|
1
|
Prager BC, Bhargava S, Mahadev V, Hubert
CG and Rich JN: Glioblastoma Stem Cells: Driving Resilience through
Chaos. Trends Cancer. 6:223–235. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Weller M, Cloughesy T, Perry JR and Wick
W: Standards of care for treatment of recurrent glioblastoma - are
we there yet? Neuro Oncol. 15:4–27. 2013. View Article : Google Scholar
|
|
3
|
Jordan CT: Cancer stem cells:
Controversial or just misunderstood? Cell Stem Cell. 4:203–205.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kondo T, Setoguchi T and Taga T:
Persistence of a small subpopulation of cancer stem-like cells in
the C6 glioma cell line. Proc Natl Acad Sci USA. 101:781–786. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Choi SA, Lee JY, Phi JH, Wang KC, Park CK,
Park SH and Kim SK: Identification of brain tumour initiating cells
using the stem cell marker aldehyde dehydrogenase. Eur J Cancer.
50:137–149. 2014. View Article : Google Scholar
|
|
6
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Galli R, Binda E, Orfanelli U, Cipelletti
B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F and Vescovi
A: Isolation and characterization of tumorigenic, stem-like neural
precursors from human glioblastoma. Cancer Res. 64:7011–7021. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li Z, Wang H, Eyler CE, Hjelmeland AB and
Rich JN: Turning cancer stem cells inside out: An exploration of
glioma stem cell signaling pathways. J Biol Chem. 284:16705–16709.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cheng L, Wu Q, Guryanova OA, Huang Z,
Huang Q, Rich JN and Bao S: Elevated invasive potential of
glioblastoma stem cells. Biochem Biophys Res Commun. 406:643–648.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Folkins C, Shaked Y, Man S, Tang T, Lee
CR, Zhu Z, Hoffman RM and Kerbel RS: Glioma tumor stem-like cells
promote tumor angiogenesis and vasculogenesis via vascular
endothelial growth factor and stromal-derived factor 1. Cancer Res.
69:7243–7251. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu Z, Bandyopadhyay A, Nichols RW, Wang
L, Hinck AP, Wang S and Sun LZ: Blockade of Autocrine TGF-β
signaling inhibits stem cell phenotype, survival, and metastasis of
murine breast cancer cells. J Stem Cell Res Ther. 2:1–8. 2012.
View Article : Google Scholar
|
|
13
|
Xi Q, Wang Z, Zaromytidou AI, Zhang XH,
Chow-Tsang LF, Liu JX, Kim H, Barlas A, Manova-Todorova K,
Kaartinen V, et al: A poised chromatin platform for TGF-β access to
master regulators. Cell. 147:1511–1524. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Derynck R and Zhang YE: Smad-dependent and
Smad-independent pathways in TGF-beta family signalling. Nature.
425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Massagué J: How cells read TGF-beta
signals. Nat Rev Mol Cell Biol. 1:169–178. 2000. View Article : Google Scholar
|
|
16
|
Oshimori N and Fuchs E: The harmonies
played by TGF-β in stem cell biology. Cell Stem Cell. 11:751–764.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liang Y, Zhu F, Zhang H, Chen D, Zhang X,
Gao Q and Li Y: Conditional ablation of TGF-β signaling inhibits
tumor progression and invasion in an induced mouse bladder cancer
model. Sci Rep. 6:294792016. View Article : Google Scholar
|
|
18
|
Furuta Y, Piston DW and Hogan BL: Bone
morphogenetic proteins (BMPs) as regulators of dorsal forebrain
development. Development. 124:2203–2212. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gilboa L, Nohe A, Geissendörfer T, Sebald
W, Henis YI and Knaus P: Bone morphogenetic protein receptor
complexes on the surface of live cells: A new oligomerization mode
for serine/threonine kinase receptors. Mol Biol Cell. 11:1023–1035.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lee SJ: Identification of a novel member
(GDF-1) of the transforming growth factor-beta superfamily. Mol
Endocrinol. 4:1034–1040. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
McPherron AC and Lee SJ: GDF-3 and GDF-9:
Two new members of the transforming growth factor-beta superfamily
containing a novel pattern of cysteines. J Biol Chem.
268:3444–3449. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rider CC and Mulloy B: Bone morphogenetic
protein and growth differentiation factor cytokine families and
their protein antagonists. Biochem J. 429:1–12. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chirasani SR, Sternjak A, Wend P, Momma S,
Campos B, Herrmann IM, Graf D, Mitsiadis T, Herold-Mende C, Besser
D, et al: Bone morphogenetic protein-7 release from endogenous
neural precursor cells suppresses the tumourigenicity of stem-like
glioblastoma cells. Brain. 133:1961–1972. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Piccirillo SG, Reynolds BA, Zanetti N,
Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F and Vescovi
AL: Bone morphogenetic proteins inhibit the tumorigenic potential
of human brain tumour-initiating cells. Nature. 444:761–765. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Raja E, Komuro A, Tanabe R, Sakai S, Ino
Y, Saito N, Todo T, Morikawa M, Aburatani H, Koinuma D, et al: Bone
morphogenetic protein signaling mediated by ALK-2 and DLX2
regulates apoptosis in glioma-initiating cells. Oncogene.
36:4963–4974. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tso JL, Yang S, Menjivar JC, Yamada K,
Zhang Y, Hong I, Bui Y, Stream A, McBride WH, Liau LM, et al: Bone
morphogenetic protein 7 sensitizes O6-methylguanine
methyltransferase expressing-glioblastoma stem cells to clinically
relevant dose of temozolomide. Mol Cancer. 14:1892015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lee J, Son MJ, Woolard K, Donin NM, Li A,
Cheng CH, Kotliarova S, Kotliarov Y, Walling J, Ahn S, et al:
Epigenetic-mediated dysfunction of the bone morphogenetic protein
pathway inhibits differentiation of glioblastoma-initiating cells.
Cancer Cell. 13:69–80. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Namkoong H, Shin SM, Kim HK, Ha SA, Cho
GW, Hur SY, Kim TE and Kim JW: The bone morphogenetic protein
antagonist gremlin 1 is overexpressed in human cancers and
interacts with YWHAH protein. BMC Cancer. 6:742006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yan K, Wu Q, Yan DH, Lee CH, Rahim N,
Tritschler I, DeVecchio J, Kalady MF, Hjelmeland AB and Rich JN:
Glioma cancer stem cells secrete Gremlin1 to promote their
maintenance within the tumor hierarchy. Genes Dev. 28:1085–1100.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tate CM, Pallini R, Ricci-Vitiani L,
Dowless M, Shiyanova T, D'Alessandris GQ, Morgante L, Giannetti S,
Larocca LM, di Martino S, et al: A BMP7 variant inhibits the
tumorigenic potential of glioblastoma stem-like cells. Cell Death
Differ. 19:1644–1654. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bruna A, Darken RS, Rojo F, Ocaña A,
Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, et al:
High TGFbeta-Smad activity confers poor prognosis in glioma
patients and promotes cell proliferation depending on the
methylation of the PDGF-B gene. Cancer Cell. 11:147–160. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Peñuelas S, Anido J, Prieto-Sánchez RM,
Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo
J, Baselga J, et al: TGF-beta increases glioma-initiating cell
self-renewal through the induction of LIF in human glioblastoma.
Cancer Cell. 15:315–327. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang HW, Menon LG, Black PM, Carroll RS
and Johnson MD: SNAI2/Slug promotes growth and invasion in human
gliomas. BMC Cancer. 10:3012010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Savary K, Caglayan D, Caja L, Tzavlaki K,
Bin Nayeem S, Bergström T, Jiang Y, Uhrbom L, Forsberg-Nilsson K,
Westermark B, et al: Snail depletes the tumorigenic potential of
glioblastoma. Oncogene. 32:5409–5420. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Caja L, Tzavlaki K, Dadras MS, Tan EJ,
Hatem G, Maturi NP, Morén A, Wik L, Watanabe Y, Savary K, et al:
Snail regulates BMP and TGFβ pathways to control the
differentiation status of glioma-initiating cells. Oncogene.
37:2515–2531. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Teh JL and Chen S: Glutamatergic signaling
in cellular transformation. Pigment Cell Melanoma Res. 25:331–342.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ghosh D, Ulasov IV, Chen L, Harkins LE,
Wallenborg K, Hothi P, Rostad S, Hood L and Cobbs CS:
TGFβ-responsive HMOX1 expression is associated with stemness and
invasion in glioblastoma multiforme. Stem Cells. 34:2276–2289.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Han W, Xin Z, Zhao Z, Bao W, Lin X, Yin B,
Zhao J, Yuan J, Qiang B and Peng X: RNA-binding protein PCBP2
modulates glioma growth by regulating FHL3. J Clin Invest.
123:2103–2118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Han W, Hu P, Wu F, Wang S, Hu Y, Li S,
Jiang T, Qiang B and Peng X: FHL3 links cell growth and
self-renewal by modulating SOX4 in glioma. Cell Death Differ.
26:796–811. 2019. View Article : Google Scholar :
|
|
40
|
Bulstrode H, Johnstone E, Marques-Torrejon
MA, Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, Gangoso E,
Gagrica S, et al: Elevated FOXG1 and SOX2 in glioblastoma enforces
neural stem cell identity through transcriptional control of cell
cycle and epigenetic regulators. Genes Dev. 31:757–773. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Blaumueller CM, Qi H, Zagouras P and
Artavanis-Tsakonas S: Intracellular cleavage of Notch leads to a
heterodimeric receptor on the plasma membrane. Cell. 90:281–291.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Stockhausen MT, Kristoffersen K and
Poulsen HS: The functional role of Notch signaling in human
gliomas. Neuro Oncol. 12:199–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Androutsellis-Theotokis A, Leker RR,
Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK,
Kittappa R and McKay RD: Notch signalling regulates stem cell
numbers in vitro and in vivo. Nature. 442:823–826. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Guichet PO, Guelfi S, Teigell M, Hoppe L,
Bakalara N, Bauchet L, Duffau H, Lamszus K, Rothhut B and Hugnot
JP: Notch1 stimulation induces a vascularization switch with
pericyte-like cell differentiation of glioblastoma stem cells. Stem
Cells. 33:21–34. 2015. View Article : Google Scholar
|
|
46
|
Kanamori M, Kawaguchi T, Nigro JM,
Feuerstein BG, Berger MS, Miele L and Pieper RO: Contribution of
Notch signaling activation to human glioblastoma multiforme. J
Neurosurg. 106:417–427. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chowdhury S and Sarkar RR: Exploring Notch
pathway to elucidate phenotypic plasticity and intra-tumor
heterogeneity in fliomas. Sci Rep. 9:94882019. View Article : Google Scholar
|
|
48
|
Basak O, Giachino C, Fiorini E, Macdonald
HR and Taylor V: Neurogenic subventricular zone stem/progenitor
cells are Notch1-dependent in their active but not quiescent state.
J Neurosci. 32:5654–5666. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Patel AP, Tirosh I, Trombetta JJ, Shalek
AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT,
Martuza RL, et al: Single-cell RNA-seq highlights intratumoral
heterogeneity in primary glioblastoma. Science. 344:1396–1401.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ge W, Martinowich K, Wu X, He F, Miyamoto
A, Fan G, Weinmaster G and Sun YE: Notch signaling promotes
astrogliogenesis via direct CSL-mediated glial gene activation. J
Neurosci Res. 69:848–860. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bansod S, Kageyama R and Ohtsuka T: Hes5
regulates the transition timing of neurogenesis and gliogenesis in
mammalian neocortical development. Development. 144:3156–3167.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Armesilla-Diaz A, Bragado P, Del Valle I,
Cuevas E, Lazaro I, Martin C, Cigudosa JC and Silva A: p53
regulates the self-renewal and differentiation of neural
precursors. Neuroscience. 158:1378–1389. 2009. View Article : Google Scholar
|
|
53
|
Fan X, Khaki L, Zhu TS, Soules ME, Talsma
CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, et al: NOTCH pathway
blockade depletes CD133-positive glioblastoma cells and inhibits
growth of tumor neurospheres and xenografts. Stem Cells. 28:5–16.
2010.
|
|
54
|
Xu R, Shimizu F, Hovinga K, Beal K, Karimi
S, Droms L, Peck KK, Gutin P, Iorgulescu JB, Kaley T, et al:
Molecular and clinical effects of Notch inhibition in glioma
patients: A phase 0/I trial. Clin Cancer Res. 22:4786–4796. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tanaka S, Nakada M, Yamada D, Nakano I,
Todo T, Ino Y, Hoshii T, Tadokoro Y, Ohta K, Ali MA, et al: Strong
therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high
and CD133-low glioblastoma initiating cells. J Neurooncol.
121:239–250. 2015. View Article : Google Scholar
|
|
56
|
Goldfarb DS, Corbett AH, Mason DA,
Harreman MT and Adam SA: Importin alpha: A multipurpose
nuclear-transport receptor. Trends Cell Biol. 14:505–514. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Huenniger K, Krämer A, Soom M, Chang I,
Köhler M, Depping R, Kehlenbach RH and Kaether C: Notch1 signaling
is mediated by importins alpha 3, 4, and 7. Cell Mol Life Sci.
67:3187–3196. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen G, Kong J, Tucker-Burden C, Anand M,
Rong Y, Rahman F, Moreno CS, Van Meir EG, Hadjipanayis CG and Brat
DJ: Human Brat ortholog TRIM3 is a tumor suppressor that regulates
asymmetric cell division in glioblastoma. Cancer Res. 74:4536–4548.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mukherjee S, Tucker-Burden C, Zhang C,
Moberg K, Read R, Hadjipanayis C and Brat DJ: Drosophila brat and
human ortholog TRIM3 maintain stem cell equilibrium and suppress
brain tumorigenesis by attenuating Notch nuclear transport. Cancer
Res. 76:2443–2452. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gagliardi F, Narayanan A, Reni M, Franzin
A, Mazza E, Boari N, Bailo M, Zordan P and Mortini P: The role of
CXCR4 in highly malignant human gliomas biology: Current knowledge
and future directions. Glia. 62:1015–1023. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Calinescu AA, Yadav VN, Carballo E,
Kadiyala P, Tran D, Zamler DB, Doherty R, Srikanth M, Lowenstein PR
and Castro MG: Survival and proliferation of neural
progenitor-derived glioblastomas under hypoxic stress is controlled
by a CXCL12/CXCR4 autocrine-positive feedback mechanism. Clin
Cancer Res. 23:1250–1262. 2017. View Article : Google Scholar
|
|
62
|
Yi L, Zhou X, Li T, Liu P, Hai L, Tong L,
Ma H, Tao Z, Xie Y, Zhang C, et al: Notch1 signaling pathway
promotes invasion, self-renewal and growth of glioma initiating
cells via modulating chemokine system CXCL12/CXCR4. J Exp Clin
Cancer Res. 38:3392019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Iso T, Kedes L and Hamamori Y: HES and
HERP families: Multiple effectors of the Notch signaling pathway. J
Cell Physiol. 194:237–255. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tay J and Richter JD: Germ cell
differentiation and synaptonemal complex formation are disrupted in
CPEB knockout mice. Dev Cell. 1:201–213. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yin J, Park G, Lee JE, Park JY, Kim TH,
Kim YJ, Lee SH, Yoo H, Kim JH and Park JB: CPEB1 modulates
differentiation of glioma stem cells via downregulation of HES1 and
SIRT1 expression. Oncotarget. 5:6756–6769. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Iso T, Sartorelli V, Poizat C, Iezzi S, Wu
HY, Chung G, Kedes L and Hamamori Y: HERP, a novel heterodimer
partner of HES/E(spl) in Notch signaling. Mol Cell Biol.
21:6080–6089. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Iso T, Sartorelli V, Chung G, Shichinohe
T, Kedes L and Hamamori Y: HERP, a new primary target of Notch
regulated by ligand binding. Mol Cell Biol. 21:6071–6079. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sokol SY: Maintaining embryonic stem cell
pluripotency with Wnt signaling. Development. 138:4341–4350. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bhanot P, Brink M, Samos CH, Hsieh JC,
Wang Y, Macke JP, Andrew D, Nathans J and Nusse R: A new member of
the frizzled family from Drosophila functions as a Wingless
receptor. Nature. 382:225–230. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wehrli M, Dougan ST, Caldwell K, O'Keefe
L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A and DiNardo
S: arrow encodes an LDL-receptor-related protein essential for
Wingless signalling. Nature. 407:527–530. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Korinek V, Barker N, Morin PJ, van Wichen
D, de Weger R, Kinzler KW, Vogelstein B and Clevers H: Constitutive
transcriptional activation by a beta-catenin-Tcf complex in
APC−/− colon carcinoma. Science. 275:1784–1787. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hamada F and Bienz M: The APC tumor
suppressor binds to C-terminal binding protein to divert nuclear
beta-catenin from TCF. Dev Cell. 7:677–685. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Molenaar M, van de Wetering M, Oosterwegel
M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O and
Clevers H: XTcf-3 transcription factor mediates
beta-catenin-induced axis formation in Xenopus embryos. Cell.
86:391–399. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Behrens J, von Kries JP, Kühl M, Bruhn L,
Wedlich D, Grosschedl R and Birchmeier W: Functional interaction of
beta-catenin with the transcription factor LEF-1. Nature.
382:638–642. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huber O, Korn R, McLaughlin J, Ohsugi M,
Herrmann BG and Kemler R: Nuclear localization of beta-catenin by
interaction with transcription factor LEF-1. Mech Dev. 59:3–10.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Takahashi-Yanaga F and Kahn M: Targeting
Wnt signaling: Can we safely eradicate cancer stem cells? Clin
Cancer Res. 16:3153–3162. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Rajakulendran N, Rowland KJ, Selvadurai
HJ, Ahmadi M, Park NI, Naumenko S, Dolma S, Ward RJ, So M, Lee L,
et al: Wnt and Notch signaling govern self-renewal and
differentiation in a subset of human glioblastoma stem cells. Genes
Dev. 33:498–510. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sonoda Y, Ozawa T, Aldape KD, Deen DF,
Berger MS and Pieper RO: Akt pathway activation converts anaplastic
astrocytoma to glioblastoma multiforme in a human astrocyte model
of glioma. Cancer Res. 61:6674–6678. 2001.PubMed/NCBI
|
|
79
|
Morgan RG, Ridsdale J, Payne M, Heesom KJ,
Wilson MC, Davidson A, Greenhough A, Davies S, Williams AC, Blair
A, et al: LEF-1 drives aberrant β-catenin nuclear localization in
myeloid leukemia cells. Haematologica. 104:1365–1377. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z,
Chen S, Yang Y, Wang S, Shen P, et al: CircMYO10 promotes
osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to
enhance the transcriptional activity of β-catenin/LEF1 complex via
effects on chromatin remodeling. Mol Cancer. 18:1502019. View Article : Google Scholar
|
|
81
|
Brown DM and Ruoslahti E: Metadherin, a
cell surface protein in breast tumors that mediates lung
metastasis. Cancer Cell. 5:365–374. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hu B, Emdad L, Bacolod MD, Kegelman TP,
Shen XN, Alzubi MA, Das SK, Sarkar D and Fisher PB: Astrocyte
elevated gene-1 interacts with Akt isoform 2 to control glioma
growth, survival, and pathogenesis. Cancer Res. 74:7321–7332. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hu B, Emdad L, Kegelman TP, Shen XN, Das
SK, Sarkar D and Fisher PB: Astrocyte elevated Gene-1 regulates
β-catenin signaling to maintain glioma stem-like stemness and
self-renewal. Mol Cancer Res. 15:225–233. 2017. View Article : Google Scholar
|
|
84
|
Kristiansen M, Graversen JH, Jacobsen C,
Sonne O, Hoffman HJ, Law SK and Moestrup SK: Identification of the
haemoglobin scavenger receptor. Nature. 409:198–201. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ostuni R, Kratochvill F, Murray PJ and
Natoli G: Macrophages and cancer: From mechanisms to therapeutic
implications. Trends Immunol. 36:229–239. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Shi Y, Ping YF, Zhou W, He ZC, Chen C,
Bian BS, Zhang L, Chen L, Lan X, Zhang XC, et al: Tumour-associated
macro-phages secrete pleiotrophin to promote PTPRZ1 signalling in
glioblastoma stem cells for tumour growth. Nat Commun. 8:150802017.
View Article : Google Scholar
|
|
87
|
Ritter M, Buechler C, Kapinsky M and
Schmitz G: Interaction of CD163 with the regulatory subunit of
casein kinase II (CKII) and dependence of CD163 signaling on CKII
and protein kinase C. Eur J Immunol. 31:999–1009. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Di Maira G, Salvi M, Arrigoni G, Marin O,
Sarno S, Brustolon F, Pinna LA and Ruzzene M: Protein kinase CK2
phosphorylates and upregulates Akt/PKB. Cell Death Differ.
12:668–677. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen T, Chen J, Zhu Y, Li Y, Wang Y, Chen
H, Wang J, Li X, Liu Y, Li B, et al: CD163, a novel therapeutic
target, regulates the proliferation and stemness of glioma cells
via casein kinase 2. Oncogene. 38:1183–1199. 2019. View Article : Google Scholar
|
|
90
|
Wang F, Wang AY, Chesnelong C, Yang Y,
Nabbi A, Thalappilly S, Alekseev V and Riabowol K: ING5 activity in
self-renewal of glioblastoma stem cells via calcium and follicle
stimulating hormone pathways. Oncogene. 37:286–301. 2018.
View Article : Google Scholar :
|
|
91
|
Zhu Q, Shen Y, Chen X, He J, Liu J and Zu
X: Self-renewal signalling pathway inhibitors: Perspectives on
therapeutic approaches for cancer stem cells. OncoTargets Ther.
13:525–540. 2020. View Article : Google Scholar
|
|
92
|
Handschumacher RE, Harding MW, Rice J,
Drugge RJ and Speicher DW: Cyclophilin: A specific cytosolic
binding protein for cyclosporin A. Science. 226:544–547. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sun S, Wang Q, Giang A, Cheng C, Soo C,
Wang C, Liu L and Chiu R: Knockdown of CypA inhibits interleukin-8
(IL-8) and IL-8-mediated proliferation and tumor growth of
glioblastoma cells through down-regulated NF-κB. J Neurooncol.
101:1–14. 2011. View Article : Google Scholar
|
|
94
|
Wang G, Shen J, Sun J, Jiang Z, Fan J,
Wang H, Yu S, Long Y, Liu Y, Bao H, et al: Cyclophilin A maintains
glioma-initiating cell stemness by regulating Wnt/β-catenin
signaling. Clin Cancer Res. 23:6640–6649. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Machold R, Hayashi S, Rutlin M, Muzumdar
MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA,
Rubin LL, et al: Sonic hedgehog is required for progenitor cell
maintenance in telencephalic stem cell niches. Neuron. 39:937–950.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Micchelli CA, The I, Selva E, Mogila V and
Perrimon N: Rasp, a putative transmembrane acyltransferase, is
required for Hedgehog signaling. Development. 129:843–851. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Takebe N, Harris PJ, Warren RQ and Ivy SP:
Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog
pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar
|
|
98
|
Ruiz i Altaba A and Altaba A:
Combinatorial Gli gene function in floor plate and neuronal
inductions by Sonic hedgehog. Development. 125:2203–2212. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Baylin SB and Jones PA: Epigenetic
determinants of cancer. Cold Spring Harb Perspect Biol.
8:a0195052016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Marampon F, Megiorni F, Camero S,
Crescioli C, McDowell HP, Sferra R, Vetuschi A, Pompili S, Ventura
L, De Felice F, et al: HDAC4 and HDAC6 sustain DNA double strand
break repair and stem-like phenotype by promoting radioresistance
in glioblastoma cells. Cancer Lett. 397:1–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang W, Liu Y, Gao R, Yu H and Sun T:
HDAC6 inhibition induces glioma stem cells differentiation and
enhances cellular radiation sensitivity through the SHH/Gli1
signaling pathway. Cancer Lett. 415:164–176. 2018. View Article : Google Scholar
|
|
102
|
Auzmendi-Iriarte J, Saenz-Antoñanzas A,
Mikelez-Alonso I, Carrasco-Garcia E, Tellaetxe-Abete M, Lawrie CH,
Sampron N, Cortajarena AL and Matheu A: Characterization of a new
small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis.
11:4172020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dolatabadi S, Jonasson E, Lindén M,
Fereydouni B, Bäcksten K, Nilsson M, Martner A, Forootan A, Fagman
H, Landberg G, et al: JAK-STAT signalling controls cancer stem cell
properties including chemotherapy resistance in myxoid liposarcoma.
Int J Cancer. 145:435–449. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang C, Mukherjee S, Tucker-Burden C,
Ross JL, Chau MJ, Kong J and Brat DJ: TRIM8 regulates stemness in
glioblastoma through PIAS3-STAT3. Mol Oncol. 11:280–294. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Shi Y, Zhou W, Cheng L, Chen C, Huang Z,
Fang X, Wu Q, He Z, Xu S, Lathia JD, et al: Tetraspanin CD9
stabilizes gp130 by preventing its ubiquitin-dependent lysosomal
degradation to promote STAT3 activation in glioma stem cells. Cell
Death Differ. 24:167–180. 2017. View Article : Google Scholar :
|
|
106
|
Lasorella A, Benezra R and Iavarone A: The
ID proteins: Master regulators of cancer stem cells and tumour
aggressiveness. Nat Rev Cancer. 14:77–91. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lee JK, Chang N, Yoon Y, Yang H, Cho H,
Kim E, Shin Y, Kang W, Oh YT, Mun GI, et al: USP1 targeting impedes
GBM growth by inhibiting stem cell maintenance and radioresistance.
Neuro Oncol. 18:37–47. 2016. View Article : Google Scholar
|
|
108
|
Cook PJ, Thomas R, Kingsley PJ, Shimizu F,
Montrose DC, Marnett LJ, Tabar VS, Dannenberg AJ and Benezra R:
Cox-2-derived PGE2 induces Id1-dependent radiation resistance and
self-renewal in experimental glioblastoma. Neuro Oncol.
18:1379–1389. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jin X, Jeon HM, Jin X, Kim EJ, Yin J, Jeon
HY, Sohn YW, Oh SY, Kim JK, Kim SH, et al: The ID1-CULLIN3 axis
regulates intracellular SHH and WNT signaling in glioblastoma stem
cells. Cell Rep. 16:1629–1641. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Jin X, Jin X, Kim LJY, Dixit D, Jeon HY,
Kim EJ, Kim JK, Lee SY, Yin J, Rich JN, et al: Inhibition of
ID1-BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to
Differentiation Therapy. Clin Cancer Res. 24:383–394. 2018.
View Article : Google Scholar
|
|
111
|
Sareddy GR, Viswanadhapalli S, Surapaneni
P, Suzuki T, Brenner A and Vadlamudi RK: Novel KDM1A inhibitors
induce differentiation and apoptosis of glioma stem cells via
unfolded protein response pathway. Oncogene. 36:2423–2434. 2017.
View Article : Google Scholar :
|
|
112
|
Dali R, Verginelli F, Pramatarova A,
Sladek R and Stifani S: Characterization of a FOXG1:TLE1
transcriptional network in glioblastoma-initiating cells. Mol
Oncol. 12:775–787. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Semenza GL: Dynamic regulation of stem
cell specification and maintenance by hypoxia-inducible factors.
Mol Aspects Med. 47-48:15–23. 2016. View Article : Google Scholar
|
|
114
|
Ong DST, Hu B, Ho YW, Sauvé CG, Bristow
CA, Wang Q, Multani AS, Chen P, Nezi L, Jiang S, et al: PAF
promotes stemness and radioresistance of glioma stem cells. Proc
Natl Acad Sci USA. 114:E9086–E9095. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kwon SJ, Kwon OS, Kim KT, Go YH, Yu SI,
Lee BH, Miyoshi H, Oh E, Cho SJ and Cha HJ: Role of MEK partner-1
in cancer stemness through MEK/ERK pathway in cancerous neural stem
cells, expressing EGFRviii. Mol Cancer. 16:1402017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Gravina GL, Mancini A, Colapietro A, Delle
Monache S, Sferra R, Vitale F, Cristiano L, Martellucci S, Marampon
F, Mattei V, et al: The small molecule Ephrin receptor inhibitor,
glpg1790, reduces renewal capabilities of cancer stem cells,
showing anti-tumour efficacy on preclinical glioblastoma models.
Cancers (Basel). 11:3592019. View Article : Google Scholar
|
|
117
|
Bandey I, Chiou SH, Huang AP, Tsai JC and
Tu PH: Progranulin promotes Temozolomide resistance of glioblastoma
by orchestrating DNA repair and tumor stemness. Oncogene.
34:1853–1864. 2015. View Article : Google Scholar
|
|
118
|
Xu Q, Hu C, Zhu Y, Wang K, Lal B, Li L,
Tang J, Wei S, Huang G, Xia S, et al: ShRNA-based POLD2 expression
knockdown sensitizes glioblastoma to DNA-Damaging therapeutics.
Cancer Lett. 482:126–135. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Hitomi M, Deleyrolle LP, Mulkearns-Hubert
EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA,
Hubert CG, et al: Differential connexin function enhances
self-renewal in glioblastoma. Cell Rep. 11:1031–1042. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Arrizabalaga O, Moreno-Cugnon L,
Auzmendi-Iriarte J, Aldaz P, Ibanez de Caceres I, Garros-Regulez L,
Moncho-Amor V, Torres-Bayona S, Pernía O, Pintado-Berninches L, et
al: High expression of MKP1/DUSP1 counteracts glioma stem cell
activity and mediates HDAC inhibitor response. Oncogenesis.
6:4012017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Degrauwe N, Schlumpf TB, Janiszewska M,
Martin P, Cauderay A, Provero P, Riggi N, Suvà ML, Paro R and
Stamenkovic I: The RNA binding protein IMP2 preserves glioblastoma
stem cells by preventing let-7 target gene silencing. Cell Rep.
15:1634–1647. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Iwamaru A, Szymanski S, Iwado E, Aoki H,
Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, et al: A
novel inhibitor of the STAT3 pathway induces apoptosis in malignant
glioma cells both in vitro and in vivo. Oncogene. 26:2435–2444.
2007. View Article : Google Scholar
|
|
123
|
Ott M, Kassab C, Marisetty A, Hashimoto Y,
Wei J, Zamler D, Leu JS, Tomaszowski KH, Sabbagh A, Fang D, et al:
Radiation with STAT3 blockade triggers dendritic cell-T cell
interactions in the glioma microenvironment and therapeutic
efficacy. Clin Cancer Res. 26:4983–4994. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lim D, Kim KS, Kim H, Ko KC, Song JJ, Choi
JH, Shin M, Min JJ, Jeong JH and Choy HE: Anti-tumor activity of an
immunotoxin (TGFα-PE38) delivered by attenuated Salmonella
typhimurium. Oncotarget. 8:37550–37560. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sampson JH, Akabani G, Archer GE, Berger
MS, Coleman RE, Friedman AH, Friedman HS, Greer K, Herndon JE II,
Kunwar S, et al: Intracerebral infusion of an EGFR-targeted toxin
in recurrent malignant brain tumors. Neuro Oncol. 10:320–329. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hau P, Jachimczak P, Schlingensiepen R,
Schulmeyer F, Jauch T, Steinbrecher A, Brawanski A, Proescholdt M,
Schlaier J, Buchroithner J, et al: Inhibition of TGF-beta2 with AP
12009 in recurrent malignant gliomas: from preclinical to phase
I/II studies. Oligonucleotides. 17:201–12. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Rodon J, Carducci MA, Sepulveda-Sánchez
JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I,
Cleverly AL, et al: First-in-human dose study of the novel
transforming growth factor-β receptor I kinase inhibitor LY2157299
monohydrate in patients with advanced cancer and glioma. Clin
Cancer Res. 21:553–560. 2015. View Article : Google Scholar
|
|
128
|
Zhang M, Lahn M and Huber PE: Translating
the combination of TGFβ blockade and radiotherapy into clinical
development in glioblastoma. OncoImmunology. 1:943–945. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhang M, Kleber S, Röhrich M, Timke C, Han
N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U,
et al: Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor
LY2109761 enhances radiation response and prolongs survival in
glioblastoma. Cancer Res. 71:7155–7167. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Pan E, Supko JG, Kaley TJ, Butowski NA,
Cloughesy T, Jung J, Desideri S, Grossman S, Ye X and Park DM:
Phase I study of RO4929097 with bevacizumab in patients with
recurrent malignant glioma. J Neurooncol. 130:571–579. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yahyanejad S, King H, Iglesias VS, Granton
PV, Barbeau LM, van Hoof SJ, Groot AJ, Habets R, Prickaerts J,
Chalmers AJ, et al: NOTCH blockade combined with radiation therapy
and temozolomide prolongs survival of orthotopic glioblastoma.
Oncotarget. 7:41251–41264. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tolcher AW, Messersmith WA, Mikulski SM,
Papadopoulos KP, Kwak EL, Gibbon DG, Patnaik A, Falchook GS, Dasari
A, Shapiro GI, et al: Phase I study of RO4929097, a gamma secretase
inhibitor of Notch signaling, in patients with refractory
metastatic or locally advanced solid tumors. J Clin Oncol.
30:2348–2353. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
den Hollander MW, Bensch F, Glaudemans AW,
Oude Munnink TH, Enting RH, den Dunnen WF, Heesters MA, Kruyt FA,
Lub-de Hooge MN, Cees de Groot J, et al: TGF-β Antibody Uptake in
Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET. J
Nucl Med. 56:1310–1314. 2015. View Article : Google Scholar : PubMed/NCBI
|