Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2021 Volume 59 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 59 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review)

  • Authors:
    • Silvia Vivarelli
    • Luca Falzone
    • Giulia Costanza Leonardi
    • Mario Salmeri
    • Massimo Libra
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy, Epidemiology and Biostatistics Unit, IRCCS Istituto Nazionale Tumori ‘Fondazione G. Pascale’, I‑80131 Naples, Italy
    Copyright: © Vivarelli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 75
    |
    Published online on: August 11, 2021
       https://doi.org/10.3892/ijo.2021.5255
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer affects millions of individuals worldwide. Thus, there is an increased need for the development of novel effective therapeutic approaches. Tumorigenesis is often coupled with immunosuppression which defeats the anticancer immune defense mechanisms activated by the host. Novel anticancer therapies based on the use of immune checkpoint inhibitors (ICIs) are very promising against both solid and hematological tumors, although still exhibiting heterogeneous efficacy, as well as tolerability. Such a differential response seems to derive from individual diversity, including the gut microbiota (GM) composition of specific patients. Experimental evidence supports the key role played by the GM in the activation of the immune system response against malignancies. This observation suggests to aim for patient‑tailored complementary therapies able to modulate the GM, enabling the selective enrichment in microbial species, which can improve the positive outcome of ICI‑based immunotherapy. Moreover, the research of GM‑derived predictive biomarkers may help to identify the selected cancer population, which can benefit from ICI‑based therapy, without the occurrence of adverse reactions and/or cancer relapse. The present review summarizes the landmark studies published to date, which have contributed to uncovering the tight link existing between GM composition, cancer development and the host immune system. Bridging this triangle of interactions may ultimately guide towards the identification of novel biomarkers, as well as integrated and patient‑tailored anticancer approaches with greater efficacy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Leviatan S and Segal E: Identifying gut microbes that affect human health. Nature. 587:373–374. 2020. View Article : Google Scholar

2 

Greenhalgh K, Meyer KM, Aagaard KM and Wilmes P: The human gut microbiome in health: Establishment and resilience of microbiota over a lifetime. Environ Microbiol. 18:2103–2116. 2016. View Article : Google Scholar

3 

Feng Q, Chen WD and Wang YD: Gut microbiota: An integral moderator in health and disease. Front Microbiol. 9:1512018. View Article : Google Scholar

4 

Vaishnava S, Behrendt CL, Ismail AS, Eckmann L and Hooper LV: Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA. 105:20858–20863. 2008. View Article : Google Scholar

5 

Belkaid Y and Naik S: Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 14:646–653. 2013. View Article : Google Scholar

6 

Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V and Thiele I: Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 6:1482015. View Article : Google Scholar

7 

Zheng D, Liwinski T and Elinav E: Interaction between microbiota and immunity in health and disease. Cell Res. 30:492–506. 2020. View Article : Google Scholar

8 

Sharma VR, Singh M, Kumar V, Yadav M, Sehrawat N, Sharma DK and Sharma AK: Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Semin Cancer Biol. 70:61–70. 2021. View Article : Google Scholar

9 

Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar

10 

The integrative human microbiome project. Nature. 569:641–648. 2019. View Article : Google Scholar

11 

Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, et al: Environment dominates over host genetics in shaping human gut microbiota. Nature. 555:210–215. 2018. View Article : Google Scholar

12 

Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, Matot E, Jona G, Harmelin A, Cohen N, et al: Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 349:1101–1106. 2015. View Article : Google Scholar

13 

Whon TW, Shin NR, Kim JY and Roh SW: Omics in gut microbiome analysis. J Microbiol. 59:292–297. 2021. View Article : Google Scholar

14 

Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L, Jupp R, Mathis D, et al: Mining the human gut microbiota for immunomodulatory organisms. Cell. 168:928–943.e11. 2017. View Article : Google Scholar

15 

Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, et al: A single-cell survey of the small intestinal epithelium. Nature. 551:333–339. 2017. View Article : Google Scholar

16 

Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P, et al: A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 39:105–114. 2021. View Article : Google Scholar

17 

Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R and Belkaid Y: Host variables confound gut microbiota studies of human disease. Nature. 587:448–454. 2020. View Article : Google Scholar

18 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar

19 

Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N and Miller WH Jr: A review of cancer immunotherapy: From the past, to the present, to the future. Curr Oncol. 27(Suppl 2): S87–S97. 2020. View Article : Google Scholar

20 

Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T and Zare P: Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 18:592020. View Article : Google Scholar

21 

Robert C: A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 11:38012020. View Article : Google Scholar

22 

Fridman WH, Zitvogel L, Sautès-Fridman C and Kroemer G: The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 14:717–734. 2017. View Article : Google Scholar

23 

Hiam-Galvez KJ, Allen BM and Spitzer MH: Systemic immunity in cancer. Nat Rev Cancer. 21:345–359. 2021. View Article : Google Scholar

24 

Ledford H, Else H and Warren M: Cancer immunologists scoop medicine nobel prize. Nature. 562:20–21. 2018. View Article : Google Scholar

25 

Shin EC: Cancer immunotherapy: Special issue of BMB Reports in 2021. BMB Rep. 54:12021. View Article : Google Scholar

26 

Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar

27 

Huang PW and Chang JWC: Immune checkpoint inhibitors win the 2018 nobel prize. Biomed J. 42:299–306. 2019. View Article : Google Scholar

28 

Waldman AD, Fritz JM and Lenardo MJ: A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar

29 

Shen CR and Chen YS: Immune checkpoint blockade therapy: The 2014 tang prize in biopharmaceutical science. Biomed J. 38:5–8. 2015. View Article : Google Scholar

30 

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar

31 

Long J, Qi Z and Rongxin Z: PD-1/PD-L1 pathway blockade works as an effective and practical therapy for cancer immunotherapy. Cancer Biol Med. 15:116–123. 2018. View Article : Google Scholar

32 

Seidel JA, Otsuka A and Kabashima K: Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front Oncol. 8:862018. View Article : Google Scholar

33 

Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018. View Article : Google Scholar

34 

Twomey JD and Zhang B: Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23:392021. View Article : Google Scholar

35 

Xin Yu J, Hubbard-Lucey VM and Tang J: Immuno-oncology drug development goes global. Nat Rev Drug Discov. 18:899–900. 2019. View Article : Google Scholar

36 

Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar

37 

Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V, Marquez-Rodas I, et al: Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 377:1824–1835. 2017. View Article : Google Scholar

38 

Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, Haydon A, Lichinitser M, Khattak A, Carlino MS, et al: Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 378:1789–1801. 2018. View Article : Google Scholar

39 

Kennedy LB and Salama AKS: A review of cancer immunotherapy toxicity. CA Cancer J Clin. 70:86–104. 2020. View Article : Google Scholar

40 

Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P and Deshmukh RR: Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol. 13:1007382020. View Article : Google Scholar

41 

Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al: Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6:827–837. 2016. View Article : Google Scholar

42 

Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B and Johnson DB: Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 391:9332018. View Article : Google Scholar

43 

Teixidor E and Bosch-Barrera J: The dark side of immunotherapy: Challenges facing the new hope in cancer treatment. Ann Transl Med. 7(Suppl 6): S1832019. View Article : Google Scholar

44 

Havel JJ, Chowell D and Chan TA: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 19:133–150. 2019. View Article : Google Scholar

45 

Pezo RC, Wong M and Martin A: Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therap Adv Gastroenterol. 12:17562848198709112019. View Article : Google Scholar

46 

Chang AE, Golob JL, Schmidt TM, Peltier DC, Lao CD and Tewari M: Targeting the gut microbiome to mitigate immunotherapy-induced colitis in cancer. Trends Cancer. 7:583–593. 2021. View Article : Google Scholar

47 

Sarshar M, Scribano D, Ambrosi C, Palamara AT and Masotti A: Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in host-microbiome interactions. Cancers (Basel). 12:21742020. View Article : Google Scholar

48 

Murciano-Goroff YR, Warner AB and Wolchok JD: The future of cancer immunotherapy: Microenvironment-targeting combinations. Cell Res. 30:507–519. 2020. View Article : Google Scholar

49 

Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 11:382019. View Article : Google Scholar

50 

Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al: Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 371:595–602. 2021. View Article : Google Scholar

51 

Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371:602–609. 2021. View Article : Google Scholar

52 

Maynard CL, Elson CO, Hatton RD and Weaver CT: Reciprocal interactions of the intestinal microbiota and immune system. Nature. 489:231–241. 2012. View Article : Google Scholar

53 

Belkaid Y and Hand TW: Role of the microbiota in immunity and Inflammation. Cell. 157:121–141. 2014. View Article : Google Scholar

54 

Jain T, Sharma P, Are AC, Vickers SM and Dudeja V: New insights into the cancer-microbiome-immune axis: Decrypting a decade of discoveries. Front Immunol. 12:6220642021. View Article : Google Scholar

55 

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT and Ley RE: Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 108(Suppl 1): S4578–S4585. 2011. View Article : Google Scholar

56 

Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, Steinert A, Heikenwalder M, Hapfelmeier S, Sauer U, et al: The maternal microbiota drives early postnatal innate immune development. Science. 351:1296–1302. 2016. View Article : Google Scholar

57 

Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, Gill N, Blanchet MR, Mohn WW, McNagny KM and Finlay BB: Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13:440–447. 2012. View Article : Google Scholar

58 

Cahenzli J, Köller Y, Wyss M, Geuking MB and McCoy KD: Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe. 14:559–570. 2013. View Article : Google Scholar

59 

Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, Yan J and Wu M: Gut microbiota influence tumor development and alter interactions with the human immune system. J Exp Clin Cancer Res. 40:422021. View Article : Google Scholar

60 

Shi N, Li N, Duan X and Niu H: Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 4:142017.

61 

Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L and Chifiriuc MC: Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 9:18302018. View Article : Google Scholar

62 

Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, et al: Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 342:447–453. 2013. View Article : Google Scholar

63 

Macpherson AJ and Uhr T: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 303:1662–1665. 2004. View Article : Google Scholar

64 

Bevins CL and Salzman NH: Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 9:356–368. 2011. View Article : Google Scholar

65 

Chu H and Mazmanian SK: Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 14:668–675. 2013. View Article : Google Scholar

66 

Vance RE, Isberg RR and Portnoy DA: Patterns of pathogenesis: Discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe. 6:10–21. 2009. View Article : Google Scholar

67 

Mogensen TH: Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 22:240–273. 2009. View Article : Google Scholar

68 

Suresh R and Mosser DM: Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 37:284–291. 2013. View Article : Google Scholar

69 

Gaudet RG, Guo CX, Molinaro R, Kottwitz H, Rohde JR, Dangeard AS, Arrieumerlou C, Girardin SE and Gray-Owen SD: Innate recognition of intracellular bacterial growth is driven by the TIFA-dependent cytosolic surveillance pathway. Cell Rep. 19:1418–1430. 2017. View Article : Google Scholar

70 

Bai L, Li W, Zheng W, Xu D, Chen N and Cui J: Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res. 159:1050172020. View Article : Google Scholar

71 

Luis Muñoz-Carrillo J, Francisco Contreras-Cordero J, Gutiérrez-Coronado O, Trinidad Villalobos-Gutiérrez P, Guillermo Ramos-Gracia L and Elizabeth Hernández-Reyes V: Cytokine profiling plays a crucial role in activating immune system to clear infectious pathogens. Immune Response Activation and Immunomodulation. IntechOpen; 2019, View Article : Google Scholar

72 

Kim M and Kim CH: Regulation of humoral immunity by gut microbial products. Gut Microbes. 8:392–399. 2017. View Article : Google Scholar

73 

Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, Nakashima T and Takayanagi H: Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol. 18:675–682. 2017. View Article : Google Scholar

74 

Cong Y, Feng T, Fujihashi K, Schoeb TR and Elson CO: A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA. 106:19256–19261. 2009. View Article : Google Scholar

75 

Tezuka H and Ohteki T: Regulation of IgA production by intestinal dendritic cells and related cells. Front Immunol. 10:18912019. View Article : Google Scholar

76 

Wu HJ and Wu E: The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 3:4–14. 2012. View Article : Google Scholar

77 

Lee GR: The Balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar

78 

Mazmanian SK, Liu CH, Tzianabos AO and Kasper DL: An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 122:107–118. 2005. View Article : Google Scholar

79 

Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, et al: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 31:677–689. 2009. View Article : Google Scholar

80 

Valeri M and Raffatellu M: Cytokines IL-17 and IL-22 in the host response to infection. Pathog Dis. 74:ftw1112016. View Article : Google Scholar

81 

Liu R, Lauridsen HM, Amezquita RA, Pierce RW, Jane-Wit D, Fang C, Pellowe AS, Kirkiles-Smith NC, Gonzalez AL and Pober JS: IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium. J Immunol. 197:2400–2408. 2016. View Article : Google Scholar

82 

Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, et al: VACCINES. A mucosal vaccine against chlamydia trachomatis generates two waves of protective memory T cells. Science. 348:aaa82052015. View Article : Google Scholar

83 

Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, et al: Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 12:255–263. 2011. View Article : Google Scholar

84 

Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F, et al: TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity. 41:478–492. 2014. View Article : Google Scholar

85 

Sandrini S, Aldriwesh M, Alruways M and Freestone P: Microbial endocrinology: Host-bacteria communication within the gut microbiome. J Endocrinol. 225:R21–R34. 2015. View Article : Google Scholar

86 

Gensollen T, Iyer SS, Kasper DL and Blumberg RS: How colonization by microbiota in early life shapes the immune system. Science. 352:539–544. 2016. View Article : Google Scholar

87 

Schmidt TSB, Raes J and Bork P: The human gut microbiome: From association to modulation. Cell. 172:1198–1215. 2018. View Article : Google Scholar

88 

Bultman SJ: Emerging roles of the microbiome in cancer. Carcinogenesis. 35:249–255. 2014. View Article : Google Scholar

89 

Cani PD: Human gut microbiome: Hopes, threats and promises. Gut. 67:1716–1725. 2018. View Article : Google Scholar

90 

LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S and Langella P: Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 16:792017. View Article : Google Scholar

91 

Nakkarach A, Foo HL, Song AA, Mutalib NEA, Nitisinprasert S and Withayagiat U: Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb Cell Fact. 20:362021. View Article : Google Scholar

92 

Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF and Dinan TG: Minireview: Gut microbiota: The neglected endocrine organ. Mol Endocrinol. 28:1221–1238. 2014. View Article : Google Scholar

93 

Pabst O: New concepts in the generation and functions of IgA. Nat Rev Immunol. 12:821–832. 2012. View Article : Google Scholar

94 

Mantis NJ, Rol N and Corthésy B: Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4:603–611. 2011. View Article : Google Scholar

95 

Mathias A, Pais B, Favre L, Benyacoub J and Corthésy B: Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes. 5:688–695. 2014. View Article : Google Scholar

96 

Levy M, Kolodziejczyk AA, Thaiss CA and Elinav E: Dysbiosis and the immune system. Nat Rev Immunol. 17:219–232. 2017. View Article : Google Scholar

97 

Round JL and Mazmanian SK: Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 107:12204–12209. 2010. View Article : Google Scholar

98 

Cianci R, Franza L, Schinzari G, Rossi E, Ianiro G, Tortora G, Gasbarrini A, Gambassi G and Cammarota G: The interplay between immunity and microbiota at intestinal immunological niche: The case of cancer. Int J Mol Sci. 20:5012019. View Article : Google Scholar

99 

Shui L, Yang X, Li J, Yi C, Sun Q and Zhu H: Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol. 10:29892020. View Article : Google Scholar

100 

Zipkin M: Fecal microbiota potentiate checkpoint inhibitors, unleash microbiome startups. Nat Biotechnol. 39:529–532. 2021. View Article : Google Scholar

101 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar

102 

Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP and Miller GW: The exposome: Molecules to populations. Annu Rev Pharmacol Toxicol. 59:107–127. 2019. View Article : Google Scholar

103 

Arem H and Loftfield E: Cancer epidemiology: A survey of modifiable risk factors for prevention and survivorship. Am J Lifestyle Med. 12:200–210. 2017. View Article : Google Scholar

104 

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum. 100:1–441. 2012.

105 

Wroblewski LE, Peek RM Jr and Wilson KT: Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 23:713–739. 2010. View Article : Google Scholar

106 

Whisner CM and Athena Aktipis C: The role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another's growth. Curr Nutr Rep. 8:42–51. 2019. View Article : Google Scholar

107 

Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N, Gagnière J, Vazeille E and Bonnet M: Intestinal microbiota: A novel target to improve anti-tumor treatment? Int J Mol Sci. 20:45842019. View Article : Google Scholar

108 

Li W, Deng X and Chen T: Exploring the modulatory effects of gut microbiota in anti-cancer therapy. Front Oncol. 11:6444542021. View Article : Google Scholar

109 

Guerra L, Cortes-Bratti X, Guidi R and Frisan T: The biology of the cytolethal distending toxins. Toxins (Basel). 3:172–190. 2011. View Article : Google Scholar

110 

Sun J, Hobert ME, Duan Y, Rao AS, He TC, Chang EB and Madara JL: Crosstalk between NF-kappaB and beta-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 289:G129–G137. 2005. View Article : Google Scholar

111 

Liu X, Lu R, Wu S and Sun J: Salmonella regulation of intestinal stem cells through the Wnt/beta-catenin pathway. FEBS Lett. 584:911–916. 2010. View Article : Google Scholar

112 

Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Janssen H, et al: Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe. 17:763–774. 2015. View Article : Google Scholar

113 

Li Y, Tinoco R, Elmé L, Segota I, Xian Y, Fujita Y, Sahu A, Zarecki R, Marie K, Feng Y, et al: Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5−/− mice. Nat Commun. 10:14922019. View Article : Google Scholar

114 

Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et al: A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 565:600–605. 2019. View Article : Google Scholar

115 

Valguarnera E and Wardenburg JB: Good gone bad: One toxin away from disease for Bacteroides fragilis. J Mol Biol. 432:765–785. 2020. View Article : Google Scholar

116 

Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al: The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10:421–433. 2017. View Article : Google Scholar

117 

Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL, Sears CL, Pardoll DM and Housseau F: Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov. 5:1098–1109. 2015. View Article : Google Scholar

118 

Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al: Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. 2013. View Article : Google Scholar

119 

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar

120 

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar

121 

Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, et al: Probiotics: Versatile bioactive components in promoting human health. Medicina (Kaunas). 56:4332020. View Article : Google Scholar

122 

Banna GL, Torino F, Marletta F, Santagati M, Salemi R, Cannarozzo E, Falzone L, Ferraù F and Libra M: Lactobacillus rhamnosus GG: An overview to explore the rationale of its use in cancer. Front Pharmacol. 8:6032017. View Article : Google Scholar

123 

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar

124 

Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, et al: Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 7:103912016. View Article : Google Scholar

125 

Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017. View Article : Google Scholar

126 

Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al: Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 28:1368–1379. 2017. View Article : Google Scholar

127 

Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar

128 

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar

129 

Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al: Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 29:1437–1444. 2018. View Article : Google Scholar

130 

Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, Zheng H, Yao C, Wang Y and Lu S: The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in chinese patients with NSCLC. J Thorac Oncol. 14:1378–1389. 2019. View Article : Google Scholar

131 

Zheng Y, Wang T, Tu X, Huang Y, Zhang H, Tan D, Jiang W, Cai S, Zhao P, Song R, et al: Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 7:1932019. View Article : Google Scholar

132 

Salgia NJ, Bergerot PG, Maia MC, Dizman N, Hsu J, Gillece JD, Folkerts M, Reining L, Trent J, Highlander SK and Pal SK: Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti-PD-1 immune checkpoint inhibitors. Eur Urol. 78:498–502. 2020. View Article : Google Scholar

133 

Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D, Wang N, Zhang C, Kong L, Liu Y, et al: Gut Microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front Microbiol. 11:8142020. View Article : Google Scholar

134 

Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, et al: Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 369:1481–1489. 2020. View Article : Google Scholar

135 

Si W, Liang H, Bugno J, Xu Q, Ding X, Yang K, Fu Y, Weichselbaum RR, Zhao X and Wang L: Lactobacillus rhamnosus GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. Gut. gutjnl-2020-323426. 2021.Epub ahead of print. View Article : Google Scholar

136 

Shi Y, Zheng W, Yang K, Harris KG, Ni K, Xue L, Lin W, Chang EB, Weichselbaum RR and Fu YX: Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med. 217:e201922822020. View Article : Google Scholar

137 

Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, Ganju V, Polikoff J, Saad F, Humanski P, et al: Randomized, double-blind, phase III Trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 35:40–47. 2017. View Article : Google Scholar

138 

Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al: The genomic complexity of primary human prostate cancer. Nature. 470:214–220. 2011. View Article : Google Scholar

139 

Nicholson LT and Fong L: Immune checkpoint inhibition in prostate cancer. Trends Cancer. 6:174–177. 2020. View Article : Google Scholar

140 

Venkatachalam S, McFarland TR, Agarwal N and Swami U: Immune checkpoint inhibitors in prostate cancer. Cancers (Basel). 13. pp. 21872021, View Article : Google Scholar

141 

Crocetto F, Boccellino M, Barone B, Di Zazzo E, Sciarra A, Galasso G, Settembre G, Quagliuolo L, Imbimbo C, Boffo S, et al: The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay? Nutrients. 12:26482020. View Article : Google Scholar

142 

Ferro M, Lucarelli G, Crocetto F, Dolce P, Verde A, La Civita E, Zappavigna S, de Cobelli O, Di Lorenzo G, Facchini BA, et al: First-line systemic therapy for metastatic castration-sensitive prostate cancer: An updated systematic review with novel findings. Crit Rev Oncol Hematol. 157:1031982021. View Article : Google Scholar

143 

Barbosa AM, Gomes-Gonçalves A, Castro AG and Torrado E: Immune system efficiency in cancer and the microbiota influence. Pathobiology. 88:170–186. 2021. View Article : Google Scholar

144 

Chen D, Wu J, Jin D, Wang B and Cao H: Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer. 145:2021–2031. 2019. View Article : Google Scholar

145 

Thompson S, Guetterman H, Taylor A, Bogner A, Martin D, Farrell JJ, Swanson KS and Holscher H: Dietary predictors of fecal microbiota transplantation success. J Acad Nutr Diet. 116(Suppl 9): A762016. View Article : Google Scholar

146 

Diefenbach CS, Hong F, Ambinder RF, Cohen JB, Robertson MJ, David KA, Advani RH, Fenske TS, Barta SK, Palmisiano ND, et al: Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: Phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 7:e660–e670. 2020. View Article : Google Scholar

147 

Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, Oosting SF, Schröder CP, Hiltermann TJN, van der Wekken AJ, et al: 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 24:1852–1858. 2018. View Article : Google Scholar

148 

Kyte JA, Røssevold A, Falk RS and Naume B: ALICE: A randomized placebo-controlled phase II study evaluating atezolizumab combined with immunogenic chemotherapy in patients with metastatic triple-negative breast cancer. J Transl Med. 18:2522020. View Article : Google Scholar

149 

Cohen R, Pudlarz T, Garcia-Larnicol ML, Vernerey D, Dray X, Clavel L, Jary M, Piessen G, Zaanan A, Aparicio T, et al: Localized MSI/dMMR gastric cancer patients, perioperative immunotherapy instead of chemotherapy: The GERCOR NEONIPIGA phase II study is opened to recruitment. Bull Cancer. 107:438–446. 2020.In French. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Vivarelli S, Falzone L, Leonardi GC, Salmeri M and Libra M: Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). Int J Oncol 59: 75, 2021.
APA
Vivarelli, S., Falzone, L., Leonardi, G.C., Salmeri, M., & Libra, M. (2021). Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). International Journal of Oncology, 59, 75. https://doi.org/10.3892/ijo.2021.5255
MLA
Vivarelli, S., Falzone, L., Leonardi, G. C., Salmeri, M., Libra, M."Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review)". International Journal of Oncology 59.3 (2021): 75.
Chicago
Vivarelli, S., Falzone, L., Leonardi, G. C., Salmeri, M., Libra, M."Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review)". International Journal of Oncology 59, no. 3 (2021): 75. https://doi.org/10.3892/ijo.2021.5255
Copy and paste a formatted citation
x
Spandidos Publications style
Vivarelli S, Falzone L, Leonardi GC, Salmeri M and Libra M: Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). Int J Oncol 59: 75, 2021.
APA
Vivarelli, S., Falzone, L., Leonardi, G.C., Salmeri, M., & Libra, M. (2021). Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). International Journal of Oncology, 59, 75. https://doi.org/10.3892/ijo.2021.5255
MLA
Vivarelli, S., Falzone, L., Leonardi, G. C., Salmeri, M., Libra, M."Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review)". International Journal of Oncology 59.3 (2021): 75.
Chicago
Vivarelli, S., Falzone, L., Leonardi, G. C., Salmeri, M., Libra, M."Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review)". International Journal of Oncology 59, no. 3 (2021): 75. https://doi.org/10.3892/ijo.2021.5255
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team