|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ridge CA, McErlean AM and Ginsberg MS:
Epidemiology of lung cancer. Semin Intervent Radiol. 30:93–98.
2013. View Article : Google Scholar :
|
|
3
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar
|
|
4
|
Talebian Yazdi M, Schinkelshoek MS, Loof
NM, Taube C, Hiemstra PS, Welters MJ and van der Burg SH: Standard
radiotherapy but not chemotherapy impairs systemic immunity in
non-small cell lung cancer. Oncoimmunology. 5:e12553932016.
View Article : Google Scholar
|
|
5
|
Sarin N, Engel F, Kalayda GV, Mannewitz M,
Cinatl J Jr, Rothweiler F, Michaelis M, Saafan H, Ritter CA, Jaehde
U and Frötschl R: Cisplatin resistance in non-small cell lung
cancer cells is associated with an abrogation of cisplatin-induced
G2/M cell cycle arrest. PLoS One. 12:e01810812017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yang Z, Hackshaw A, Feng Q, Fu X, Zhang Y,
Mao C and Tang J: Comparison of gefitinib, erlotinib and afatinib
in non-small cell lung cancer: A meta-analysis. Int J Cancer.
140:2805–2819. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Garon EB, Rizvi NA, Hui R, Leighl N,
Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L,
et al: Pembrolizumab for the treatment of non-small-cell lung
cancer. N Engl J Med. 372:2018–228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Uchibori K, Inase N, Araki M, Kamada M,
Sato S, Okuno Y, Fujita N and Katayama R: Brigatinib combined with
anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated
non-small-cell lung cancer. Nat Commun. 8:147682017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Facchinetti F, Rossi G, Bria E, Soria JC,
Besse B, Minari R, Friboulet L and Tiseo M: Oncogene addiction in
non-small cell lung cancer: Focus on ROS1 inhibition. Cancer Treat
Rev. 55:83–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Planchard D, Kim TM, Mazieres J, Quoix E,
Riely G, Barlesi F, Souquet PJ, Smit EF, Groen HJ, Kelly RJ, et al:
Dabrafenib in patients with BRAF(V600E)-positive advanced
non-small-cell lung cancer: A single-arm, multicentre, open-label,
phase 2 trial. Lancet Oncol. 17:642–650. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Decensi A, Puntoni M, Goodwin P, Cazzaniga
M, Gennari A, Bonanni B and Gandini S: Metformin and cancer risk in
diabetic patients: A systematic review and meta-analysis. Cancer
Prev Res (Phila). 3:1451–1461. 2010. View Article : Google Scholar
|
|
13
|
Cantrell LA, Zhou C, Mendivil A, Malloy
KM, Gehrig PA and Bae-Jump VL: Metformin is a potent inhibitor of
endometrial cancer cell proliferation-implications for a novel
treatment strategy. Gynecol Oncol. 116:92–98. 2010. View Article : Google Scholar
|
|
14
|
Dong L, Zhou Q, Zhang Z, Zhu Y, Duan T and
Feng Y: Metformin sensitizes endometrial cancer cells to
chemotherapy by repressing glyoxalase I expression. J Obstet
Gynaecol Res. 38:1077–1085. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Duo J, Ma Y, Wang G, Han X and Zhang C:
Metformin synergistically enhances antitumor activity of histone
deacetylase inhibitor trichostatin a against osteosarcoma cell
line. DNA Cell Biol. 32:156–164. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fujita H, Hirose K, Sato M, Fujioka I,
Fujita T, Aoki M and Takai Y: Metformin attenuates hypoxia-induced
resistance to cisplatin in the HepG2 cell line. Oncol Lett.
17:2431–2440. 2018.
|
|
17
|
Lin CC, Yeh HH, Huang WL, Yan JJ, Lai WW,
Su WP, Chen HH and Su WC: Metformin enhances cisplatin cytotoxicity
by suppressing signal transducer and activator of transcription-3
activity independently of the liver kinase B1-AMP-activated protein
kinase pathway. Am J Respir Cell Mol Biol. 49:241–250. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu G, Fang W, Xia T, Chen Y, Gao Y, Jiao
X, Huang S, Wang J, Li Z and Xie K: Metformin potentiates rapamycin
and cisplatin in gastric cancer in mice. Oncotarget. 6:12748–1262.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Teixeira SF: Metformin synergistically
enhances antiproliferative effects of cisplatin and etoposide in
NCI-H460 human lung cancer cells. J Bras Pneumol. 39:644–649. 2013.
View Article : Google Scholar
|
|
20
|
Li L, Han R, Xiao H, Lin C, Wang Y, Liu H,
Li K, Chen H, Sun F, Yang Z, Jiang J and He Y: Metformin sensitizes
EGFR-TKI-resistant human lung cancer cells in vitro and in vivo
through inhibition of IL-6 signaling and EMT reversal. Clin Cancer
Res. 20:2714–2726. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li L, Wang Y, Peng T, Zhang K, Lin C, Han
R, Lu C and He Y: Metformin restores crizotinib sensitivity in
crizotinib-resistant human lung cancer cells through inhibition of
IGF1-R signaling pathway. Oncotarget. 7:34442–34452. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pernicova I and Korbonits M:
Metformin-mode of action and clinical implications for diabetes and
cancer. Nat Rev Endocrinol. 10:143–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu GY and Sabatini DM: mTOR at the nexus
of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol.
21:183–203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tavares MR, Pavan IC, Amaral CL,
Meneguello L, Luchessi AD and Simabuco FM: The S6K protein family
in health and disease. Life Sci. 131:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Magnuson B, Ekim B and Fingar DC:
Regulation and function of ribosomal protein S6 kinase (S6K) within
mTOR signalling networks. Biochem J. 441:1–21. 2012. View Article : Google Scholar
|
|
26
|
Amaral CL, Freitas LB, Tamura RE, Tavares
MR, Pavan IC, Bajgelman MC and Simabuco FM: S6Ks isoforms
contribute to viability, migration, docetaxel resistance and tumor
formation of prostate cancer cells. BMC Cancer. 16:6022016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhong D, Guo L, de Aguirre I, Liu X, Lamb
N, Sun SY, Gal AA, Vertino PM and Zhou W: LKB1 mutation in large
cell carcinoma of the lung. Lung Cancer. 53:285–294. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kullmann L and Krahn MP: Controlling the
master-upstream regulation of the tumor suppressor LKB1. Oncogene.
37:3045–3057. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Jiang G and Liu CT: Knockdown of SALL4
overcomes cisplatin-resistance through AKT/mTOR signaling in lung
cancer cells. Int J Clin Exp Pathol. 11:634–641. 2018.PubMed/NCBI
|
|
30
|
Teng X, Fan XF, Li Q, Liu S, Wu DY, Wang
SY, Shi Y and Dong M: XPC inhibition rescues cisplatin resistance
via the Akt/mTOR signaling pathway in A549/DDP lung adenocarcinoma
cells. Oncol Rep. 41:1875–1882. 2019.PubMed/NCBI
|
|
31
|
Liang SQ, Bührer ED, Berezowska S, Marti
TM, Xu D, Froment L, Yang H, Hall SRR, Vassella E, Yang Z, et al:
mTOR mediates a mechanism of resistance to chemotherapy and defines
a rational combination strategy to treat KRAS-mutant lung cancer.
Oncogene. 38:622–636. 2019. View Article : Google Scholar
|
|
32
|
Algire C, Amrein L, Bazile M, David S,
Zakikhani M and Pollak M: Diet and tumor LKB1 expression interact
to determine sensitivity to anti-neoplastic effects of metformin in
vivo. Oncogene. 30:1174–1182. 2011. View Article : Google Scholar
|
|
33
|
Moro M, Caiola E, Ganzinelli M, Zulato E,
Rulli E, Marabese M, Centonze G, Busico A, Pastorino U, de Braud
FG, et al: Metformin enhances cisplatin-induced apoptosis and
prevents resistance to cisplatin in Co-mutated KRAS/LKB1 NSCLC. J
Thorac Oncol. 13:1692–1704. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
35
|
Ye J, Coulouris G, Zaretskaya I,
Cutcutache I, Rozen S and Madden TL: Primer-BLAST: A tool to design
target-specific primers for polymerase chain reaction. BMC
Bioinformatics. 13:1342012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bremang M, Cuomo A, Agresta AM, Stugiewicz
M, Spadotto V and Bonaldi T: Mass spectrometry-based identification
and characterisation of lysine and arginine methylation in the
human proteome. Mol Biosyst. 9:2231–2247. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cox J, Neuhauser N, Michalski A, Scheltema
RA, Olsen JV and Mann M: Andromeda: A peptide search engine
integrated into the MaxQuant environment. J Proteome Res.
10:1794–1805. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43(Database Issue): D447–D452. 2015. View Article : Google Scholar
|
|
39
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C
and Jensen LJ: STRING v9.1: Protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res.
41(Database Issue): D808–D815. 2013. View Article : Google Scholar :
|
|
40
|
Campbell JD, Alexandrov A, Kim J, Wala J,
Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et
al: Distinct patterns of somatic genome alterations in lung
adenocarcinomas and squamous cell carcinomas. Nat Genet.
48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Roesch A, Vultur A, Bogeski I, Wang H,
Zimmermann KM, Speicher D, Körbel C, Laschke MW, Gimotty PA,
Philipp SE, et al: Overcoming intrinsic multidrug resistance in
melanoma by blocking the mitochondrial respiratory chain of
slow-cycling JARID1Bhigh cells. Cancer Cell. 23:811–825. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mogami T, Yokota N, Asai-Sato M, Yamada R,
Koizume S, Sakuma Y, Yoshihara M, Nakamura Y, Takano Y, Hirahara F,
et al: Annexin A4 is involved in proliferation, chemo-resistance
and migration and invasion in ovarian clear cell adenocarcinoma
cells. PLoS One. 8:e803592013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li N, Huang HQ and Zhang GS: Association
between SOD2 C47T polymorphism and lung cancer susceptibility: A
meta-analysis. Tumor Biol. 35:955–959. 2014. View Article : Google Scholar
|
|
45
|
Morales DR and Morris AD: Metformin in
cancer treatment and prevention. Annu Rev Med. 66:17–29. 2015.
View Article : Google Scholar
|
|
46
|
Guertin DA and Sabatini DM: Defining the
role of mTOR in cancer. Cancer Cell. 12:9–22. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sharma A, Bandyopadhayaya S, Chowdhury K,
Sharma T, Maheshwari R, Das A, Chakrabarti G, Kumar V and Mandal
CC: Metformin exhibited anticancer activity by lowering cellular
cholesterol content in breast cancer cells. PLoS One.
14:e02094352019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee JO, Kang MJ, Byun WS, Kim SA, Seo IH,
Han JA, Moon JW, Kim JH, Kim SJ, Lee EJ, et al: Metformin overcomes
resistance to cisplatin in triple-negative breast cancer (TNBC)
cells by targeting RAD51. Breast Cancer Res. 21:1152019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dang JH, Jin ZJ, Liu XJ, Hu D, Wang J, Luo
Y and Li LL: Metformin in combination with cisplatin inhibits cell
viability and induces apoptosis of human ovarian cancer cells by
inactivating ERK 1/2. Oncol Lett. 14:7557–7564. 2017.
|
|
50
|
Riaz MA, Sak A, Erol YB, Groneberg M,
Thomale J and Stuschke M: Metformin enhances the radiosensitizing
effect of cisplatin in non-small cell lung cancer cell lines with
different cisplatin sensitivities. Sci Rep. 9:12822019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang JW, Zhao F and Sun Q: Metformin
synergizes with rapamycin to inhibit the growth of pancreatic
cancer in vitro and in vitro. Oncol Lett. 15:1811–1816.
2018.PubMed/NCBI
|
|
52
|
Jin DH, Kim Y, Lee B, Han J, Kim HK, Shim
YM and Kim DH: Metformin induces cell cycle arrest at the G1 phase
through E2F8 suppression in lung cancer cells. Oncotarget.
8:101509–101519. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Queiroz EAIF, Puukila S, Eichler R,
Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB
and Khaper N: Metformin induces apoptosis and cell cycle arrest
mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast
cancer cells. PLoS One. 9. pp. e982072014, View Article : Google Scholar
|
|
54
|
Xie W, Wang L, Sheng H, Qiu J, Zhang D,
Zhang L, Yang F, Tang D and Zhang K: Metformin induces growth
inhibition and cell cycle arrest by upregulating MicroRNA34a in
renal cancer cells. Med Sci Monit. 23:29–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lundholm L, Hååg P, Zong D, Juntti T, Mörk
B, Lewensohn R and Viktorsson K: Resistance to DNA-damaging
treatment in non-small cell lung cancer tumor-initiating cells
involves reduced DNA-PK/ATM activation and diminished cell cycle
arrest. Cell Death Dis. 4:e4782013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chatterjee A, Mukhopadhyay S, Tung K,
Patel D and Foster DA: Rapamycin-induced G1 cell cycle arrest
employs both TGF-β and Rb pathways. Cancer Lett. 360:134–140. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lu Z, Peng K, Wang N, Liu HM and Hou G:
Downregulation of p70S6K enhances cell sensitivity to rapamycin in
esophageal squamous cell carcinoma. J Immunol Res.
2016:78289162016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Song J, Wang X, Zhu J and Liu J: Rapamycin
causes growth arrest and inhibition of invasion in human
chondrosarcoma cells. J BUON. 21:244–251. 2016.PubMed/NCBI
|
|
59
|
Wang Y, Xu W, Yan Z, Zhao W, Mi J, Li J
and Yan H: Metformin induces autophagy and G0/G1 phase cell cycle
arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways.
J Exp Clin Cancer Res. 37:632018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhong DS, Sun LL and Dong LX: Molecular
mechanisms of LKB1 induced cell cycle arrest. Thorac Cancer.
4:229–233. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang Y, Bao C, Mu Q, Chen J, Wang J, Mi
Y, Sayari AJ, Chen Y and Guo M: Reversal of cisplatin resistance by
inhibiting PI3K/Akt signal pathway in human lung cancer cells.
Neoplasma. 63:362–370. 2016. View Article : Google Scholar
|
|
62
|
Sheng J, Shen L, Sun L, Zhang X, Cui R and
Wang L: Inhibition of PI3K/mTOR increased the sensitivity of
hepatocellular carcinoma cells to cisplatin via interference with
mitochondrial-lysosomal crosstalk. Cell Prolif. 52:e126092019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hou G, Yang S, Zhou Y, Wang C, Zhao W and
Lu Z: Targeted inhibition of mTOR signaling improves sensitivity of
esophageal squamous cell carcinoma cells to cisplatin. J Immunol
Res. 2014:8457632014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhao Y, Sun H, Feng M, Zhao J, Zhao X, Wan
Q and Cai D: Metformin is associated with reduced cell
proliferation in human endometrial cancer by inbibiting
PI3K/AKT/mTOR signaling. Gynecol Endocrinol. 34:428–432. 2018.
View Article : Google Scholar
|
|
65
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar
|
|
66
|
Galluzzi L, Vitale I, Michels J, Brenner
C, Szabadkai G, Harel-Bellan A, Castedo M and Kroemer G: Systems
biology of cisplatin resistance: Past, present and future. Cell
Death Dis. 5:e12572014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pandey A and Mann M: Proteomics to study
genes and genomes. Nature. 405:837–846. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chang X, Ravi R, Pham V, Bedi A,
Chatterjee A and Sidransky D: Adenylate kinase 3 sensitizes cells
to cigarette smoke condensate vapor induced cisplatin resistance.
PLoS One. 6:e208062011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wei Y, Wu S, Xu W, Liang Y, Li Y, Zhao W
and Wu J: Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses
cisplatin resistance of human lung adenocarcinoma cell A549/DDP.
Thorac Cancer. 8:26–32. 2017. View Article : Google Scholar :
|
|
70
|
Morimoto A, Serada S, Enomoto T, Kim A,
Matsuzaki S, Takahashi T, Ueda Y, Yoshino K, Fujita M, Fujimoto M,
et al: Annexin A4 induces platinum resistance in a chloride-and
calcium-dependent manner. Oncotarget. 5:7776–7787. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Feng X, Liu H, Zhang Z, Gu Y, Qiu H and He
Z: Annexin A2 contributes to cisplatin resistance by activation of
JNK-p53 pathway in non-small cell lung cancer cells. J Exp Clin
Cancer Res. 36:1232017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Becker M, De Bastiani MA, Müller CB,
Markoski MM, Castro MA and Klamt F: High cofilin-1 levels correlate
with cisplatin resistance in lung adenocarcinomas. Tumor Biology.
35:1233–1238. 2014. View Article : Google Scholar
|
|
73
|
Wittig R, Nessling M, Will RD, Mollenhauer
J, Salowsky R, Münstermann E, Schick M, Helmbach H, Gschwendt B,
Korn B, et al: Candidate genes for cross-resistance against
DNA-damaging drugs. Cancer Res. 62:6698–6705. 2002.PubMed/NCBI
|
|
74
|
Zeller C, Dai W, Steele NL, Siddiq A,
Walley AJ, Wilhelm-Benartzi CS, Rizzo S, van der Zee A, Plumb JA
and Brown R: Candidate DNA methylation drivers of acquired
cisplatin resistance in ovarian cancer identified by methylome and
expression profiling. Oncogene. 31:4567–4576. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang M, Li Y, Shen X, Ruan Y, Lu Y, Jin X,
Song P, Guo Y, Zhang X, Qu H, et al: CLDN6 promotes chemoresistance
through GSTP1 in human breast cancer. J Exp Clin Cancer Res.
36:1572017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang
Z, Mei L and Gong C: The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback
loop increases the cisplatin resistance of non-small cell lung
cancer by inducing G6PD expression. Am J Transl Res. 11:6860–6876.
2019.
|
|
77
|
Wang JM, Liu BQ, Zhang Q, Hao L, Li C, Yan
J, Zhao FY, Qiao HY, Jiang JY and Wang HQ: ISG15 suppresses
translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug
sensitivity in cisplatin resistant ovarian cancer cells. Biochim
Biophys Acta Mol Cell Res. 1867:1186472020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Di Martino S, Amoreo CA, Nuvoli B, Galati
R, Strano S, Facciolo F, Alessandrini G, Pass HI, Ciliberto G,
Blandino G, et al: HSP90 inhibition alters the chemotherapy-driven
rearrangement of the oncogenic secretome. Oncogene. 37:1369–1385.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Qin X, Sun L and Wang J: Restoration of
microRNA-708 sensitizes ovarian cancer cells to cisplatin via
IGF2BP1/Akt pathway. Cell Biol Int. 41:1110–1118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xu Z, Zou L, Ma G, Wu X, Huang F, Feng T,
Li S, Lin Q, He X, Liu Z and Cao X: Integrin β1 is a critical
effector in promoting metastasis and chemo-resistance of esophageal
squamous cell carcinoma. Am J Cancer Res. 7:531–542. 2017.
|
|
81
|
Li Y, Liu X, Lin X, Zhao M, Xiao Y, Liu C,
Liang Z, Lin Z, Yi R, Tang Z, et al: Chemical compound
cinobufotalin potently induces FOXO1-stimulated cisplatin
sensitivity by antagonizing its binding partner MYH9. Signal
Transduct Target Ther. 4:482019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Depeng S, Wu J, Guo L, Xu Y, Liu L and Lu
J: Metformin increases sensitivity of osteosarcoma stem cells to
cisplatin by inhibiting expression of PKM2. Int J Oncol.
50:1848–1856. 2017. View Article : Google Scholar
|
|
83
|
Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng
H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through
interaction with the mTOR pathway in cervical cancer. Sci Rep.
6:307882016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang Y, Hao F, Nan Y, Qu L, Na W, Jia C
and Chen X: PKM2 inhibitor shikonin overcomes the cisplatin
resistance in bladder cancer by inducing necroptosis. International
J Biol Sci. 14:1883–1891. 2018. View Article : Google Scholar
|
|
85
|
Krafft U, Tschirdewahn S, Hess J, Harke
NN, Hadaschik BA, Nyirády P, Szendröi A, Szücs M, Módos O, Olah C,
et al: STIP1 tissue expression is associated with survival in
chemotherapy-treated bladder cancer patients. Pathol Oncol Res.
26:1243–1249. 2020. View Article : Google Scholar
|
|
86
|
Li C, Cai J, Ge F and Wang G: TGM2
knockdown reverses cisplatin chemoresistance in osteosarcoma. Int J
Molr Med. 42:1799–1808. 2018.
|
|
87
|
Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji
Y, Zhang YW, Xue SL, Zhang YX, Yang YF and Yu MM: MicroRNA-497
regulates cisplatin chemosensitivity of cervical cancer by
targeting transketolase. Am J Cancer Res. 6:2690–2699.
2016.PubMed/NCBI
|
|
88
|
Matassa DS, Amoroso MR, Lu H, Avolio R,
Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V,
Agliarulo I, et al: Oxidative metabolism drives
inflammation-induced platinum resistance in human ovarian cancer.
Cell Death Differ. 23:1542–1554. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yue T, Zheng X, Dou Y, Zheng X, Sun R,
Tian Z and Wei H: Interleukin 12 shows a better curative effect on
lung cancer than paclitaxel and cisplatin doublet chemotherapy. BMC
Cancer. 16:6652016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Barros FBA, Assao A, Garcia NG, Nonogaki
S, Carvalho AL, Soares FA, Kowalski LP and Oliveira DT: Moesin
expression by tumor cells is an unfavorable prognostic biomarker
for oral cancer. BMC Cancer. 18:532018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Alam F, Mezhal F, El Hasasna H, Nair VA,
Aravind SR, Saber Ayad M, El-Serafi A and Abdel-Rahman WM: The role
of p53-microRNA 200-Moesin axis in invasion and drug resistance of
breast cancer cells. Tumor Bio. 39:10104283177146342017.
|
|
92
|
Wang Q, Lu X, Zhao S, Pang M, Wu X, Wu H,
Hoffman RM, Yang Z and Zhang Y: Moesin expression is associated
with glioblastoma cell proliferation and invasion. Anticancer Res.
37:2211–2218. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang J, Gao Q, Wang D, Wang Z and Hu C:
Metformin inhibits growth of lung adenocarcinoma cells by inducing
apoptosis via the mitochondria-mediated pathway. Oncol Lett.
10:1343–1349. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Seguin L, Desgrosellier JS, Weis SM and
Cheresh DA: Integrins and cancer: Regulators of cancer stemness,
metastasis, and drug resistance. Trends Cell Biol. 25:234–240.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Blandin AF, Renner G, Lehmann M,
Lelong-Rebel I, Martin S and Dontenwill M: β1 integrins as
therapeutic targets to disrupt hallmarks of cancer. Front
Pharmacol. 6:2792015. View Article : Google Scholar
|
|
96
|
Ju L, Zhou C, Li W and Yan L: Integrin
beta1 over-expression associates with resistance to tyrosine kinase
inhibitor gefitinib in non-small cell lung cancer. J Cel Biochem.
111:1565–1574. 2010. View Article : Google Scholar
|
|
97
|
Kanda R, Kawahara A, Watari K, Murakami Y,
Sonoda K, Maeda M, Fujita H, Kage M, Uramoto H, Costa C, et al:
Erlotinib resistance in lung cancer cells mediated by integrin
β1/Src/Akt-driven bypass signaling. Cancer Res. 73:6243–6253. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gachechiladze M, Skarda J, Janikova M,
Mgebrishvili G, Kharaishvili G, Kolek V, Grygarkova I, Klein J,
Poprachova A, Arabuli M and Kolar Z: Overexpression of filamin-A
protein is associated with aggressive phenotype and poor survival
outcomes in NSCLC patients treated with platinum-based combination
chemotherapy. Neoplasma. 63:274–281. 2016.PubMed/NCBI
|
|
99
|
Ji ZM, Yang LL, Ni J, Xu SP, Yang C, Duan
P, Lou LP and Ruan QR: Silencing filamin a inhibits the invasion
and migration of breast cancer cells by up-regulating 14-3-3σ. Curr
Med Sci. 38:461–466. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li L, Lu Y, Stemmer PM and Chen F: Filamin
A phosphorylation by Akt promotes cell migration in response to
arsenic. Oncotarget. 6:12009–12019. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Guo Y, Li M, Bai G, Li X, Sun Z, Yang J,
Wang L and Sun J: Filamin a inhibits tumor progression through
regulating BRCA1 expression in human breast cancer. Oncol Lett.
16:6261–6266. 2018.PubMed/NCBI
|
|
102
|
Donadon M, Di Tommaso L, Soldani C,
Franceschini B, Terrone A, Mimmo A, Vitali E, Roncalli M, Lania A
and Torzilli G: Filamin A expression predicts early recurrence of
hepatocellular carcinoma after hepatectomy. Liver Int. 38:303–311.
2018. View Article : Google Scholar
|
|
103
|
Maynadier M, Farnoud R, Lamy PJ,
Laurent-Matha V, Garcia M and Rochefort H: Cathepsin D stimulates
the activities of secreted plasminogen activators in the breast
cancer acidic environment. Int J Oncol. 43:1683–1690. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hah YS, Noh HS, Ha JH, Ahn JS, Hahm JR,
Cho HY and Kim DR: Cathepsin D inhibits oxidative stress-induced
cell death via activation of autophagy in cancer cells. Cancer
Lett. 323:208–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang C, Zhang M and Song S: Cathepsin D
enhances breast cancer invasion and metastasis through promoting
hepsin ubiquitin-proteasome degradation. Cancer Lett. 438:105–115.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kang SW: Superoxide dismutase 2 gene and
cancer risk: Evidence from an updated meta-analysis. Int J Clin Exp
Med. 8:14647–14655. 2015.PubMed/NCBI
|
|
107
|
Lee JH, Choi IY, Kil IS, Kim SY, Yang ES
and Park JW: Protective role of superoxide dismutases against
ionizing radiation in yeast. Biochim Biophys Acta. 1526:191–198.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Epperly MW, Gretton JE, Sikora CA,
Jefferson M, Bernarding M, Nie S and Greenberger JS: Mitochondrial
localization of superoxide dismutase is required for decreasing
radiation-induced cellular damage. Radiat Res. 160:568–578. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Takada Y, Hachiya M, Park SH, Osawa Y,
Ozawa T and Akashi M: Role of reactive oxygen species in cells
overexpressing manganese superoxide dismutase: Mechanism for
induction of radioresistance. Mol Cancer Res. 1:137–146.
2002.PubMed/NCBI
|
|
110
|
Hosoki A, Yonekura S, Zhao QL, Wei ZL,
Takasaki I, Tabuchi Y, Wang LL, Hasuike S, Nomura T, Tachibana A,
et al: Mitochondria-targeted superoxide dismutase (SOD2) regulates
radiation resistance and radiation stress response in HeLa cells. J
Radiat Res. 53:58–71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cruz-Bermúdez A, Laza-Briviesca R,
Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S,
Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez
C, et al: Cisplatin resistance involves a metabolic reprogramming
through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS
inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar
|
|
112
|
Zuo J, Zhao M, Liu B, Han X, Li Y, Wang W,
Zhang Q, Lv P, Xing L, Shen H and Zhang X: TNF-α-mediated
upregulation of SOD-2 contributes to cell proliferation and
cisplatin resistance in esophageal squamous cell carcinoma. Oncol
Rep. 42:1497–1506. 2019.PubMed/NCBI
|
|
113
|
Yan X, Pan L, Yuan Y, Lang JH and Mao N:
Identification of platinum-resistance associated proteins through
proteomic analysis of human ovarian cancer cells and their
platinum-resistant sublines. J Proteome Res. 6:772–780. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Matsuzaki S, Enomoto T, Serada S, Yoshino
K, Nagamori S, Morimoto A, Yokoyama T, Kim A, Kimura T, Ueda Y, et
al: Annexin A4-conferred platinum resistance is mediated by the
copper transporter ATP7A. Int J Cancer. 134:1796–1809. 2014.
View Article : Google Scholar
|
|
115
|
Yao HS, Sun C, Li XX, Wang Y, Jin KZ,
Zhang XP and Hu ZQ: Annexin A4-nuclear factor-κB feedback circuit
regulates cell malignant behavior and tumor growth in gallbladder
cancer. Sci Rep. 6:310562016. View Article : Google Scholar
|
|
116
|
Yamashita T, Nagano K, Kanasaki S, Maeda
Y, Furuya T, Inoue M, Nabeshi H, Yoshikawa T, Yoshioka Y, Itoh N,
et al: Annexin A4 is a possible biomarker for cisplatin
susceptibility of malignant mesothelioma cells. Biochem Biophys Res
Commun. 421:140–144. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Vizcaíno JA, Deutsch EW, Wang R, Csordas
A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, et
al: ProteomeXchange provides globally coordinated proteomics data
submission and dissemination. Nat Biotechnol. 32:223–226. 2014.
View Article : Google Scholar : PubMed/NCBI
|