The pterocarpanquinone LQB‑118 compound induces apoptosis of cytarabine‑resistant acute myeloid leukemia cells
- Authors:
- Thaís Hancio
- Luciano Mazzoccoli
- Gustavo Guimarães
- Marcela Robaina
- Bruna Dos Santos Mendonça
- Gabriela Nestal De Moraes
- Barbara Da Costa Reis Monte‑Mor
- Luciana Mayumi Gutiyama
- Luíze Otero De Carvalho
- Chaquip Daher Netto
- Paulo R.R. Costa
- Fernanda Costas Casal De Faria
- Raquel Ciuvalschi Maia
-
Affiliations: Laboratory of Cellular and Molecular Hemato‑Oncology, Program of Molecular Hemato‑Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ 20230‑130, Brazil, Laboratory of Molecular Biology, Bone Marrow Transplant Center (CEMO), Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ 20230‑130, Brazil, Stem Cell Laboratory, Bone Marrow Transplant Center (CEMO), Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ 20230‑130, Brazil, Chemistry Laboratory, Federal University of Rio de Janeiro (UFRJ), Macaé Campus, Rio de Janeiro, RJ 27930‑560, Brazil, Bioorganic Chemistry Laboratory, Natural Products Research Institute (IPPN), Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, RJ 21941‑599, Brazil - Published online on: March 30, 2021 https://doi.org/10.3892/ijo.2021.5204
- Article Number: 24
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Estey EH: Acute myeloid leukemia: 2014 update on risk-stratification and management. Am J Hematol. 89:1063–1081. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saultz JN and Garzon R: Acute myeloid leukemia: A concise review. J Clin Med. 5:332016. View Article : Google Scholar : | |
De Kouchkovsky I and Abdul-Hay M: Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 6:e4412016. View Article : Google Scholar | |
Burnett AK: Treatment of acute myeloid leukemia: Are we making progress? Hematology Am Soc Hematol Educ Program. 2012:1–6. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto KM, Grant S, Saleiro D, Crispino JD, Hijiya N, Giles F, Platanias L and Eklund EA: Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab. 114:397–402. 2015. View Article : Google Scholar : | |
Feliciano SV, Santos MO, Pombo-de-Oliveira MS, de Aquino JA, de Aquino TA, Arregi MM, Antoniazzif BN, da Costa AM, Formigosa LA, Laporte CA, et al: Incidence and mortality of myeloid malignancies in children, adolescents and Young adults in Brazil: A population-based study. Cancer Epidemiol. 62:1015832019. View Article : Google Scholar : PubMed/NCBI | |
Schlenk RF and Döhner H: Genomic applications in the clinic: Use in treatment paradigm of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2013:324–330. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yeung CC and Radich J: Predicting chemotherapy resistance in AML. Curr Hematol Malig Rep. 12:530–536. 2017. View Article : Google Scholar : PubMed/NCBI | |
Coombs CC, Tallman MS and Levine RL: Molecular therapy for acute myeloid leukaemia. Nat Rev Clin Oncol. 13:305–318. 2016. View Article : Google Scholar | |
Murphy T and Yee KW: Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin Pharmacother. 18:1765–1780. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rustum YM and Preisler HD: Correlation between leukemic cell retention of 1-beta-D-arabinofuranosylcytosine 5′-triphosphate and response to therapy. Cancer Res. 39:42–49. 1979.PubMed/NCBI | |
Löwenberg B, Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C, Ferrant A, Sonneveld P, Biemond BJ, Gratwohl A, et al: Cytarabine dose for acute myeloid leukemia. N Engl J Med. 364:1027–1036. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rowe JM: AML in 2017: Advances in clinical practice. Best Pract Res Clin Haematol. 30:283–286. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kayser S and Levis MJ: Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol. 180:484–500. 2018. View Article : Google Scholar : | |
Negoro E, Yamauchi T, Urasaki Y, Nishi R, Hori H and Ueda T: Characterization of cytarabine-resistant leukemic cell lines established from five different blood cell lineages using gene expression and proteomic analyses. Int J Oncol. 38:911–919. 2011.PubMed/NCBI | |
Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, Scholz F, Karawajew L, Ludwig WD and Wuchter C: High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res. 10:3737–3744. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chromik J, Safferthal C, Serve H and Fulda S: Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett. 344:101–109. 2014. View Article : Google Scholar | |
Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N and Hasnain SN: Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: Are we ready for Bcl-2-directed therapy? Cancer Manag Res. 10:403–416. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shang J, Chen WM, Wang ZH, Wei TN and Chen ZZ: Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 70:42–54.e3. 2019. View Article : Google Scholar | |
Kaltschmidt B, Greiner JFW, Kadhim HM and Kaltschmidt C: Subunit-specific role of NF-κB in cancer. Biomedicines. 6:442018. View Article : Google Scholar | |
Colombo F, Zambrano S and Agresti A: NF-kappaB, the importance of being dynamic: Role and insights in cancer. Biomedicines. 6:452018. View Article : Google Scholar | |
Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM and Jordan CT: Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 98:2301–2307. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu F, Zhao W, Wang Y, Wu X, Da W, et al: c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk Res. 39:92–99. 2015. View Article : Google Scholar | |
Mughal MK, Akhter A, Street L, Pournazari P, Shabani-Rad MT and Mansoor A: Acute myeloid leukaemia: Expression of MYC protein and its association with cytogenetic risk profile and overall survival. Hematol Oncol. 35:350–356. 2017. View Article : Google Scholar | |
de Souza Reis FR, de Faria FC, Castro CP, de Souza PS, da Cunha Vasconcelos F, Bello RD, da Silva AJ, Costa PR and Maia RC: The therapeutical potential of a novel pterocarpanquinone LQB-118 to target inhibitor of apoptosis proteins in acute myeloid leukemia cells. Anticancer Agents Med Chem. 13:341–351. 2013. View Article : Google Scholar | |
Nestal De Moraes G, Pereira Castro C, Salustiano EJ, Dumas ML, Costas F, Wing-Fai Lam E, Ribeiro Costa PR and Maia RC: [Corrigendum] The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors. Int J Oncol. 55:13962019. | |
Maia RC, Vasconcelos FC, de Sá Bacelar T, Salustiano EJ, da Silva LF, Pereira DL, Moellman-Coelho A, Netto CD, da Silva AJ, Rumjanek VM and Costa PR: LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: A novel class of agent with high apoptotic effect in chronic myeloid leukemia cells. Invest New Drugs. 29:1143–1155. 2011. View Article : Google Scholar | |
de Sa Bacelar T, da Silva AJ, Costa PR and Rumjanek VM: The pterocarpanquinone LQB 118 induces apoptosis in tumor cells through the intrinsic pathway and the endoplasmic reticulum stress pathway. Anticancer Drugs. 24:73–83. 2013. View Article : Google Scholar | |
Netto CD, da Silva AJ, Salustiano EJ, Bacelar TS, Rica IG, Cavalcante MC, Rumjanek VM and Costa PR: New pterocarpanquinones: Synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells. Bioorg Med Chem. 18:1610–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
McGowan-Jordan J, Simons A and Schmid M: ISCN 2016. An International System for Human Cytogenomic Nomenclature (2016). Karger AG; Basel: 2016 | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar | |
Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, Colaco B, Pires MJ, Colaco J, Ferreira R and Ginja M: Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim (NY). 42:217–224. 2013. View Article : Google Scholar | |
Tomayko MM and Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 24:148–154. 1989. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T and Li W: [Corrigendum] cMyc regulates the CDK1/cyclin B1 dependentG2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med. 44:19882019. | |
Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W, McCurrach ME, Yang MM, Dolan ME, Kogan SC, et al: Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23:877–889. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liersch R, Muller-Tidow C, Berdel WE and Krug U: Prognostic factors for acute myeloid leukaemia in adults-biological significance and clinical use. Br J Haematol. 165:17–38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lynch RC and Medeiros BC: Chemotherapy options for previously untreated acute myeloid leukemia. Expert Opini Pharmacother. 16:2149–2162. 2015. View Article : Google Scholar | |
Carroll PA, Freie BW, Mathsyaraja H and Eisenman RN: The MYC transcription factor network: Balancing metabolism, proliferation and oncogenesis. Front Med. 12:412–425. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 95:819–828. 2010. View Article : Google Scholar : | |
Martino T, Magalhaes FC, Justo GA, Coelho MG, Netto CD, Costa PR and Sabino KC: The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression. Bioorg Med Chem. 22:3115–3122. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Faria FC, Leal ME, Bernardo PS, Costa PR and Maia RC: NFκB pathway and microRNA-9 and -21 are involved in sensitivity to the pterocarpanquinone LQB-118 in different CML cell lines. Anticancer Agents Med Chem. 15:345–352. 2015. View Article : Google Scholar | |
Martino T, Kudrolli TA, Kumar B, Salviano I, Mencalha A, Coelho MG, Justo G, Costa PR, Sabino KC and Lupold SE: The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate. 78:140–151. 2018. View Article : Google Scholar | |
Bernardo PS, Guimaraes GH, De Faria FC, Longo G, Lopes GP, Netto CD, Costa PR and Maia RC: LQB118 compound inhibits migration and induces cell death in glioblastoma cells. Oncol Rep. 43:346–357. 2020. | |
Veisani Y, Khazaei S and Delpisheh A: 5-year survival rates based on the type of leukemia in Iran, a meta-analysis. Caspian J Intern Med. 9:316–324. 2018.PubMed/NCBI | |
Lagunas-Rangel FA, Chavez-Valencia V, Gomez-Guijosa MA and Cortes-Penagos C: Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 11:328–339. 2017. | |
Hackl H, Astanina K and Wieser R: Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol. 10:512017. View Article : Google Scholar : PubMed/NCBI | |
Walter RB, Othus M, Burnett AK, Lowenberg B, Kantarjian HM, Ossenkoppele GJ, Hills RK, Ravandi F, Pabst T, Evans A, et al: Resistance prediction in AML: Analysis of 4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD anderson cancer center. Leukemia. 29:312–320. 2015. View Article : Google Scholar | |
Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti F and Gallo R: Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 54:713–33. 1979. View Article : Google Scholar : PubMed/NCBI | |
Dalton WT Jr, Ahearn MJ, McCredie KB, Freireich EJ, Stass SA and Trujillo JM: HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood. 71:242–247. 1988. View Article : Google Scholar : PubMed/NCBI | |
Collins SJ: The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression. Blood. 70:1233–1244. 1987. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi T, Uzui K, Nishi R, Shigemi H and Ueda T: Cytarabine-resistant leukemia cells are moderately sensitive to clofarabine in vitro. Anticancer Res. 34:1657–1662. 2014.PubMed/NCBI | |
Prenkert M, Uggla B, Tidefelt U and Strid H: CRIM1 is expressed at higher levels in drug-resistant than in drug-sensitive myeloid leukemia HL60 cells. Anticancer Res. 30:4157–4161. 2010.PubMed/NCBI | |
Furth JJ and Cohen SS: Inhibition of mammalian DNA polymerase by the 5′-triphosphate of 1-beta-d-arabinofuranosylcytosine and the 5′-triphosphate of 9-beta-d-arabinofuranoxyladenine. Cancer Res. 28:2061–2067. 1968.PubMed/NCBI | |
Kufe DW, Major PP, Egan EM and Beardsley GP: Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem. 255:8997–8900. 1980. View Article : Google Scholar : PubMed/NCBI | |
Shepshelovich D, Edel Y, Goldvaser H, Dujovny T, Wolach O and Raanani P: Pharmacodynamics of cytarabine induced leucopenia: A retrospective cohort study. Br J Clin Pharmacol. 79:685–691. 2015. View Article : Google Scholar : | |
Chen Y, Gan D, Huang Q, Luo X, Lin D and Hu J: Emodin and its combination with cytarabine induce apoptosis in resistant acute myeloid leukemia cells in vitro and in vivo. Cell Physiol Biochem. 48:2061–2073. 2018. View Article : Google Scholar : PubMed/NCBI | |
Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, et al: Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 96:4075–4083. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mrozek K: Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 35:365–377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stölzel F, Mohr B, Kramer M, Oelschlagel U, Bochtler T, Berdel WE, Kaufmann M, Baldus CD, Schafer-Eckart K, Stuhlmann R, et al: Karyotype complexity and prognosis in acute myeloid leukemia. Blood Cancer J. 6:e3862016. View Article : Google Scholar : PubMed/NCBI | |
Dash A and Gilliland DG: Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol. 14:49–64. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rubnitz JE, Gibson B and Smith FO: Acute myeloid leukemia. Hematol Oncol Clin North Am. 24:35–63. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grove CS and Vassiliou GS: Acute myeloid leukaemia: A paradigm for the clonal evolution of cancer? Dis Model Mech. 7:941–951. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kern W, Haferlach T, Schnittger S, Ludwig WD, Hiddemann W and Schoch C: Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: Implications for resistance against therapy. Leukemia. 16:2084–2091. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cassier PA, Castets M, Belhabri A and Vey N: Targeting apoptosis in acute myeloid leukaemia. Br J Cancer. 117:1089–1098. 2017. View Article : Google Scholar : PubMed/NCBI | |
Del Poeta G, Bruno A, Del Principe MI, Venditti A, Maurillo L, Buccisano F, Stasi R, Neri B, Luciano F, Siniscalchi A, et al: Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia. Curr Cancer Drug Targets. 8:207–222. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, et al: Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 6:1796–1803. 2000.PubMed/NCBI | |
Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ, Kim JY, Cho EJ, Yoo KH and Koo HH: Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J Korean Med Sci. 24:605–613. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim AM, Mansour IM, Wilson MM, Mokhtar DA, Helal AM and Al Wakeel HM: Study of survivin and X-linked inhibitor of apoptosis protein (XIAP) genes in acute myeloid leukemia (AML). Lab Hematol. 18:1–10. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Lu X, Tan TZ and Chng WJ: X-linked inhibitor of apoptosis inhibition sensitizes acute myeloid leukemia cell response to TRAIL and chemotherapy through potentiated induction of proapoptotic machinery. Mol Oncol. 12:33–47. 2018. View Article : Google Scholar | |
Bosman MC, Schuringa JJ and Vellenga E: Constitutive NF-κB activation in AML: Causes and treatment strategies. Crit Rev Oncol Hematol. 98:35–44. 2016. View Article : Google Scholar | |
Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM and MacEwan DJ: The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 120:5188–5198. 2012. View Article : Google Scholar : PubMed/NCBI | |
Catz SD and Johnson JL: Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene. 20:7342–7351. 2001. View Article : Google Scholar : PubMed/NCBI | |
Murray S, Briasoulis E, Linardou H, Bafaloukos D and Papadimitriou C: Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev. 38:890–903. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alam M, Kashyap T, Pramanik KK, Singh AK, Nagini S and Mishra R: The elevated activation of NFκB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin Oral Investig. 21:2721–2731. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Shen S and Verma IM: NF-κB, an active player in human cancers. Cancer Immunol Res. 2:823–830. 2014. View Article : Google Scholar : PubMed/NCBI | |
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ and Gately K: Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 3:1202013. View Article : Google Scholar : PubMed/NCBI | |
Ohanian M, Rozovski U, Kanagal-Shamanna R, Abruzzo LV, Loghavi S, Kadia T, Futreal A, Bhalla K, Zuo Z, Huh YO, et al: MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma. 60:37–48. 2019. View Article : Google Scholar | |
Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J, Jin H, Xu D, Gao J and Huang C: NF-κB1 inhibits c-Myc protein degradation through suppression of FBW7 expression. Oncotarget. 5:493–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miura K, Takahashi H, Nakagawa M, Izu A, Sugitani M, Kurita D, Sakagami M, Ohtake S, Uchino Y, Hojo A, et al: Clinical significance of co-expression of MYC and BCL2 protein in aggressive B-cell lymphomas treated with a second line immunochemotherapy. Leuk Lymphoma. 57:1335–1341. 2016. View Article : Google Scholar | |
Kobune M, Takimoto R, Murase K, Iyama S, Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y and Kato J: Drug resistance is dramatically restored by hedgehog inhibitors in CD34+ leukemic cells. Cancer Sci. 100:948–955. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, Myszka D, Han J and Wu H: XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell. 26:689–702. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J and de Martin R: Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem. 275:22064–22068. 2000. View Article : Google Scholar : PubMed/NCBI |