Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2021 Volume 58 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 58 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.xlsx
Article Open Access

Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways

  • Authors:
    • Ana Paula Morelli
    • Tharcísio Citrângulo Tortelli Jr
    • Isadora Carolina Betim Pavan
    • Fernando Riback Silva
    • Daniela Campos Granato
    • Guilherme Francisco Peruca
    • Bianca Alves Pauletti
    • Romênia Ramos Domingues
    • Rosangela Maria Neves Bezerra
    • Leandro Pereira De Moura
    • Adriana Franco Paes Leme
    • Roger Chammas
    • Fernando Moreira Simabuco
  • View Affiliations / Copyright

    Affiliations: Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil, Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 04021‑001, Brazil, Laboratory of Signaling Mechanisms, School of Pharmaceutical Sciences, State University of Campinas, Campinas, SP 13083‑871, Brazil, Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083‑970, Brazil, Exercise Cell Biology Laboratory, School of Applied Sciences, State University of Campinas, Limeira, SP 13484‑350, Brazil
    Copyright: © Morelli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 28
    |
    Published online on: April 8, 2021
       https://doi.org/10.3892/ijo.2021.5208
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lung cancer is the leading cause of cancer‑associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin‑resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription‑quantitative PCR were performed. The results revealed that CIS treatment induced mTOR signaling pathway overactivation, and the mTOR status was restored by MET. MET and the mTOR inhibitor rapamycin (RAPA) decreased the viability in control and resistant cells, and decreased the cell size increase induced by CIS. In control cells, MET and RAPA decreased colony formation after 72 h and decreased IC50 values, potentiating the effects of CIS. Proteomics analysis revealed important pathways regulated by MET, including transcription, RNA processing and IL‑12‑mediated signaling. In CIS‑resistant cells, MET regulated the apoptotic process, oxidative stress and G2/M transition. Annexin 4 (ANXA4) and superoxide dismutase 2 (SOD2), involved in apoptosis and oxidative stress, respectively, were chosen to validate the SILAC analysis and may represent potential therapeutic targets for lung cancer treatment. In conclusion, the chemosensitizing and antiproliferative effects of MET were associated with mTOR signaling and with potential novel targets, such as ANXA4 and SOD2, in human lung cancer cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Ridge CA, McErlean AM and Ginsberg MS: Epidemiology of lung cancer. Semin Intervent Radiol. 30:93–98. 2013. View Article : Google Scholar :

3 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar

4 

Talebian Yazdi M, Schinkelshoek MS, Loof NM, Taube C, Hiemstra PS, Welters MJ and van der Burg SH: Standard radiotherapy but not chemotherapy impairs systemic immunity in non-small cell lung cancer. Oncoimmunology. 5:e12553932016. View Article : Google Scholar

5 

Sarin N, Engel F, Kalayda GV, Mannewitz M, Cinatl J Jr, Rothweiler F, Michaelis M, Saafan H, Ritter CA, Jaehde U and Frötschl R: Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest. PLoS One. 12:e01810812017. View Article : Google Scholar : PubMed/NCBI

6 

Yang Z, Hackshaw A, Feng Q, Fu X, Zhang Y, Mao C and Tang J: Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: A meta-analysis. Int J Cancer. 140:2805–2819. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–228. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Uchibori K, Inase N, Araki M, Kamada M, Sato S, Okuno Y, Fujita N and Katayama R: Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat Commun. 8:147682017. View Article : Google Scholar : PubMed/NCBI

9 

Facchinetti F, Rossi G, Bria E, Soria JC, Besse B, Minari R, Friboulet L and Tiseo M: Oncogene addiction in non-small cell lung cancer: Focus on ROS1 inhibition. Cancer Treat Rev. 55:83–95. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, Souquet PJ, Smit EF, Groen HJ, Kelly RJ, et al: Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: A single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 17:642–650. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B and Gandini S: Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis. Cancer Prev Res (Phila). 3:1451–1461. 2010. View Article : Google Scholar

13 

Cantrell LA, Zhou C, Mendivil A, Malloy KM, Gehrig PA and Bae-Jump VL: Metformin is a potent inhibitor of endometrial cancer cell proliferation-implications for a novel treatment strategy. Gynecol Oncol. 116:92–98. 2010. View Article : Google Scholar

14 

Dong L, Zhou Q, Zhang Z, Zhu Y, Duan T and Feng Y: Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J Obstet Gynaecol Res. 38:1077–1085. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Duo J, Ma Y, Wang G, Han X and Zhang C: Metformin synergistically enhances antitumor activity of histone deacetylase inhibitor trichostatin a against osteosarcoma cell line. DNA Cell Biol. 32:156–164. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Fujita H, Hirose K, Sato M, Fujioka I, Fujita T, Aoki M and Takai Y: Metformin attenuates hypoxia-induced resistance to cisplatin in the HepG2 cell line. Oncol Lett. 17:2431–2440. 2018.

17 

Lin CC, Yeh HH, Huang WL, Yan JJ, Lai WW, Su WP, Chen HH and Su WC: Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am J Respir Cell Mol Biol. 49:241–250. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Yu G, Fang W, Xia T, Chen Y, Gao Y, Jiao X, Huang S, Wang J, Li Z and Xie K: Metformin potentiates rapamycin and cisplatin in gastric cancer in mice. Oncotarget. 6:12748–1262. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Teixeira SF: Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells. J Bras Pneumol. 39:644–649. 2013. View Article : Google Scholar

20 

Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, Li K, Chen H, Sun F, Yang Z, Jiang J and He Y: Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res. 20:2714–2726. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Li L, Wang Y, Peng T, Zhang K, Lin C, Han R, Lu C and He Y: Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway. Oncotarget. 7:34442–34452. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Pernicova I and Korbonits M: Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 10:143–156. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Liu GY and Sabatini DM: mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 21:183–203. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Tavares MR, Pavan IC, Amaral CL, Meneguello L, Luchessi AD and Simabuco FM: The S6K protein family in health and disease. Life Sci. 131:1–10. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Magnuson B, Ekim B and Fingar DC: Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 441:1–21. 2012. View Article : Google Scholar

26 

Amaral CL, Freitas LB, Tamura RE, Tavares MR, Pavan IC, Bajgelman MC and Simabuco FM: S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC Cancer. 16:6022016. View Article : Google Scholar : PubMed/NCBI

27 

Zhong D, Guo L, de Aguirre I, Liu X, Lamb N, Sun SY, Gal AA, Vertino PM and Zhou W: LKB1 mutation in large cell carcinoma of the lung. Lung Cancer. 53:285–294. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Kullmann L and Krahn MP: Controlling the master-upstream regulation of the tumor suppressor LKB1. Oncogene. 37:3045–3057. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Jiang G and Liu CT: Knockdown of SALL4 overcomes cisplatin-resistance through AKT/mTOR signaling in lung cancer cells. Int J Clin Exp Pathol. 11:634–641. 2018.PubMed/NCBI

30 

Teng X, Fan XF, Li Q, Liu S, Wu DY, Wang SY, Shi Y and Dong M: XPC inhibition rescues cisplatin resistance via the Akt/mTOR signaling pathway in A549/DDP lung adenocarcinoma cells. Oncol Rep. 41:1875–1882. 2019.PubMed/NCBI

31 

Liang SQ, Bührer ED, Berezowska S, Marti TM, Xu D, Froment L, Yang H, Hall SRR, Vassella E, Yang Z, et al: mTOR mediates a mechanism of resistance to chemotherapy and defines a rational combination strategy to treat KRAS-mutant lung cancer. Oncogene. 38:622–636. 2019. View Article : Google Scholar

32 

Algire C, Amrein L, Bazile M, David S, Zakikhani M and Pollak M: Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene. 30:1174–1182. 2011. View Article : Google Scholar

33 

Moro M, Caiola E, Ganzinelli M, Zulato E, Rulli E, Marabese M, Centonze G, Busico A, Pastorino U, de Braud FG, et al: Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in Co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol. 13:1692–1704. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

35 

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S and Madden TL: Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13:1342012. View Article : Google Scholar : PubMed/NCBI

36 

Bremang M, Cuomo A, Agresta AM, Stugiewicz M, Spadotto V and Bonaldi T: Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Mol Biosyst. 9:2231–2247. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV and Mann M: Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 10:1794–1805. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database Issue): D447–D452. 2015. View Article : Google Scholar

39 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C and Jensen LJ: STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41(Database Issue): D808–D815. 2013. View Article : Google Scholar :

40 

Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et al: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, Körbel C, Laschke MW, Gimotty PA, Philipp SE, et al: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell. 23:811–825. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Mogami T, Yokota N, Asai-Sato M, Yamada R, Koizume S, Sakuma Y, Yoshihara M, Nakamura Y, Takano Y, Hirahara F, et al: Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells. PLoS One. 8:e803592013. View Article : Google Scholar : PubMed/NCBI

44 

Li N, Huang HQ and Zhang GS: Association between SOD2 C47T polymorphism and lung cancer susceptibility: A meta-analysis. Tumor Biol. 35:955–959. 2014. View Article : Google Scholar

45 

Morales DR and Morris AD: Metformin in cancer treatment and prevention. Annu Rev Med. 66:17–29. 2015. View Article : Google Scholar

46 

Guertin DA and Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell. 12:9–22. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Sharma A, Bandyopadhayaya S, Chowdhury K, Sharma T, Maheshwari R, Das A, Chakrabarti G, Kumar V and Mandal CC: Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One. 14:e02094352019. View Article : Google Scholar : PubMed/NCBI

48 

Lee JO, Kang MJ, Byun WS, Kim SA, Seo IH, Han JA, Moon JW, Kim JH, Kim SJ, Lee EJ, et al: Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res. 21:1152019. View Article : Google Scholar : PubMed/NCBI

49 

Dang JH, Jin ZJ, Liu XJ, Hu D, Wang J, Luo Y and Li LL: Metformin in combination with cisplatin inhibits cell viability and induces apoptosis of human ovarian cancer cells by inactivating ERK 1/2. Oncol Lett. 14:7557–7564. 2017.

50 

Riaz MA, Sak A, Erol YB, Groneberg M, Thomale J and Stuschke M: Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci Rep. 9:12822019. View Article : Google Scholar : PubMed/NCBI

51 

Zhang JW, Zhao F and Sun Q: Metformin synergizes with rapamycin to inhibit the growth of pancreatic cancer in vitro and in vitro. Oncol Lett. 15:1811–1816. 2018.PubMed/NCBI

52 

Jin DH, Kim Y, Lee B, Han J, Kim HK, Shim YM and Kim DH: Metformin induces cell cycle arrest at the G1 phase through E2F8 suppression in lung cancer cells. Oncotarget. 8:101509–101519. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Queiroz EAIF, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB and Khaper N: Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 9. pp. e982072014, View Article : Google Scholar

54 

Xie W, Wang L, Sheng H, Qiu J, Zhang D, Zhang L, Yang F, Tang D and Zhang K: Metformin induces growth inhibition and cell cycle arrest by upregulating MicroRNA34a in renal cancer cells. Med Sci Monit. 23:29–37. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Lundholm L, Hååg P, Zong D, Juntti T, Mörk B, Lewensohn R and Viktorsson K: Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activation and diminished cell cycle arrest. Cell Death Dis. 4:e4782013. View Article : Google Scholar : PubMed/NCBI

56 

Chatterjee A, Mukhopadhyay S, Tung K, Patel D and Foster DA: Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways. Cancer Lett. 360:134–140. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Lu Z, Peng K, Wang N, Liu HM and Hou G: Downregulation of p70S6K enhances cell sensitivity to rapamycin in esophageal squamous cell carcinoma. J Immunol Res. 2016:78289162016. View Article : Google Scholar : PubMed/NCBI

58 

Song J, Wang X, Zhu J and Liu J: Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells. J BUON. 21:244–251. 2016.PubMed/NCBI

59 

Wang Y, Xu W, Yan Z, Zhao W, Mi J, Li J and Yan H: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 37:632018. View Article : Google Scholar : PubMed/NCBI

60 

Zhong DS, Sun LL and Dong LX: Molecular mechanisms of LKB1 induced cell cycle arrest. Thorac Cancer. 4:229–233. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Zhang Y, Bao C, Mu Q, Chen J, Wang J, Mi Y, Sayari AJ, Chen Y and Guo M: Reversal of cisplatin resistance by inhibiting PI3K/Akt signal pathway in human lung cancer cells. Neoplasma. 63:362–370. 2016. View Article : Google Scholar

62 

Sheng J, Shen L, Sun L, Zhang X, Cui R and Wang L: Inhibition of PI3K/mTOR increased the sensitivity of hepatocellular carcinoma cells to cisplatin via interference with mitochondrial-lysosomal crosstalk. Cell Prolif. 52:e126092019. View Article : Google Scholar : PubMed/NCBI

63 

Hou G, Yang S, Zhou Y, Wang C, Zhao W and Lu Z: Targeted inhibition of mTOR signaling improves sensitivity of esophageal squamous cell carcinoma cells to cisplatin. J Immunol Res. 2014:8457632014. View Article : Google Scholar : PubMed/NCBI

64 

Zhao Y, Sun H, Feng M, Zhao J, Zhao X, Wan Q and Cai D: Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol Endocrinol. 34:428–432. 2018. View Article : Google Scholar

65 

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar

66 

Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M and Kroemer G: Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 5:e12572014. View Article : Google Scholar : PubMed/NCBI

67 

Pandey A and Mann M: Proteomics to study genes and genomes. Nature. 405:837–846. 2000. View Article : Google Scholar : PubMed/NCBI

68 

Chang X, Ravi R, Pham V, Bedi A, Chatterjee A and Sidransky D: Adenylate kinase 3 sensitizes cells to cigarette smoke condensate vapor induced cisplatin resistance. PLoS One. 6:e208062011. View Article : Google Scholar : PubMed/NCBI

69 

Wei Y, Wu S, Xu W, Liang Y, Li Y, Zhao W and Wu J: Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP. Thorac Cancer. 8:26–32. 2017. View Article : Google Scholar :

70 

Morimoto A, Serada S, Enomoto T, Kim A, Matsuzaki S, Takahashi T, Ueda Y, Yoshino K, Fujita M, Fujimoto M, et al: Annexin A4 induces platinum resistance in a chloride-and calcium-dependent manner. Oncotarget. 5:7776–7787. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Feng X, Liu H, Zhang Z, Gu Y, Qiu H and He Z: Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. J Exp Clin Cancer Res. 36:1232017. View Article : Google Scholar : PubMed/NCBI

72 

Becker M, De Bastiani MA, Müller CB, Markoski MM, Castro MA and Klamt F: High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas. Tumor Biology. 35:1233–1238. 2014. View Article : Google Scholar

73 

Wittig R, Nessling M, Will RD, Mollenhauer J, Salowsky R, Münstermann E, Schick M, Helmbach H, Gschwendt B, Korn B, et al: Candidate genes for cross-resistance against DNA-damaging drugs. Cancer Res. 62:6698–6705. 2002.PubMed/NCBI

74 

Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS, Rizzo S, van der Zee A, Plumb JA and Brown R: Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene. 31:4567–4576. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Yang M, Li Y, Shen X, Ruan Y, Lu Y, Jin X, Song P, Guo Y, Zhang X, Qu H, et al: CLDN6 promotes chemoresistance through GSTP1 in human breast cancer. J Exp Clin Cancer Res. 36:1572017. View Article : Google Scholar : PubMed/NCBI

76 

Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, Mei L and Gong C: The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res. 11:6860–6876. 2019.

77 

Wang JM, Liu BQ, Zhang Q, Hao L, Li C, Yan J, Zhao FY, Qiao HY, Jiang JY and Wang HQ: ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug sensitivity in cisplatin resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res. 1867:1186472020. View Article : Google Scholar : PubMed/NCBI

78 

Di Martino S, Amoreo CA, Nuvoli B, Galati R, Strano S, Facciolo F, Alessandrini G, Pass HI, Ciliberto G, Blandino G, et al: HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene. 37:1369–1385. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Qin X, Sun L and Wang J: Restoration of microRNA-708 sensitizes ovarian cancer cells to cisplatin via IGF2BP1/Akt pathway. Cell Biol Int. 41:1110–1118. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Xu Z, Zou L, Ma G, Wu X, Huang F, Feng T, Li S, Lin Q, He X, Liu Z and Cao X: Integrin β1 is a critical effector in promoting metastasis and chemo-resistance of esophageal squamous cell carcinoma. Am J Cancer Res. 7:531–542. 2017.

81 

Li Y, Liu X, Lin X, Zhao M, Xiao Y, Liu C, Liang Z, Lin Z, Yi R, Tang Z, et al: Chemical compound cinobufotalin potently induces FOXO1-stimulated cisplatin sensitivity by antagonizing its binding partner MYH9. Signal Transduct Target Ther. 4:482019. View Article : Google Scholar : PubMed/NCBI

82 

Depeng S, Wu J, Guo L, Xu Y, Liu L and Lu J: Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 50:1848–1856. 2017. View Article : Google Scholar

83 

Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. Sci Rep. 6:307882016. View Article : Google Scholar : PubMed/NCBI

84 

Wang Y, Hao F, Nan Y, Qu L, Na W, Jia C and Chen X: PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis. International J Biol Sci. 14:1883–1891. 2018. View Article : Google Scholar

85 

Krafft U, Tschirdewahn S, Hess J, Harke NN, Hadaschik BA, Nyirády P, Szendröi A, Szücs M, Módos O, Olah C, et al: STIP1 tissue expression is associated with survival in chemotherapy-treated bladder cancer patients. Pathol Oncol Res. 26:1243–1249. 2020. View Article : Google Scholar

86 

Li C, Cai J, Ge F and Wang G: TGM2 knockdown reverses cisplatin chemoresistance in osteosarcoma. Int J Molr Med. 42:1799–1808. 2018.

87 

Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji Y, Zhang YW, Xue SL, Zhang YX, Yang YF and Yu MM: MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase. Am J Cancer Res. 6:2690–2699. 2016.PubMed/NCBI

88 

Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V, Agliarulo I, et al: Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 23:1542–1554. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Yue T, Zheng X, Dou Y, Zheng X, Sun R, Tian Z and Wei H: Interleukin 12 shows a better curative effect on lung cancer than paclitaxel and cisplatin doublet chemotherapy. BMC Cancer. 16:6652016. View Article : Google Scholar : PubMed/NCBI

90 

Barros FBA, Assao A, Garcia NG, Nonogaki S, Carvalho AL, Soares FA, Kowalski LP and Oliveira DT: Moesin expression by tumor cells is an unfavorable prognostic biomarker for oral cancer. BMC Cancer. 18:532018. View Article : Google Scholar : PubMed/NCBI

91 

Alam F, Mezhal F, El Hasasna H, Nair VA, Aravind SR, Saber Ayad M, El-Serafi A and Abdel-Rahman WM: The role of p53-microRNA 200-Moesin axis in invasion and drug resistance of breast cancer cells. Tumor Bio. 39:10104283177146342017.

92 

Wang Q, Lu X, Zhao S, Pang M, Wu X, Wu H, Hoffman RM, Yang Z and Zhang Y: Moesin expression is associated with glioblastoma cell proliferation and invasion. Anticancer Res. 37:2211–2218. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Wang J, Gao Q, Wang D, Wang Z and Hu C: Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria-mediated pathway. Oncol Lett. 10:1343–1349. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Seguin L, Desgrosellier JS, Weis SM and Cheresh DA: Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25:234–240. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S and Dontenwill M: β1 integrins as therapeutic targets to disrupt hallmarks of cancer. Front Pharmacol. 6:2792015. View Article : Google Scholar

96 

Ju L, Zhou C, Li W and Yan L: Integrin beta1 over-expression associates with resistance to tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. J Cel Biochem. 111:1565–1574. 2010. View Article : Google Scholar

97 

Kanda R, Kawahara A, Watari K, Murakami Y, Sonoda K, Maeda M, Fujita H, Kage M, Uramoto H, Costa C, et al: Erlotinib resistance in lung cancer cells mediated by integrin β1/Src/Akt-driven bypass signaling. Cancer Res. 73:6243–6253. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Gachechiladze M, Skarda J, Janikova M, Mgebrishvili G, Kharaishvili G, Kolek V, Grygarkova I, Klein J, Poprachova A, Arabuli M and Kolar Z: Overexpression of filamin-A protein is associated with aggressive phenotype and poor survival outcomes in NSCLC patients treated with platinum-based combination chemotherapy. Neoplasma. 63:274–281. 2016.PubMed/NCBI

99 

Ji ZM, Yang LL, Ni J, Xu SP, Yang C, Duan P, Lou LP and Ruan QR: Silencing filamin a inhibits the invasion and migration of breast cancer cells by up-regulating 14-3-3σ. Curr Med Sci. 38:461–466. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Li L, Lu Y, Stemmer PM and Chen F: Filamin A phosphorylation by Akt promotes cell migration in response to arsenic. Oncotarget. 6:12009–12019. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Guo Y, Li M, Bai G, Li X, Sun Z, Yang J, Wang L and Sun J: Filamin a inhibits tumor progression through regulating BRCA1 expression in human breast cancer. Oncol Lett. 16:6261–6266. 2018.PubMed/NCBI

102 

Donadon M, Di Tommaso L, Soldani C, Franceschini B, Terrone A, Mimmo A, Vitali E, Roncalli M, Lania A and Torzilli G: Filamin A expression predicts early recurrence of hepatocellular carcinoma after hepatectomy. Liver Int. 38:303–311. 2018. View Article : Google Scholar

103 

Maynadier M, Farnoud R, Lamy PJ, Laurent-Matha V, Garcia M and Rochefort H: Cathepsin D stimulates the activities of secreted plasminogen activators in the breast cancer acidic environment. Int J Oncol. 43:1683–1690. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Hah YS, Noh HS, Ha JH, Ahn JS, Hahm JR, Cho HY and Kim DR: Cathepsin D inhibits oxidative stress-induced cell death via activation of autophagy in cancer cells. Cancer Lett. 323:208–214. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Zhang C, Zhang M and Song S: Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation. Cancer Lett. 438:105–115. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Kang SW: Superoxide dismutase 2 gene and cancer risk: Evidence from an updated meta-analysis. Int J Clin Exp Med. 8:14647–14655. 2015.PubMed/NCBI

107 

Lee JH, Choi IY, Kil IS, Kim SY, Yang ES and Park JW: Protective role of superoxide dismutases against ionizing radiation in yeast. Biochim Biophys Acta. 1526:191–198. 2001. View Article : Google Scholar : PubMed/NCBI

108 

Epperly MW, Gretton JE, Sikora CA, Jefferson M, Bernarding M, Nie S and Greenberger JS: Mitochondrial localization of superoxide dismutase is required for decreasing radiation-induced cellular damage. Radiat Res. 160:568–578. 2003. View Article : Google Scholar : PubMed/NCBI

109 

Takada Y, Hachiya M, Park SH, Osawa Y, Ozawa T and Akashi M: Role of reactive oxygen species in cells overexpressing manganese superoxide dismutase: Mechanism for induction of radioresistance. Mol Cancer Res. 1:137–146. 2002.PubMed/NCBI

110 

Hosoki A, Yonekura S, Zhao QL, Wei ZL, Takasaki I, Tabuchi Y, Wang LL, Hasuike S, Nomura T, Tachibana A, et al: Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells. J Radiat Res. 53:58–71. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez C, et al: Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar

112 

Zuo J, Zhao M, Liu B, Han X, Li Y, Wang W, Zhang Q, Lv P, Xing L, Shen H and Zhang X: TNF-α-mediated upregulation of SOD-2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma. Oncol Rep. 42:1497–1506. 2019.PubMed/NCBI

113 

Yan X, Pan L, Yuan Y, Lang JH and Mao N: Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. J Proteome Res. 6:772–780. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Matsuzaki S, Enomoto T, Serada S, Yoshino K, Nagamori S, Morimoto A, Yokoyama T, Kim A, Kimura T, Ueda Y, et al: Annexin A4-conferred platinum resistance is mediated by the copper transporter ATP7A. Int J Cancer. 134:1796–1809. 2014. View Article : Google Scholar

115 

Yao HS, Sun C, Li XX, Wang Y, Jin KZ, Zhang XP and Hu ZQ: Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci Rep. 6:310562016. View Article : Google Scholar

116 

Yamashita T, Nagano K, Kanasaki S, Maeda Y, Furuya T, Inoue M, Nabeshi H, Yoshikawa T, Yoshioka Y, Itoh N, et al: Annexin A4 is a possible biomarker for cisplatin susceptibility of malignant mesothelioma cells. Biochem Biophys Res Commun. 421:140–144. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, et al: ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 32:223–226. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Morelli AP, Tortelli Jr TC, Pavan IC, Silva FR, Granato DC, Peruca GF, Pauletti BA, Domingues RR, Bezerra RM, De Moura LP, De Moura LP, et al: Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways. Int J Oncol 58: 28, 2021.
APA
Morelli, A.P., Tortelli Jr, T.C., Pavan, I.C., Silva, F.R., Granato, D.C., Peruca, G.F. ... Simabuco, F.M. (2021). Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways. International Journal of Oncology, 58, 28. https://doi.org/10.3892/ijo.2021.5208
MLA
Morelli, A. P., Tortelli Jr, T. C., Pavan, I. C., Silva, F. R., Granato, D. C., Peruca, G. F., Pauletti, B. A., Domingues, R. R., Bezerra, R. M., De Moura, L. P., Paes Leme, A. F., Chammas, R., Simabuco, F. M."Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways". International Journal of Oncology 58.6 (2021): 28.
Chicago
Morelli, A. P., Tortelli Jr, T. C., Pavan, I. C., Silva, F. R., Granato, D. C., Peruca, G. F., Pauletti, B. A., Domingues, R. R., Bezerra, R. M., De Moura, L. P., Paes Leme, A. F., Chammas, R., Simabuco, F. M."Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways". International Journal of Oncology 58, no. 6 (2021): 28. https://doi.org/10.3892/ijo.2021.5208
Copy and paste a formatted citation
x
Spandidos Publications style
Morelli AP, Tortelli Jr TC, Pavan IC, Silva FR, Granato DC, Peruca GF, Pauletti BA, Domingues RR, Bezerra RM, De Moura LP, De Moura LP, et al: Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways. Int J Oncol 58: 28, 2021.
APA
Morelli, A.P., Tortelli Jr, T.C., Pavan, I.C., Silva, F.R., Granato, D.C., Peruca, G.F. ... Simabuco, F.M. (2021). Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways. International Journal of Oncology, 58, 28. https://doi.org/10.3892/ijo.2021.5208
MLA
Morelli, A. P., Tortelli Jr, T. C., Pavan, I. C., Silva, F. R., Granato, D. C., Peruca, G. F., Pauletti, B. A., Domingues, R. R., Bezerra, R. M., De Moura, L. P., Paes Leme, A. F., Chammas, R., Simabuco, F. M."Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways". International Journal of Oncology 58.6 (2021): 28.
Chicago
Morelli, A. P., Tortelli Jr, T. C., Pavan, I. C., Silva, F. R., Granato, D. C., Peruca, G. F., Pauletti, B. A., Domingues, R. R., Bezerra, R. M., De Moura, L. P., Paes Leme, A. F., Chammas, R., Simabuco, F. M."Metformin impairs cisplatin resistance effects in A549 lung cancer cells through mTOR signaling and other metabolic pathways". International Journal of Oncology 58, no. 6 (2021): 28. https://doi.org/10.3892/ijo.2021.5208
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team