooncol. 132:15–26. 2017. View Article : Google Scholar
|
|
69
|
Li J, Lian ZG, Xu YH, Liu RY, Wei ZQ, Li
T, Lv HT, Zhao YS, Liu YJ, Dong B and Fu X: Downregulation of
nuclear protein-1 induces cell cycle arrest in G0/G1 phase in
glioma cells in vivo and in vitro via P27. Neoplasma. 67:843–850.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mohammad HP, Seachrist DD, Quirk CC and
Nilson JH: Reexpression of p8 contributes to tumorigenic properties
of pituitary cells and appears in a subset of prolactinomas in
transgenic mice that hypersecrete luteinizing hormone. Mol
Endocrinol. 18:2583–2593. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Passe CM, Cooper G and Quirk CC: The
murine p8 gene promoter is activated by activating transcription
factor 4 (ATF4) in the gonadotrope-derived LbetaT2 cell line.
Endocrine. 30:81–91. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jin HO, Seo SK, Woo SH, Choe TB, Hong SI,
Kim JI and Park IC: Nuclear protein 1 induced by ATF4 in response
to various stressors acts as a positive regulator on the
transcriptional activation of ATF4. IUBMB Life. 61:1153–1158. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Averous J, Lambert-Langlais S, Cherasse Y,
Carraro V, Parry L, B'chir W, Jousse C, Maurin AC, Bruhat A and
Fafournoux P: Amino acid deprivation regulates the stress-inducible
gene p8 via the GCN2/ATF4 pathway. Biochem Biophys Res Commun.
413:24–29. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi
N, Tóth K, Likó I, Molnár B, Tihanyi K and Liposits Z: Estradiol
replacement alters expression of genes related to neurotransmission
and immune surveillance in the frontal cortex of middle-aged,
ovariectomized rats. Endocrinology. 151:3847–3862. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xu X, Huang E, Tai Y, Zhao X, Chen X, Chen
C, Chen R, Liu C, Lin Z, Wang H and Xie WB: Nupr1 modulates
methamphet-amine-induced dopaminergic neuronal apoptosis and
autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress
signaling pathway. Front Mol Neurosci. 10:2032017. View Article : Google Scholar
|
|
76
|
Goruppi S, Patten RD, Force T and Kyriakis
JM: Helix-loop-helix protein p8, a transcriptional regulator
required for cardiomyocyte hypertrophy and cardiac fibroblast
matrix metalloprotease induction. Mol Cell Biol. 27:993–1006. 2007.
View Article : Google Scholar :
|
|
77
|
Sambasivan R, Cheedipudi S, Pasupuleti N,
Saleh A, Pavlath GK and Dhawan J: The small chromatin-binding
protein p8 coordinates the association of anti-proliferative and
pro-myogenic proteins at the myogenin promoter. J Cell Sci.
122:3481–3491. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Taïeb D, Malicet C, Garcia S, Rocchi P,
Arnaud C, Dagorn JC, Iovanna JL and Vasseur S: Inactivation of
stress protein p8 increases murine carbon tetrachloride
hepatotoxicity via preserved CYP2E1 activity. Hepatology.
42:176–182. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Vasseur S, Hoffmeister A, Garcia-Montero
A, Mallo GV, Feil R, Kühbandner S, Dagorn JC and Iovanna JL:
p8-deficient fibroblasts grow more rapidly and are more resistant
to adriamycin-induced apoptosis. Oncogene. 21:1685–1694. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kallwellis K, Grempler R, Günther S, Päth
G and Walther R: Tumor necrosis factor alpha induces the expression
of the nuclear protein p8 via a novel NF kappaB binding site within
the promoter. Horm Metab Res. 38:570–574. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yammani RR and Loeser RF: Brief report:
Stress-inducible nuclear protein 1 regulates matrix
metalloproteinase 13 expression in human articular chondrocytes.
Arthritis Rheumatol. 66:1266–1271. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jiang YF, Vaccaro MI, Fiedler F, Calvo EL
and Iovanna JL: Lipopolysaccharides induce p8 mRNA expression in
vivo and in vitro. Biochem Biophys Res Commun. 260:686–690. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Motoo Y, Iovanna JL, Mallo GV, Su SB, Xie
MJ and Sawabu N: P8 expression is induced in acinar cells during
chronic pancreatitis. Dig Dis Sci. 46:1640–1646. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hollenbach M, Klöting N, Sommerer I,
Lorenz J, Heindl M, Kern M, Mössner J, Blüher M and Hoffmeister A:
p8 deficiency leads to elevated pancreatic beta cell mass but does
not contribute to insulin resistance in mice fed with high-fat
diet. PLoS One. 13:e02011592018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bratland A, Risberg K, Maelandsmo GM,
Gützkow KB, Olsen OE, Moghaddam A, Wang MY, Hansen CM, Blomhoff HK,
Berg JP, et al: Expression of a novel factor, com1, is regulated by
1,25-dihydroxyvitamin D3 in breast cancer cells. Cancer Res.
60:5578–5583. 2000.PubMed/NCBI
|
|
86
|
Santofimia-Castaño P, Xia Y, Lan W, Zhou
Z, Huang C, Peng L, Soubeyran P, Velázquez-Campoy A, Abián O,
Rizzuti B, et al: Ligand-based design identifies a potent NUPR1
inhibitor exerting anticancer activity via necroptosis. J Clin
Invest. 129:2500–2513. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Neira JL, Bintz J, Arruebo M, Rizzuti B,
Bonacci T, Vega S, Lanas A, Velázquez-Campoy A, Iovanna JL and
Abián O: Identification of a drug targeting an intrinsically
disordered protein involved in pancreatic adenocarcinoma. Sci Rep.
7:397322017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Deng ZH, Meng J, Tang J, Hu GY and Tao LJ:
Fluorofenidone Inhibits the Proliferation of Lung Adenocarcinoma
Cells. J Cancer. 8:1917–1926. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Santofimia-Castaño P, Rizzuti B, Abián O,
Velázquez-Campoy A, Iovanna JL and Neira JL: Amphipathic helical
peptides hamper protein-protein interactions of the intrinsically
disordered chromatin nuclear protein 1 (NUPR1). Biochim Biophys
Acta Gen Subj. 1862:1283–1295. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Botto C, Augello G, Amore E, Emma MR,
Azzolina A, Cavallaro G, Cervello M and Bondì ML: Cationic solid
lipid nanoparticles as non viral vectors for the inhibition of
hepatocellular carcinoma growth by RNA interference. J Biomed
Nanotechnol. 14:1009–1016. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Khan HY, Ge J, Nagasaka M, Aboukameel A,
Mpilla G, Muqbil I, Szlaczky M, Chaker M, Baloglu E, Landesman Y,
et al: Targeting XPO1 and PAK4 in 8505C anaplastic thyroid cancer
cells: Putative implications for overcoming lenvatinib therapy
resistance. Int J Mol Sci. 21:2372019. View Article : Google Scholar
|
|
92
|
Vincent AJ, Ren S, Harris LG, Devine DJ,
Samant RS, Fodstad O and Shevde LA: Cytoplasmic translocation of
p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in
chemoresistance. FEBS Lett. 586:3429–3434. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Palam LR, Gore J, Craven KE, Wilson JL and
Korc M: Integrated stress response is critical for gemcitabine
resistance in pancreatic ductal adenocarcinoma. Cell Death Dis.
6:e19132015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Augello G, Emma MR, Cusimano A, Azzolina
A, Mongiovì S, Puleio R, Cassata G, Gulino A, Belmonte B,
Gramignoli R, et al: Targeting HSP90 with the small molecule
inhibitor AUY922 (luminespib) as a treatment strategy against
hepatocellular carcinoma. Int J Cancer. 144:2613–2624. 2019.
View Article : Google Scholar
|
|
95
|
Yu SL, Lee DC, Baek SW, Cho DY, Choi JG
and Kang J: Identification of mTOR inhibitor-resistant genes in
cutaneous squamous cell carcinoma. Cancer Manag Res. 10:6379–6389.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Real NE, Castro GN, Darío Cuello-Carrión
F, Perinetti C, Röhrich H, Cayado-Gutiérrez N, Guerrero-Gimenez ME
and Ciocca DR: Molecular markers of DNA damage and repair in
cervical cancer patients treated with cisplatin neoadjuvant
chemotherapy: An exploratory study. Cell Stress Chaperones.
22:811–822. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Schroll MM, LaBonia GJ, Ludwig KR and
Hummon AB: Glucose restriction combined with autophagy inhibition
and chemotherapy in HCT 116 spheroids decreases cell clonogenicity
and viability regulated by tumor suppressor genes. J Proteome Res.
16:3009–3018. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Schnepp PM, Shelley G, Dai J, Wakim N,
Jiang H, Mizokami A and Keller ET: Single-cell transcriptomics
analysis identifies nuclear protein 1 as a regulator of docetaxel
resistance in prostate cancer cells. Mol Cancer Res. 18:1290–1301.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Urrutia R, Velez G, Lin M, Lomberk G,
Neira JL and Iovanna J: Evidence supporting the existence of a
NUPR1-like family of helix-loop-helix chromatin proteins related
to, yet distinct from, AT hook-containing HMG proteins. J Mol
Model. 20:23572014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ree AH, Pacheco MM, Tvermyr M, Fodstad O
and Brentani MM: Expression of a novel factor, com1, in early tumor
progression of breast cancer. Clin Cancer Res. 6:1778–1783.
2000.PubMed/NCBI
|
|
101
|
Cano CE, Sandí MJ, Hamidi T, Calvo EL,
Turrini O, Bartholin L, Loncle C, Secq V, Garcia S, Lomberk G, et
al: Homotypic cell cannibalism, a cell-death process regulated by
the nuclear protein 1, opposes to metastasis in pancreatic cancer.
EMBO Mol Med. 4:964–979. 2012. View Article : Google Scholar : PubMed/NCBI
|