|
1
|
Park I, Chung J, Walsh CT, Yun Y,
Strominger JL and Shin J: Phosphotyrosine-independent binding of a
62-kDa protein to the src homology 2 (SH2) domain of p56lck and its
regulation by phosphorylation of Ser-59 in the lck unique
N-terminal region. Proc Natl Acad Sci USA. 92:12338–12342. 1995.
View Article : Google Scholar
|
|
2
|
Moscat J and Diaz-Meco MT: p62 at the
crossroads of autophagy, apoptosis, and cancer. Cell.
137:1001–1004. 2009. View Article : Google Scholar
|
|
3
|
Ishaq M, Khan MA, Sharma K, Sharma G,
Dutta RK and Majumdar S: Gambogic acid induced oxidative stress
dependent caspase activation regulates both apoptosis and autophagy
by targeting various key molecules (NF-κB, Beclin-1, p62 and NBR1)
in human bladder cancer cells. Biochim Biophys Acta.
1840:3374–3384. 2014. View Article : Google Scholar
|
|
4
|
Li S, Yang G, Zhu X, Cheng L, Sun Y and
Zhao Z: Combination of rapamycin and garlic-derived
S-allylmercaptocysteine induces colon cancer cell apoptosis and
suppresses tumor growth in xenograft nude mice through
autophagy/p62/Nrf2 pathway. Oncol Rep. 38:1637–1644. 2017.
View Article : Google Scholar
|
|
5
|
Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma
K, Li X, Wang L, Wang J, Zhang H, et al: Autophagy regulates
chromatin ubiquitination in DNA damage response through elimination
of SQSTM1/p62. Mol Cell. 63:34–48. 2016. View Article : Google Scholar
|
|
6
|
Lee Y and Weihl CC: Regulation of
SQSTM1/p62 via UBA domain ubiquitination and its role in disease.
Autophagy. 13:1615–1616. 2017. View Article : Google Scholar
|
|
7
|
Seibenhener ML, Babu JR, Geetha T, Wong
HC, Krishna NR and Wooten MW: Sequestosome 1/p62 is a polyubiquitin
chain binding protein involved in ubiquitin proteasome degradation.
Mol Cell Biol. 24:8055–8068. 2004. View Article : Google Scholar
|
|
8
|
Cohen-Kaplan V, Livneh I, Avni N, Fabre B,
Ziv T, Kwon YT and Ciechanover A: p62- and ubiquitin-dependent
stress-induced autophagy of the mammalian 26S proteasome. Proc Natl
Acad Sci USA. 113:E7490–E7499. 2016. View Article : Google Scholar
|
|
9
|
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S,
Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu
YP, Acevedo-Arozena A, et al: Guidelines for the use and
interpretation of assays for monitoring autophagy (4th edition) 1.
Autophagy. 17:1–382. 2021. View Article : Google Scholar
|
|
10
|
Matsumoto G, Wada K, Okuno M, Kurosawa M
and Nukina N: Serine 403 phosphorylation of p62/SQSTM1 regulates
selective autophagic clearance of ubiquitinated proteins. Mol Cell.
44:279–289. 2011. View Article : Google Scholar
|
|
11
|
Zhu L, Zhu Y, Han S, Chen M, Song P, Dai
D, Xu W, Jiang T, Feng L, Shin VY, et al: Impaired autophagic
degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in
gastric cancer. Cell Death Dis. 10:3832019. View Article : Google Scholar
|
|
12
|
Clausen TH, Lamark T, Isakson P, Finley K,
Larsen KB, Brech A, Øvervatn A, Stenmark H, Bjørkøy G, Simonsen A
and Johansen T: p62/SQSTM1 and ALFY interact to facilitate the
formation of p62 bodies/ALIS and their degradation by autophagy.
Autophagy. 6:330–344. 2010. View Article : Google Scholar
|
|
13
|
Ichimura Y, Waguri S, Sou YS, Kageyama S,
Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, et
al: Phosphorylation of p62 activates the Keap1-Nrf2 pathway during
selective autophagy. Mol Cell. 51:618–631. 2013. View Article : Google Scholar
|
|
14
|
Park JY, Sohn HY, Koh YH and Jo C:
Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation
at Ser351. Sci Rep. 11:84302021. View Article : Google Scholar
|
|
15
|
Ling J, Kang Y, Zhao R, Xia Q, Lee DF,
Chang Z, Li J, Peng B, Fleming JB, Wang H, et al: KrasG12D-induced
IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is
required for development of pancreatic ductal adenocarcinoma.
Cancer Cell. 21:105–120. 2012. View Article : Google Scholar
|
|
16
|
Duran A, Linares JF, Galvez AS,
Wikenheiser K, Flores JM, Diaz-Meco MT and Moscat J: The signaling
adaptor p62 is an important NF-kappaB mediator in tumorigenesis.
Cancer Cell. 13:343–354. 2008. View Article : Google Scholar
|
|
17
|
Nakamura K, Kimple AJ, Siderovski DP and
Johnson GL: PB1 domain interaction of p62/sequestosome 1 and MEKK3
regulates NF-kappaB activation. J Biol Chem. 285:2077–2089. 2010.
View Article : Google Scholar
|
|
18
|
Usategui-Martin R, Gestoso-Uzal N,
Calero-Paniagua I, De Pereda JM, Del Pino-Montes J and
González-Sarmiento R: A mutation in p62 protein (R321C), associated
to Paget's disease of bone, causes a blockade of autophagy and an
activation of NF-kB pathway. Bone. 133:1152652020. View Article : Google Scholar
|
|
19
|
Wang Y, Xiong H, Liu D, Hill C, Ertay A,
Li J, Zou Y, Miller P, White E, Downward J, et al: Autophagy
inhibition specifically promotes epithelial-mesenchymal transition
and invasion in RAS-mutated cancer cells. Autophagy. 15:886–899.
2019. View Article : Google Scholar
|
|
20
|
Hua F and Hu ZW: TRIB3-P62 interaction,
diabetes and autophagy. Oncotarget. 6:34061–34062. 2015. View Article : Google Scholar
|
|
21
|
Hewitt G, Carroll B, Sarallah R,
Correia-Melo C, Ogrodnik M, Nelson G, Otten EG, Manni D, Antrobus
R, Morgan BA, et al: SQSTM1/p62 mediates crosstalk between
autophagy and the UPS in DNA repair. Autophagy. 12:1917–1930. 2016.
View Article : Google Scholar
|
|
22
|
Wang Y, Zhu WG and Zhao Y: Autophagy
substrate SQSTM1/p62 regulates chromatin ubiquitination during the
DNA damage response. Autophagy. 13:212–213. 2017. View Article : Google Scholar
|
|
23
|
Wang L, Howell MEA, Sparks-Wallace A,
Hawkins C, Nicksic CA, Kohne C, Hall KH, Moorman JP, Yao ZQ and
Ning S: p62-mediated selective autophagy endows virus-transformed
cells with insusceptibility to DNA damage under oxidative stress.
PLoS Pathog. 15:e10075412019. View Article : Google Scholar
|
|
24
|
Mohamed A, Ayman A, Deniece J, Wang T,
Kovach C, Siddiqui MT and Cohen C: P62/Ubiquitin IHC expression
correlated with clinicopathologic parameters and outcome in
gastrointestinal carcinomas. Front Oncol. 5:702015. View Article : Google Scholar
|
|
25
|
Adams O, Dislich B, Berezowska S, Schläfli
AM, Seiler CA, Kröll D, Tschan MP and Langer R: Prognostic
relevance of autophagy markers LC3B and p62 in esophageal
adenocarcinomas. Oncotarget. 7:39241–39255. 2016. View Article : Google Scholar
|
|
26
|
Masuda GO, Yashiro M, Kitayama K, Miki Y,
Kasashima H, Kinoshita H, Morisaki T, Fukuoka T, Hasegawa T,
Sakurai K, et al: Clinicopathological correlations of
autophagy-related proteins LC3, beclin 1 and p62 in gastric cancer.
Anticancer Res. 36:129–136. 2016.
|
|
27
|
Park JM, Huang S, Wu TT, Foster NR and
Sinicrope FA: Prognostic impact of beclin 1p62/sequestosome 1 and
LC3 protein expression in colon carcinomas from patients receiving
5-fluorouracil as adjuvant chemotherapy. Cancer Biol Ther.
14:100–107. 2013. View Article : Google Scholar
|
|
28
|
Kosumi K, Masugi Y, Yang J, Qian ZR, Kim
SA, Li W, Shi Y, da Silva A, Hamada T, Liu L, et al: Tumor SQSTM1
(p62) expression and T cells in colorectal cancer. Oncoimmunology.
6:e12847202017. View Article : Google Scholar
|
|
29
|
Schmitz KJ, Ademi C, Bertram S, Schmid KW
and Baba HA: Prognostic relevance of autophagy-related markers LC3,
p62/sequestosome 1, beclin-1 and ULK1 in colorectal cancer patients
with respect to KRAS mutational status. World J Surg Oncol.
14:1892016. View Article : Google Scholar
|
|
30
|
Goulielmaki M, Koustas E, Moysidou E,
Vlassi M, Sasazuki T, Shirasawa S, Zografos G, Oikonomou E and
Pintzas A: BRAF associated autophagy exploitation: BRAF and
autophagy inhibitors synergise to efficiently overcome resistance
of BRAF mutant colorectal cancer cells. Oncotarget. 7:9188–9221.
2016. View Article : Google Scholar
|
|
31
|
Ren F, Shu G, Liu G, Liu D and Zhou J,
Yuan L and Zhou J: Knockdown of p62/sequestosome 1 attenuates
autophagy and inhibits colorectal cancer cell growth. Mol Cell
Biochem. 385:95–102. 2014. View Article : Google Scholar
|
|
32
|
Petherick KJ, Williams AC, Lane JD,
Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik
K, Paraskeva C and Greenhough A: Autolysosomal β-catenin
degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J.
32:1903–1916. 2013. View Article : Google Scholar
|
|
33
|
Samarasinghe B, Wales CT, Taylor FR and
Jacobs AT: Heat shock factor 1 confers resistance to Hsp90
inhibitors through p62/SQSTM1 expression and promotion of
autophagic flux. Biochem Pharmacol. 87:445–455. 2014. View Article : Google Scholar
|
|
34
|
Wang Z, Chen Q, Li B, Xie JM, Yang XD,
Zhao K, Wu Y, Ye ZY, Chen ZR, Qin ZH, et al: Escin-induced DNA
damage promotes escin-induced apoptosis in human colorectal cancer
cells via p62 regulation of the ATM/γH2AX pathway. Acta Pharmacol
Sin. 39:1645–1660. 2018. View Article : Google Scholar
|
|
35
|
Kim JH and Kim IW: p62 manipulation
affects chlorin e6-mediated photodynamic therapy efficacy in
colorectal cancer cell lines. Oncol Lett. 19:3907–3916. 2020.
|
|
36
|
Duran A, Hernandez ED, Reina-Campos M,
Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T,
Karin M, Diaz-Meco MT and Moscat J: p62/SQSTM1 by binding to
vitamin D receptor inhibits hepatic stellate cell activity,
fibrosis, and liver cancer. Cancer Cell. 30:595–609. 2016.
View Article : Google Scholar
|
|
37
|
Shimizu T, Inoue K, Hachiya H, Shibuya N,
Aoki T and Kubota K: Accumulation of phosphorylated p62 is
associated with NF-E2-related factor 2 activation in hepatocellular
carcinoma. J Hepatobiliary Pancreat Sci. 23:467–471. 2016.
View Article : Google Scholar
|
|
38
|
Saito T, Ichimura Y, Taguchi K, Suzuki T,
Mizushima T, Takagi K, Hirose Y, Nagahashi M, Iso T, Fukutomi T, et
al: p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular
carcinoma through Nrf2-dependent metabolic reprogramming. Nat
Commun. 7:120302016. View Article : Google Scholar
|
|
39
|
Jain A, Lamark T, Sjottem E, Larsen KB,
Awuh JA, Øvervatn A, McMahon M, Hayes JD and Johansen T: p62/SQSTM1
is a target gene for transcription factor NRF2 and creates a
positive feedback loop by inducing antioxidant response
element-driven gene transcription. J Biol Chem. 285:22576–22591.
2010. View Article : Google Scholar
|
|
40
|
Umemura A, He F, Taniguchi K, Nakagawa H,
Yamachika S, Font-Burgada J, Zhong Z, Subramaniam S, Raghunandan S,
Duran A, et al: p62, upregulated during preneoplasia, induces
hepatocellular carcinogenesis by maintaining survival of stressed
HCC-initiating cells. Cancer Cell. 29:935–948. 2016. View Article : Google Scholar
|
|
41
|
Hoadley KA, Yau C, Wolf DM, Cherniack AD,
Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov
V, et al: Multiplatform analysis of 12 cancer types reveals
molecular classification within and across tissues of origin. Cell.
158:929–944. 2014. View Article : Google Scholar
|
|
42
|
Taguchi K, Fujikawa N, Komatsu M, Ishii T,
Unno M, Akaike T, Motohashi H and Yamamoto M: Keap1 degradation by
autophagy for the maintenance of redox homeostasis. Proc Natl Acad
Sci USA. 109:13561–13566. 2012. View Article : Google Scholar
|
|
43
|
Vegliante R, Desideri E, Di Leo L and
Ciriolo MR: Dehydroepiandrosterone triggers autophagic cell death
in human hepatoma cell line HepG2 via JNK-mediated p62/SQSTM1
expression. Carcinogenesis. 37:233–244. 2016. View Article : Google Scholar
|
|
44
|
Yan J, Seibenhener ML, Calderilla-Barbosa
L, Diaz-Meco MT, Moscat J, Jiang J, Wooten MW and Wooten MC:
SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity.
PLoS One. 8:e760162013. View Article : Google Scholar
|
|
45
|
Chen Q, Yue F, Li W, Zou J, Xu T, Huang C,
Zhang Y, Song K, Huang G, Xu G, et al: Potassium
bisperoxo(1,10-phenanthroline) oxovanadate (bpV(phen)) induces
apoptosis and pyroptosis and disrupts the P62-HDAC6 protein
interaction to suppress the acetylated microtubule-dependent
degradation of autophagosomes. J Biol Chem. 290:26051–26058. 2015.
View Article : Google Scholar
|
|
46
|
Ryoo IG, Choi BH, Ku SK and Kwak MK: High
CD44 expression mediates p62-associated NFE2L2/NRF2 activation in
breast cancer stem cell-like cells: Implications for cancer stem
cell resistance. Redox Biol. 17:246–258. 2018. View Article : Google Scholar
|
|
47
|
Ryoo IG, Choi BH and Kwak MK: Activation
of NRF2 by p62 and proteasome reduction in sphere-forming breast
carcinoma cells. Oncotarget. 6:8167–8184. 2015. View Article : Google Scholar
|
|
48
|
Jain A, Rusten TE, Katheder N, Elvenes J,
Bruun JA, Sjøttem E, Lamark T and Johansen T: p62/sequestosome-1,
autophagy-related gene 8, and autophagy in drosophila are regulated
by nuclear factor erythroid 2-related factor 2 (NRF2), independent
of transcription factor TFEB. J Biol Chem. 290:14945–14962. 2015.
View Article : Google Scholar
|
|
49
|
Xu LZ, Li SS, Zhou W, Kang ZJ, Zhang QX,
Kamran M, Xu J, Liang DP, Wang CL, Hou ZJ, et al: p62/SQSTM1
enhances breast cancer stem-like properties by stabilizing MYC
mRNA. Oncogene. 36:304–317. 2017. View Article : Google Scholar
|
|
50
|
Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T,
Fu W, Zhang J, Wu W, Zhang X and Chen YG: Autophagy negatively
regulates Wnt signalling by promoting dishevelled degradation. Nat
Cell Biol. 12:781–790. 2010. View Article : Google Scholar
|
|
51
|
Ahn JS, Ann EJ, Kim MY, Yoon JH, Lee HJ,
Jo EH, Lee K, Lee JS and Park HS: Autophagy negatively regulates
tumor cell proliferation through phosphorylation dependent
degradation of the Notch1 intracellular domain. Oncotarget.
7:79047–79063. 2016. View Article : Google Scholar
|
|
52
|
Cai-McRae X and Karantza V: p62: A hub of
multiple signaling pathways in HER2-induced mammary tumorigenesis.
Mol Cell Oncol. 2:e9750352015. View Article : Google Scholar
|
|
53
|
Cai-McRae X, Zhong H and Karantza V:
Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis
through multiple signaling pathways. Oncogene. 34:2968–2977. 2015.
View Article : Google Scholar
|
|
54
|
Wei H, Wang C, Croce CM and Guan JL:
p62/SQSTM1 synergizes with autophagy for tumor growth in vivo.
Genes Dev. 28:1204–1216. 2014. View Article : Google Scholar
|
|
55
|
Puvirajesinghe TM, Bertucci F, Jain A,
Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A,
Finetti P, et al: Identification of p62/SQSTM1 as a component of
non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat
Commun. 7:103182016. View Article : Google Scholar
|
|
56
|
Chen S, Zhou L, Zhang Y, Leng Y, Pei XY,
Lin H, Jones R, Orlowski RZ, Dai Y and Grant S: Targeting
SQSTM1/p62 induces cargo loading failure and converts autophagy to
apoptosis via NBK/Bik. Mol Cell Biol. 34:3435–3449. 2014.
View Article : Google Scholar
|
|
57
|
Choi YK, Cho SG, Woo SM, Yun YJ, Park S,
Shin YC and Ko SG: Herbal extract SH003 suppresses tumor growth and
metastasis of MDA-MB-231 breast cancer cells by inhibiting
STAT3-IL-6 signaling. Mediators Inflamm. 2014:4921732014.
View Article : Google Scholar
|
|
58
|
Luo RZ, Yuan ZY, Li M, Xi SY, Fu J and He
J: Accumulation of p62 is associated with poor prognosis in
patients with triple-negative breast cancer. Onco Targets Ther.
6:883–888. 2013.
|
|
59
|
Wei Y, Liu D, Jin X, Gao P, Wang Q, Zhang
J and Zhang N: PA-MSHA inhibits the growth of doxorubicin-resistant
MCF-7/ADR human breast cancer cells by downregulating Nrf2/p62.
Cancer Med. 5:3520–3531. 2016. View Article : Google Scholar
|
|
60
|
Fuchinoue F, Hirotani Y, Nakanishi Y,
Yamaguchi H, Nishimaki H, Noda H, Tang XY, Iizuka M, Amano S,
Sugitani M, et al: Overexpression of PGC1α and accumulation of p62
in apocrine carcinoma of the breast. Pathol Int. 65:19–26. 2015.
View Article : Google Scholar
|
|
61
|
Nozaki F, Hirotani Y, Nakanishi Y,
Yamaguchi H, Nishimaki H, Noda H, Tang X, Yamamoto H, Suzuki A,
Seki T and Masuda S: p62 regulates the proliferation of molecular
apocrine breast cancer cells. Acta Histochem Cytochem. 49:125–130.
2016. View Article : Google Scholar
|
|
62
|
Shen P, Chen M, He M, Chen L, Song Y, Xiao
P, Wan X, Dai F, Pan T and Wang Q: Inhibition of ERα/ERK/P62
cascades induces 'autophagic switch' in the estrogen
receptor-positive breast cancer cells exposed to gemcitabine.
Oncotarget. 7:48501–48516. 2016. View Article : Google Scholar
|
|
63
|
Fang J and Starczynowski DT: Genomic
instability establishes dependencies on acquired gene regulatory
networks: A novel role of p62 in myeloid malignancies with del(5q).
Mol Cell Oncol. 2:e10142192015. View Article : Google Scholar
|
|
64
|
Fang J, Barker B, Bolanos L, Liu X, Jerez
A, Makishima H, Christie S, Chen X, Rao DS, Grimes HL, et al:
Myeloid malignancies with chromosome 5q deletions acquire a
dependency on an intrachromosomal NF-κB gene network. Cell Rep.
8:1328–1338. 2014. View Article : Google Scholar
|
|
65
|
Sanz L, Diaz-Meco MT, Nakano H and Moscat
J: The atypical PKC-interacting protein p62 channels NF-kappaB
activation by the IL-1TRAF6 pathway. EMBO J. 19:1576–1586. 2000.
View Article : Google Scholar
|
|
66
|
Teramachi J, Silbermann R, Yang P, Zhao W,
Mohammad KS, Guo J, Anderson JL, Zhou D, Feng R, Myint KZ, et al:
Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma
growth and osteoclast formation in vitro and induces dramatic bone
formation in myeloma-bearing bones in vivo. Leukemia. 30:390–398.
2016. View Article : Google Scholar
|
|
67
|
Sanz L, Sanchez P, Lallena MJ, Diaz-Meco
MT and Moscat J: The interaction of p62 with RIP links the atypical
PKCs to NF-kappaB activation. EMBO J. 18:3044–3053. 1999.
View Article : Google Scholar
|
|
68
|
Rubio N, Verrax J, Dewaele M, Verfaillie
T, Johansen T, Piette J and Agostinis P: p38(MAPK)-regulated
induction of p62 and NBR1 after photodynamic therapy promotes
autophagic clearance of ubiquitin aggregates and reduces reactive
oxygen species levels by supporting Nrf2-antioxidant signaling.
Free Radic Biol Med. 67:292–303. 2014. View Article : Google Scholar
|
|
69
|
Chang KH, Sengupta A, Nayak RC, Duran A,
Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto
D, et al: p62 is required for stem cell/progenitor retention
through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow
macrophage-osteoblast niche. Cell Rep. 9:2084–2097. 2014.
View Article : Google Scholar
|
|
70
|
Milan E, Perini T, Resnati M, Orfanelli U,
Oliva L, Raimondi A, Cascio P, Bachi A, Marcatti M, Ciceri F and
Cenci S: A plastic SQSTM1/p62-dependent autophagic reserve
maintains proteostasis and determines proteasome inhibitor
susceptibility in multiple myeloma cells. Autophagy. 11:1161–1178.
2015. View Article : Google Scholar
|
|
71
|
Riz I, Hawley TS and Hawley RG:
KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to
carfilzomib resistance in multiple myeloma models. Oncotarget.
6:14814–14831. 2015. View Article : Google Scholar
|
|
72
|
Trocoli A, Bensadoun P, Richard E,
Labrunie G, Merhi F, Schläfli AM, Brigger D, Souquere S, Pierron G,
Pasquet JM, et al: p62/SQSTM1 upregulation constitutes a survival
mechanism that occurs during granulocytic differentiation of acute
myeloid leukemia cells. Cell Death Differ. 21:1852–1861. 2014.
View Article : Google Scholar
|
|
73
|
Ségal-Bendirdjian E, Tschan MP, Reiffers J
and Djavaheri-Mergny M: Pro-survival role of p62 during
granulocytic differentiation of acute myeloid leukemia cells. Mol
Cell Oncol. 1:e9700662014. View Article : Google Scholar
|
|
74
|
Goussetis DJ, Gounaris E, Wu EJ, Vakana E,
Sharma B, Bogyo M, Altman JK and Platanias LC: Autophagic
degradation of the BCR-ABL oncoprotein and generation of
antileukemic responses by arsenic trioxide. Blood. 120:3555–3562.
2012. View Article : Google Scholar
|
|
75
|
Zhong Z, Sanchez-Lopez E and Karin M:
Autophagy, inflammation, and immunity: A Troika governing cancer
and its treatment. Cell. 166:288–298. 2016. View Article : Google Scholar
|
|
76
|
Moscat J, Karin M and Diaz-Meco MT: p62 in
cancer: Signaling adaptor beyond autophagy. Cell. 167:606–609.
2016. View Article : Google Scholar
|
|
77
|
Wang X, Du Z, Li L, Shi M and Yu Y: Beclin
1 and p62 expression in non-small cell lung cancer: Relation with
malignant behaviors and clinical outcome. Int J Clin Exp Pathol.
8:10644–10652. 2015.
|
|
78
|
Schläfli AM, Adams O, Galván JA, Gugger M,
Savic S, Bubendorf L, Schmid RA, Becker KF, Tschan MP, Langer R and
Berezowska S: Prognostic value of the autophagy markers LC3 and
p62/SQSTM1 in early-stage non-small cell lung cancer. Oncotarget.
7:39544–39555. 2016. View Article : Google Scholar
|
|
79
|
Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie
Q, Jin H, Che X, Li J, Huang C, et al: Upregulation of SQSTM1/p62
contributes to nickel-induced malignant transformation of human
bronchial epithelial cells. Autophagy. 12:1687–1703. 2016.
View Article : Google Scholar
|
|
80
|
Linares JF, Duran A, Yajima T, Pasparakis
M, Moscat J and Diaz-Meco MT: K63 polyubiquitination and activation
of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol
Cell. 51:283–296. 2013. View Article : Google Scholar
|
|
81
|
Lou JS, Yan L, Bi CW, Chan GK, Wu QY, Liu
YL, Huang Y, Yao P, Du CY, Dong TT and Tsim KW: Yu Ping Feng San
reverses cisplatin-induced multi-drug resistance in lung cancer
cells via regulating drug transporters and p62/TRAF6 signalling.
Sci Rep. 6:319262016. View Article : Google Scholar
|
|
82
|
Lau A, Zheng Y, Tao S, Wang H, Whitman SA,
White E and Zhang DD: Arsenic inhibits autophagic flux, activating
the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol.
33:2436–2446. 2013. View Article : Google Scholar
|
|
83
|
Son YO, Pratheeshkumar P, Roy RV, Hitron
JA, Wang L, Zhang Z and Shi X: Nrf2/p62 signaling in apoptosis
resistance and its role in cadmium-induced carcinogenesis. J Biol
Chem. 289:28660–28675. 2014. View Article : Google Scholar
|
|
84
|
Wang Y, Zhang J, Huang ZH, Huang XH, Zheng
WB, Yin XF, Li YL, Li B and He QY: Isodeoxyelephantopin induces
protective autophagy in lung cancer cells via Nrf2-p62-keap1
feedback loop. Cell Death Dis. 8:e28762017. View Article : Google Scholar
|
|
85
|
Xia M, Gonzalez P, Li C, Meng G, Jiang A,
Wang H, Gao Q, Debatin KM, Beltinger C and Wei J: Mitophagy
enhances oncolytic measles virus replication by mitigating
DDX58/RIG-I-like receptor signaling. J Virol. 88:5152–5164. 2014.
View Article : Google Scholar
|
|
86
|
Nihira K, Miki Y, Ono K, Suzuki T and
Sasano H: An inhibition of p62/SQSTM1 caused autophagic cell death
of several human carcinoma cells. Cancer Sci. 105:568–575. 2014.
View Article : Google Scholar
|
|
87
|
Zhang J, Ma K, Qi T, Wei X, Zhang Q, Li G
and Chiu JF: P62 regulates resveratrol-mediated Fas/Cav-1 complex
formation and transition from autophagy to apoptosis. Oncotarget.
6:789–801. 2015. View Article : Google Scholar
|
|
88
|
Xu L, Xu F, Kong Q, Yang T, Tan D, Zhang
X, Li N, Zhao S, Zhao J and Li M: Inhibition of p62/SQSTM1
sensitizes small-cell lung cancer cells to cisplatin-induced
cytotoxicity by targeting NEDD9 expression. Mol Carcinog.
59:967–979. 2020. View Article : Google Scholar
|
|
89
|
Kim MJ, Min Y, Im JS, Son J, Lee JS and
Lee KY: p62 is negatively implicated in the TRAF6-BECN1 signaling
axis for autophagy activation and cancer progression by toll-like
receptor 4 (TLR4). Cells. 9:11422020. View Article : Google Scholar
|
|
90
|
Kim MJ, Min Y, Kwon J, Son J, Im JS, Shin
J and Lee KY: p62 negatively regulates TLR4 signaling via
functional regulation of the TRAF6-ECSIT complex. Immune Netw.
19:e162019. View Article : Google Scholar
|
|
91
|
Li S and Wei Y: Association of HMGB1,
BRCA1 and P62 expression in ovarian cancer and chemotherapy
sensitivity. Oncol Lett. 15:9572–9576. 2018.
|
|
92
|
Iwadate R, Inoue J, Tsuda H, Takano M,
Furuya K, Hirasawa A, Aoki D and Inazawa J: High expression of
SQSTM1/p62 protein is associated with poor prognosis in epithelial
ovarian cancer. Acta Histochem Cytochem. 47:295–301. 2014.
View Article : Google Scholar
|
|
93
|
Ju LL, Zhao CY, Ye KF, Yang H and Zhang J:
Expression and clinical implication of beclin1, HMGB1, p62,
survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues. Eur
Rev Med Pharmacol Sci. 20:1993–2003. 2016.
|
|
94
|
Wang J, Garbutt C, Ma H, Gao P, Hornicek
FJ, Kan Q, Shi H and Duan Z: Expression and role of
autophagy-associated p62 (SQSTM1) in multidrug resistant ovarian
cancer. Gynecol Oncol. 150:143–150. 2018. View Article : Google Scholar
|
|
95
|
Bartsch G, Jennewein L, Harter PN,
Antonietti P, Blaheta RA, Kvasnicka HM, Kögel D, Haferkamp A,
Mittelbronn M and Mani J: Autophagy-associated proteins BAG3 and
p62 in testicular cancer. Oncol Rep. 35:1629–1635. 2016. View Article : Google Scholar
|
|
96
|
Iwadate R, Inoue J, Tsuda H, Takano M,
Furuya K, Hirasawa A, Aoki D and Inazawa J: High expression of p62
protein is associated with poor prognosis and aggressive phenotypes
in endometrial cancer. Am J Pathol. 185:2523–2533. 2015. View Article : Google Scholar
|
|
97
|
Darvekar SR, Elvenes J, Brenne HB,
Johansen T and Sjøttem E: SPBP is a sulforaphane induced
transcriptional coactivator of NRF2 regulating expression of the
autophagy receptor p62/SQSTM1. PLoS One. 9:e852622014. View Article : Google Scholar
|
|
98
|
Jung D, Khurana A, Roy D, Kalogera E,
Bakkum-Gamez J, Chien J and Shridhar V: Quinacrine upregulates
p21/p27 independent of p53 through autophagy-mediated
downregulation of p62-Skp2 axis in ovarian cancer. Sci Rep.
8:24872018. View Article : Google Scholar
|
|
99
|
Xia MH, Yan XY, Zhou L, Xu L, Zhang LC, Yi
HW and Su J: p62 suppressed VK3-induced oxidative damage through
Keap1/Nrf2 pathway in human ovarian cancer cells. J Cancer.
11:1299–1307. 2020. View Article : Google Scholar
|
|
100
|
Yan XY, Zhong XR, Yu SH, Zhang LC, Liu YN,
Zhang Y, Sun LK and Su J: p62 aggregates mediated caspase 8
activation is responsible for progression of ovarian cancer. J Cell
Mol Med. 23:4030–4042. 2019. View Article : Google Scholar
|
|
101
|
Chang MA, Morgado M, Warren CR, Hinton CV,
Farach-Carson MC and Delk NA: p62/SQSTM1 is required for cell
survival of apoptosis-resistant bone metastatic prostate cancer
cell lines. Prostate. 74:149–163. 2014. View Article : Google Scholar
|
|
102
|
Falasca L, Torino F, Marconi M, Costantini
M, Pompeo V, Sentinelli S, De Salvo L, Patrizio M, Padula C,
Gallucci M, et al: AMBRA1 and SQSTM1 expression pattern in prostate
cancer. Apoptosis. 20:1577–1586. 2015. View Article : Google Scholar
|
|
103
|
Wang L, Kim D, Wise JT, Shi X, Zhang Z and
DiPaola RS: p62 as a therapeutic target for inhibition of autophagy
in prostate cancer. Prostate. 78:390–400. 2018. View Article : Google Scholar
|
|
104
|
Burdelski C, Reiswich V, Hube-Magg C,
Kluth M, Minner S, Koop C, Graefen M, Heinzer H, Tsourlakis MC,
Wittmer C, et al: Cytoplasmic accumulation of sequestosome 1 (p62)
is a predictor of biochemical recurrence, rapid tumor cell
proliferation, and genomic instability in prostate cancer. Clin
Cancer Res. 21:3471–3479. 2015. View Article : Google Scholar
|
|
105
|
Kim JH, Hong SK, Wu PK, Richards AL,
Jackson WT and Park JI: Raf/MEK/ERK can regulate cellular levels of
LC3B and SQSTM1/p62 at expression levels. Exp Cell Res.
327:340–352. 2014. View Article : Google Scholar
|
|
106
|
Linares JF, Duran A, Reina-Campos M,
Aza-Blanc P, Campos A, Moscat J and Diaz-Meco MT: Amino acid
activation of mTORC1 by a PB1-domain-driven kinase complex cascade.
Cell Rep. 12:1339–1352. 2015. View Article : Google Scholar
|
|
107
|
Jones S, Cunningham DL, Rappoport JZ and
Heath JK: The non-receptor tyrosine kinase Ack1 regulates the fate
of activated EGFR by inducing trafficking to the p62/NBR1
pre-autophagosome. J Cell Sci. 127:994–1006. 2014.
|
|
108
|
Jiang G, Liang X, Huang Y, Lan Z, Zhang Z,
Su Z, Fang Z, Lai Y, Yao W, Liu T, et al: p62 promotes
proliferation, apoptosis-resistance and invasion of prostate cancer
cells through the Keap1/Nrf2/ARE axis. Oncol Rep. 43:1547–1557.
2020.
|
|
109
|
Huang J, Duran A, Reina-Campos M, Valencia
T, Castilla EA, Müller TD, Tschöp MH, Moscat J and Diaz-Meco MT:
Adipocyte p62/SQSTM1 suppresses tumorigenesis through opposite
regulations of metabolism in adipose tissue and tumor. Cancer Cell.
33:770–784.e6. 2018. View Article : Google Scholar
|
|
110
|
Valencia T, Kim JY, Abu-Baker S,
Moscat-Pardos J, Ahn CS, Reina-Campos M, Duran A, Castilla EA,
Metallo CM, Diaz-Meco MT and Moscat J: Metabolic reprogramming of
stromal fibroblasts through p62-mTORC1 signaling promotes
inflammation and tumorigenesis. Cancer Cell. 26:121–135. 2014.
View Article : Google Scholar
|
|
111
|
Chang MA, Patel V, Gwede M, Morgado M,
Tomasevich K, Fong EL, Farach-Carson MC and Delk NA: IL-1β induces
p62/SQSTM1 and represses androgen receptor expression in prostate
cancer cells. J Cell Biochem. 115:2188–2197. 2014. View Article : Google Scholar
|
|
112
|
Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao
W, Yu G, Xiao W, Xu H and Ye Z: Regulation of glucose metabolism by
p62/SQSTM1 through HIF1α. J Cell Sci. 129:817–830. 2016.
|
|
113
|
Liu XD, Yao J, Tripathi DN, Ding Z, Xu Y,
Sun M, Zhang J, Bai S, German P, Hoang A, et al: Autophagy mediates
HIF2α degradation and suppresses renal tumorigenesis. Oncogene.
34:2450–2460. 2015. View Article : Google Scholar
|
|
114
|
Li T, Jiang D and Wu K: p62 promotes
bladder cancer cell growth by activating KEAP1/NRF2-dependent
antioxidative response. Cancer Sci. 111:1156–1164. 2020. View Article : Google Scholar
|
|
115
|
Liu JL, Chen FF, Lung J, Lo CH, Lee FH, Lu
YC and Hung CH: Prognostic significance of p62/SQSTM1 subcellular
localization and LC3B in oral squamous cell carcinoma. Br J Cancer.
111:944–954. 2014. View Article : Google Scholar
|
|
116
|
Kuo WL, Sharifi MN, Lingen MW, Ahmed O,
Liu J, Nagilla M, Macleod KF and Cohen EE: p62/SQSTM1 accumulation
in squamous cell carcinoma of head and neck predicts sensitivity to
phosphatidylinositol 3-kinase pathway inhibitors. PLoS One.
9:e901712014. View Article : Google Scholar
|
|
117
|
Liang L, Luo H, He Q, You Y, Fan Y and
Liang J: Investigation of cancer-associated fibroblasts and p62
expression in oral cancer before and after chemotherapy. J
Craniomaxillofac Surg. 46:605–610. 2018. View Article : Google Scholar
|
|
118
|
Yoshihara N, Takagi A, Ueno T and Ikeda S:
Inverse correlation between microtubule-associated protein
1A/1B-light chain 3 and p62/sequestosome-1 expression in the
progression of cutaneous squamous cell carcinoma. J Dermatol.
41:311–315. 2014. View Article : Google Scholar
|
|
119
|
Shah P, Trinh E, Qiang L, Xie L, Hu WY,
Prins GS, Pi J and He YY: Arsenic induces p62 expression to form a
positive feedback loop with Nrf2 in human epidermal keratinocytes:
Implications for preventing arsenic-induced skin cancer. Molecules.
22:1942017. View Article : Google Scholar
|
|
120
|
Colunga A, Bollino D, Schech A and
Aurelian L: Calpain-dependent clearance of the autophagy protein
p62/SQSTM1 is a contributor to ΔPK oncolytic activity in melanoma.
Gene Ther. 21:371–378. 2014. View Article : Google Scholar
|
|
121
|
Yeh LY, Liu CJ, Wong YK, Chang C, Lin SC
and Chang KW: miR-372 inhibits p62 in head and neck squamous cell
carcinoma in vitro and in vivo. Oncotarget. 6:6062–6075. 2015.
View Article : Google Scholar
|
|
122
|
Yamanaka T, Tosaki A, Kurosawa M,
Matsumoto G, Koike M, Uchiyama Y, Maity SN, Shimogori T, Hattori N
and Nukina N: NF-Y inactivation causes atypical neurodegeneration
characterized by ubiquitin and p62 accumulation and endoplasmic
reticulum disorganization. Nat Commun. 5:33542014. View Article : Google Scholar
|
|
123
|
Wang C, Chen S, Yeo S, Karsli-Uzunbas G,
White E, Mizushima N, Virgin HW and Guan JL: Correction: Elevated
p62/SQSTM1 determines the fate of autophagy-deficient neural stem
cells by increasing superoxide. J Cell Biol. 212:8792016.
View Article : Google Scholar
|
|
124
|
Wang C, Chen S, Yeo S, Karsli-Uzunbas G,
White E, Mizushima N, Virgin HW and Guan JL: Elevated p62/SQSTM1
determines the fate of autophagy-deficient neural stem cells by
increasing superoxide. J Cell Biol. 212:545–560. 2016. View Article : Google Scholar
|
|
125
|
Ivankovic D, Chau KY, Schapira AH and Gegg
ME: Mitochondrial and lysosomal biogenesis are activated following
PINK1/parkin-mediated mitophagy. J Neurochem. 136:388–402. 2016.
View Article : Google Scholar
|
|
126
|
Su J, Liu F, Xia M, Xu Y, Li X, Kang J, Li
Y and Sun L: p62 participates in the inhibition of NF-κB signaling
and apoptosis induced by sulfasalazine in human glioma U251 cells.
Oncol Rep. 34:235–243. 2015. View Article : Google Scholar
|
|
127
|
Zeng RX, Zhang YB, Fan Y and Wu GL:
p62/SQSTM1 is involved in caspase-8 associated cell death induced
by proteasome inhibitor MG132 in U87MG cells. Cell Biol Int.
38:1221–1226. 2014. View Article : Google Scholar
|
|
128
|
De Craene B and Berx G: Regulatory
networks defining EMT during cancer initiation and progression. Nat
Rev Cancer. 13:97–110. 2013. View Article : Google Scholar
|
|
129
|
Qiang L, Zhao B, Ming M, Wang N, He TC,
Hwang S, Thorburn A and He YY: Regulation of cell proliferation and
migration by p62 through stabilization of Twist1. Proc Natl Acad
Sci USA. 111:9241–9246. 2014. View Article : Google Scholar
|
|
130
|
Qiang L and He YY: Autophagy deficiency
stabilizes TWIST1 to promote epithelial-mesenchymal transition.
Autophagy. 10:1864–1865. 2014. View Article : Google Scholar
|
|
131
|
Bertrand M, Petit V, Jain A, Amsellem R,
Johansen T, Larue L, Codogno P and Beau I: SQSTM1/p62 regulates the
expression of junctional proteins through epithelial-mesenchymal
transition factors. Cell Cycle. 14:364–374. 2015. View Article : Google Scholar
|
|
132
|
Jiang X, Huang Y, Liang X, Jiang F, He Y,
Li T, Xu G, Zhao H, Yang W, Jiang G, et al: Metastatic prostate
cancer-associated P62 inhibits autophagy flux and promotes
epithelial to mesenchymal transition by sustaining the level of
HDAC6. Prostate. 78:426–434. 2018. View Article : Google Scholar
|
|
133
|
Grassi G, Di Caprio G, Santangelo L, Fimia
GM, Cozzolino AM, Komatsu M, Ippolito G, Tripodi M and Alonzi T:
Autophagy regulates hepatocyte identity and
epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions
promoting snail degradation. Cell Death Dis. 6:e18802015.
View Article : Google Scholar
|
|
134
|
Geng Y, Ju Y, Ren F, Qiu Y, Tomita Y,
Tomoeda M, Kishida M, Wang Y, Jin L, Su F, et al: Insulin receptor
substrate 1/2 (IRS1/2) regulates Wnt/β-catenin signaling through
blocking autophagic degradation of dishevelled2. J Biol Chem.
289:11230–11241. 2014. View Article : Google Scholar
|
|
135
|
Ma JB, Hu SL, Zang RK, Su Y, Liang YC and
Wang Y: MicroRNA-487a promotes proliferation of esophageal cancer
cells by inhibiting p62 expression. Eur Rev Med Pharmacol Sci.
23:1502–1512. 2019.
|
|
136
|
Zhong JH, Xiang X, Wang YY, Liu X, Qi LN,
Luo CP, Wei WE, You XM, Ma L, Xiang BD and Li LQ: The lncRNA SNHG16
affects prognosis in hepatocellular carcinoma by regulating p62
expression. J Cell Physiol. 235:1090–1102. 2020. View Article : Google Scholar
|
|
137
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar
|
|
138
|
Adamik J, Silbermann R, Marino S, Sun Q,
Anderson J L, Zhou D, Xie XQ, Roodman GD and Galson DL: XRK3F2
inhibition of p62-ZZ domain signaling rescues myeloma-induced
GFI1-driven epigenetic repression of the Runx2 gene in
pre-osteoblasts to overcome differentiation suppression. Front
Endocrinol (Lausanne). 9. pp. 3442018, View Article : Google Scholar
|
|
139
|
Li Y, Li Y, Yin J, Wang C, Yang M, Gu J,
He M, Xu H, Fu W, Zhang W, et al: A mitophagy inhibitor targeting
p62 attenuates the leukemia-initiation potential of acute myeloid
leukemia cells. Cancer Lett. 510:24–36. 2021. View Article : Google Scholar
|
|
140
|
Andersen AN, Landsverk OJ, Simonsen A,
Bogen B, Corthay A and Øynebråten I: Coupling of HIV-1 antigen to
the selective autophagy receptor SQSTM1/p62 promotes
T-cell-mediated immunity. Front Iunol. 7:1672016.
|
|
141
|
Venanzi F, Shifrin V, Sherman M, Gabai V,
Kiselev O, Komissarov A, Grudinin M, Shartukova M,
Romanovskaya-Romanko EA, Kudryavets Y, et al: Broad-spectrum
anti-tumor and anti-metastatic DNA vaccine based on p62-encoding
vector. Oncotarget. 4:1829–1835. 2013. View Article : Google Scholar
|
|
142
|
Gabai V, Venanzi FM, Bagashova E, Rud O,
Mariotti F, Vullo C, Catone G, Sherman MY, Concetti A, Chursov A,
et al: Pilot study of p62 DNA vaccine in dogs with mammary tumors.
Oncotarget. 5:12803–12810. 2014. View Article : Google Scholar
|
|
143
|
Ponomarenko DM, Klimova ID, Chapygina YA,
Dvornichenko VV, Zhukova NV, Orlova RV, Manikhas GM, Zyryanov AV,
Burkhanova LA, Badrtdinova II, et al: Safety and efficacy of p62
DNA vaccine ELENAGEN in a first-in-human trial in patients with
advanced solid tumors. Oncotarget. 8:53730–53739. 2017. View Article : Google Scholar
|