|
1
|
Malvezzi M, Carioli G, Bertuccio P,
Boffetta P, Levi F, La Vecchia C and Negri E: European cancer
mortality predictions for the year 2017, with focus on lung cancer.
Ann Oncol. 28:1117–1123. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Salta S, P Nunes S, Fontes-Sousa M, Lopes
P, Freitas M, Caldas M, Antunes L, Castro F, Antunes P, Palma de
Sousa S, et al: A DNA methylation-based test for breast cancer
detection in circulating cell-free DNA. J Clin Med. 7:4202018.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Oltra SS, Peña-Chilet M, Flower K,
Martinez MT, Alonso E, Burgues O, Lluch A, Flanagan JM and Ribas G:
Acceleration in the DNA methylation age in breast cancer tumours
from very young women. Sci Rep. 9:149912019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schiano C, Soricelli A, De Nigris F and
Napoli C: New challenges in integrated diagnosis by imaging and
osteo-immunology in bone lesions. Expert Rev Clin Immunol.
15:289–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jeong S, Park MJ, Song W and Kim HS:
Current immunoassay methods and their applications to clinically
used biomarkers of breast cancer. Clin Biochem. 78:43–57. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Schiano C, Franzese M, Pane K, Garbino N,
Soricelli A, Salvatore M, de Nigris F and Napoli C: Hybrid
18F-FDG-PET/MRI measurement of standardized uptake value coupled
with yin yang 1 signature in metastatic breast cancer. a
preliminary study. Cancers (Basel). 11:14442019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gucalp A, Traina TA, Eisner JR, Parker JS,
Selitsky SR, Park BH, Elias AD, Baskin-Bey ES and Cardoso F: Male
breast cancer: A disease distinct from female breast cancer. Breast
Cancer Res Treat. 173:37–48. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Khan NAJ and Tirona M: An updated review
of epidemiology, risk factors, and management of male breast
cancer. Med Oncol. 38:392021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Romagnolo DF, Daniels KD, Grunwald JT,
Ramos SA, Propper CR and Selmin OI: Epigenetics of breast cancer:
Modifying role of environmental and bioactive food compounds. Mol
Nutr Food Res. 60:1310–1329. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Vietri MT, Molinari AM, Caliendo G, De
Paola ML, Giovanna D, Gambardella AL, Petronella P and Cioffi M:
Double heterozygosity in the BRCA1 and BRCA2 genes in Italian
family. Clin Chem Lab Med. 51:2319–2324. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vietri MT, Caliendo G, Casamassimi A,
Cioffi M, De Paola ML, Napoli C and Molinari AM: A novel PALB2
truncating mutation in an Italian family with male breast cancer.
Oncol Rep. 33:1243–1247. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pasculli B, Barbano R and Parrella P:
Epigenetics of breast cancer: Biology and clinical implication in
the era of precision medicine. Semin Cancer Biol. 51:22–35. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sher G, Salman NA, Khan AQ, Prabhu KS,
Raza A, Kulinski M, Dermime S, Haris M, Junejo K and Uddin S:
Epigenetic and breast cancer therapy: promising diagnostic and
therapeutic applications. Semin Cancer Biol. Aug 25–2020.(Epub
ahead of print). doi: org/10.1016/j.semcancer.2020.08.009.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bhat SA, Majid S, Wani HA and Rashid S:
Diagnostic utility of epigenetics in breast cancer - A review.
Cancer Treat Res Commun. 19:1001252019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Park HL: Epigenetic biomarkers for
environmental exposures and personalized breast cancer prevention.
Int J Environ Res Public Health. 17:11812020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Stewart CM and Tsui DWY: Circulating
cell-free DNA for non-invasive cancer management. Cancer Genet.
228-229:169–179. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Colao A, de Nigris F, Modica R and Napoli
C: Clinical epigenetics of neuroendocrine tumors: The road ahead.
Front Endocrinol (Lausanne). 11:6043412020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schiano C, Casamassimi A, Rienzo M, de
Nigris F, Sommese L and Napoli C: Involvement of mediator complex
in malignancy. Biochim Biophys Acta. 1845:66–83. 2014.PubMed/NCBI
|
|
19
|
Sarno F, Benincasa G, List M, Barabasi AL,
Baumbach J, Ciardiello F, Filetti S, Glass K, Loscalzo J, Marchese
C, et al International Network Medicine Consortium, : Clinical
epigenetics settings for cancer and cardiovascular diseases:
Real-life applications of network medicine at the bedside. Clin
Epigenetics. 13:662021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Benincasa G, Franzese M, Schiano C,
Marfella R, Miceli M, Infante T, Sardu C, Zanfardino M, Affinito O,
Mansueto G, et al: DNA methylation profiling of
CD04+/CD08+ T cells reveals pathogenic
mechanisms in increasing hyperglycemia: PIRAMIDE pilot study. Ann
Med Surg (Lond). 60:218–226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rodgers KM, Udesky JO, Rudel RA and Brody
JG: Environmental chemicals and breast cancer: An updated review of
epidemiological literature informed by biological mechanisms.
Environ Res. 160:152–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Klutstein M, Nejman D, Greenfield R and
Cedar H: DNA methylation in cancer and aging. Cancer Res.
76:3446–3450. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Murtha M and Esteller M: Extraordinary
cancer epigenomics: Thinking outside the classical coding and
promoter box. Trends Cancer. 2:572–584. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Brooks J, Cairns P and Zeleniuch-Jacquotte
A: Promoter methylation and the detection of breast cancer. Cancer
Causes Control. 20:1539–1550. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shargh SA, Sakizli M, Khalaj V, Movafagh
A, Yazdi H, Hagigatjou E, Sayad A, Mansouri N, Mortazavi-Tabatabaei
SA and Khorram Khorshid HR: Downregulation of E-cadherin expression
in breast cancer by promoter hypermethylation and its relation with
progression and prognosis of tumor. Med Oncol. 31:2502014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Avraham A, Cho SS, Uhlmann R, Polak ML,
Sandbank J, Karni T, Pappo I, Halperin R, Vaknin Z, Sella A, et al:
Tissue specific DNA methylation in normal human breast epithelium
and in breast cancer. PLoS One. 9:e918052014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
de Almeida BP, Apolónio JD, Binnie A and
Castelo-Branco P: Roadmap of DNA methylation in breast cancer
identifies novel prognostic biomarkers. BMC Cancer. 19:2192019.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yang H, Zhou L, Chen J, Su J, Shen W, Liu
B, Zhou J, Yu S and Qian J: A four-gene signature for prognosis in
breast cancer patients with hypermethylated IL15RA. Oncol Lett.
17:4245–4254. 2019.PubMed/NCBI
|
|
29
|
Mao Y, Fu A, Hoffman AE, Jacobs DI, Jin M,
Chen K and Zhu Y: The circadian gene CRY2 is associated with breast
cancer aggressiveness possibly via epigenomic modifications. Tumour
Biol. 36:3533–3539. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sasidharan Nair V, El Salhat H, Taha RZ,
John A, Ali BR and Elkord E: DNA methylation and repressive H3K9
and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4,
TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast
cancer. Clin Epigenetics. 10:782018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cui X, Jing X, Wu X, Xu J, Liu Z, Huo K
and Wang H: Analyses of DNA methylation involved in the activation
of nuclear karyopherin alpha 2 leading to identify the progression
and prognostic significance across human breast cancer. Cancer
Manag Res. 12:6665–6677. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shukla S, Penta D, Mondal P and Meeran SM:
Epigenetics of breast cancer: Clinical status of epi-drugs and
phytochemicals. Adv Exp Med Biol. 1152:293–310. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Loeb DM, Evron E, Patel CB, Sharma PM,
Niranjan B, Buluwela L, Weitzman SA, Korz D and Sukumar S: Wilms'
tumor suppressor gene (WT1) is expressed in primary breast tumors
despite tumor-specific promoter methylation. Cancer Res.
61:921–925. 2001.PubMed/NCBI
|
|
34
|
Vermeulen MA, van Deurzen CHM, Doebar SC,
de Leng WW, Martens JW, van Diest PJ and Moelans CB: Promoter
hypermethylation in ductal carcinoma in situ of the male breast.
Endocr Relat Cancer. 26:575–584. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tao C, Luo R, Song J, Zhang W and Ran L: A
seven-DNA methylation signature as a novel prognostic biomarker in
breast cancer. J Cell Biochem. 121:2385–2393. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Delgado-Cruzata L, Wu HC, Perrin M, Liao
Y, Kappil MA, Ferris JS, Flom JD, Yazici H, Santella RM and Terry
MB: Global DNA methylation levels in white blood cell DNA from
sisters discordant for breast cancer from the New York site of the
Breast Cancer Family Registry. Epigenetics. 7:868–874. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu Z, Bolick SC, DeRoo LA, Weinberg CR,
Sandler DP and Taylo JA: Epigenome-wide association study of breast
cancer using prospectively collected sister study samples. J Natl
Cancer Inst. 105:694–700. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kuchiba A, Iwasaki M, Ono H, Kasuga Y,
Yokoyama S, Onuma H, Nishimura H, Kusama R, Tsugane S and Yoshida
T: Global methylation levels in peripheral blood leukocyte DNA by
LUMA and breast cancer: A case-control study in Japanese women. Br
J Cancer. 110:2765–2771. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cho YH, McCullough LE, Gammon MD, Wu HC,
Zhang YJ, Wang Q, Xu X, Teitelbaum SL, Neugut AI, Chen J, et al:
Promoter hypermethylation in white blood cell DNA and breast cancer
risk. J Cancer. 6:819–824. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tang Q, Cheng J, Cao X, Surowy H and
Burwinkel B: Blood-based DNA methylation as biomarker for breast
cancer: A systematic review. Clin Epigenetics. 8:1152016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Boyne DJ, O'Sullivan DE, Olij BF, King WD,
Friedenreich CM and Brenner DR: Physical activity, global DNA
methylation, and breast cancer risk: A systematic literature review
and meta-analysis. Cancer Epidemiol Biomarkers Prev. 27:1320–1331.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brennan K, Garcia-Closas M, Orr N,
Fletcher O, Jones M, Ashworth A, Swerdlow A, Thorne H, Riboli E,
Vineis P, et al KConFab Investigators, : Intragenic ATM methylation
in peripheral blood DNA as a biomarker of breast cancer risk.
Cancer Res. 72:2304–2313. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Widschwendter M, Apostolidou S, Raum E,
Rothenbacher D, Fiegl H, Menon U, Stegmaier C, Jacobs IJ and
Brenner H: Epigenotyping in peripheral blood cell DNA and breast
cancer risk: A proof of principle study. PLoS One. 3:e26562008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shirkavand A, Boroujeni ZN and Aleyasin
SA: Examination of methylation changes of VIM, CXCR4, DOK7, and
SPDEF genes in peripheral blood DNA in breast cancer patients.
Indian J Cancer. 55:366–371. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zmetakova I, Danihel L, Smolkova B, Mego
M, Kajabova V, Krivulcik T, Rusnak I, Rychly B, Danis D, Repiska V,
et al: Evaluation of protein expression and DNA methylation
profiles detected by pyrosequencing in invasive breast cancer.
Neoplasma. 60:635–646. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Benincasa G, Mansueto G and Napoli C:
Fluid-based assays and precision medicine of cardiovascular
diseases: The ‘hope’ for Pandora's box? J Clin Pathol. 72:785–799.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Aceto N, Bardia A, Miyamoto DT, Donaldson
MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, et al:
Circulating tumor cell clusters are oligoclonal precursors of
breast cancer metastasis. Cell. 158:1110–1122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu L, Sun L, Li C, Li X, Zhang Y, Yu Y
and Xia W: Quantitative detection of methylation of FHIT and BRCA1
promoters in the serum of ductal breast cancer patients. Biomed
Mater Eng. 26 (Suppl 1):S2217–S2222. 2015.PubMed/NCBI
|
|
49
|
Ahmed IA, Pusch CM, Hamed T, Rashad H,
Idris A, El-Fadle AA and Blin N: Epigenetic alterations by
methylation of RASSF1A and DAPK1 promoter sequences in mammary
carcinoma detected in extracellular tumor DNA. Cancer Genet
Cytogenet. 199:96–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kloten V, Becker B, Winner K, Schrauder
MG, Fasching PA, Anzeneder T, Veeck J, Hartmann A, Knüchel R and
Dahl E: Promoter hypermethylation of the tumor-suppressor genes
ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast
cancer screening. Breast Cancer Res. 15:R42013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Swellam M, Abdelmaksoud MDE, Sayed Mahmoud
M, Ramadan A, Abdel-Moneem W and Hefny MM: Aberrant methylation of
APC and RARβ2 genes in breast cancer patients. IUBMB Life.
67:61–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bao-Caamano A, Rodriguez-Casanova A and
Diaz-Lagares A: Epigenetics of circulating tumor cells in breast
cancer. Adv Exp Med Biol. 1220:117–134. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chimonidou M, Strati A, Malamos N, Kouneli
S, Georgoulias V and Lianidou E: Direct comparison study of DNA
methylation markers in EpCAM-positive circulating tumour cells,
corresponding circulating tumour DNA, and paired primary tumours in
breast cancer. Oncotarget. 8:72054–72068. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Dart A: Methylated clusters. Nat Rev
Cancer. 19:1252019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zurita M, Lara PC, del Moral R, Torres B,
Linares-Fernández JL, Arrabal SR, Martínez-Galán J, Oliver FJ and
Ruiz de Almodóvar JM: Hypermethylated 14-3-3-sigma and ESR1 gene
promoters in serum as candidate biomarkers for the diagnosis and
treatment efficacy of breast cancer metastasis. BMC Cancer.
10:2172010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Radpour R, Barekati Z, Kohler C, Lv Q,
Bürki N, Diesch C, Bitzer J, Zheng H, Schmid S and Zhong XY:
Hypermethylation of tumor suppressor genes involved in critical
regulatory pathways for developing a blood-based test in breast
cancer. PLoS One. 6:e160802011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chimonidou M, Tzitzira A, Strati A,
Sotiropoulou G, Sfikas C, Malamos N, Georgoulias V and Lianidou E:
CST6 promoter methylation in circulating cell-free DNA of breast
cancer patients. Clin Biochem. 46:235–240. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pareja F and Reis-Filho JS:
Triple-negative breast cancers - a panoply of cancer types. Nat Rev
Clin Oncol. 15:347–348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Okuma HS and Yonemori K: BRCA gene
mutations and poly(ADP-Ribose) polymerase inhibitors in
triple-negative breast cancer. Adv Exp Med Biol. 1026:271–286.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fackler MJ, Cho S, Cope L, Gabrielson E,
Visvanathan K, Wilsbach K, Meir-Levi D, Lynch CF, Marks J, Geradts
J, et al: DNA methylation markers predict recurrence-free interval
in triple-negative breast cancer. NPJ Breast Cancer. 6:32020.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen X, Zhang J and Dai X: DNA methylation
profiles capturing breast cancer heterogeneity. BMC Genomics.
20:8232019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mendaza S, Ulazia-Garmendia A,
Monreal-Santesteban I, Córdoba A, Azúa YR, Aguiar B, Beloqui R,
Armendáriz P, Arriola M, Martín-Sánchez E, et al: ADAM12 is a
potential therapeutic target regulated by hypomethylation in
triple-negative breast cancer. Int J Mol Sci. 21:9032020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhu X, Shan L, Wang F, Wang J, Wang F,
Shen G, Liu X, Wang B, Yuan Y, Ying J, et al: Hypermethylation of
BRCA1 gene: Implication for prognostic biomarker and therapeutic
target in sporadic primary triple-negative breast cancer. Breast
Cancer Res Treat. 150:479–486. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Good CR, Panjarian S, Kelly AD, Madzo J,
Patel B, Jelinek J and Issa JJ: TET1-mediated hypomethylation
activates oncogenic signaling in triple-negative breast cancer.
Cancer Res. 78:4126–4137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li W, Zheng X, Ren L, Fu W, Liu J, Xv J,
Liu S, Wang J and Du G: Epigenetic hypomethylation and upregulation
of GD3s in triple negative breast cancer. Ann Transl Med.
7:7232019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
van Hoesel AQ, Sato Y, Elashoff DA, Turner
RR, Giuliano AE, Shamonki JM, Kuppen PJ, van de Velde CJ and Hoon
DS: Assessment of DNA methylation status in early stages of breast
cancer development. Br J Cancer. 108:2033–2038. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Laham-Karam N, Pinto GP, Poso A and
Kokkonen P: Transcription and translation inhibitors in Cancer
treatment. Front Chem. 8:2762020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Garcia-Martinez L, Zhang Y, Nakata Y, Chan
HL and Morey L: Epigenetic mechanisms in breast cancer therapy and
resistance. Nat Commun. 12:17862021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Martínez-Galán J, Torres-Torres B, Núñez
MI, López-Peñalver J, Del Moral R, Ruiz De Almodóvar JM, Menjón S,
Concha A, Chamorro C, Ríos S, et al: ESR1 gene promoter region
methylation in free circulating DNA and its correlation with
estrogen receptor protein expression in tumor tissue in breast
cancer patients. BMC Cancer. 14:592014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Palomeras S, Diaz-Lagares Á, Viñas G,
Setien F, Ferreira HJ, Oliveras G, Crujeiras AB, Hernández A, Lum
DH, Welm AL, et al: Epigenetic silencing of TGFBI confers
resistance to trastuzumab in human breast cancer. Breast Cancer
Res. 21:792019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jank P, Gehlhaar C, Bianca L, Caterina F,
Andreas S, Karn T, Marmé F, Sinn HP, van Mackelenbergh M, Sinn B,
et al: MGMT promoter methylation in triple negative breast cancer
of the GeparSixto trial. PLoS One. 15:e02380212020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hamadneh L, Abu-Irmaileh B, Al-Majawleh M,
Bustanji Y, Jarrar Y and Al-Qirim T: Doxorubicin-paclitaxel
sequential treatment: Insights of DNA methylation and gene
expression changes of luminal A and triple negative breast cancer
cell lines. Mol Cell Biochem. 476:3647–3654. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
de Nigris F, Ruosi C and Napoli C:
Clinical efficiency of epigenetic drugs therapy in bone
malignancies. Bone. 143:1156052021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Buocikova V, Rios-Mondragon I, Pilalis E,
Chatziioannou A, Miklikova S, Mego M, Pajuste K, Rucins M, Yamani
NE, Longhin EM, et al: Epigenetics in breast cancer therapy-new
strategies and future nanomedicine perspectives. Cancers (Basel).
12:36222020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Schröder R, Illert AL, Erbes T, Flotho C,
Lübbert M and Duque-Afonso J: The epigenetics of breast cancer -
Opportunities for diagnostics, risk stratification and therapy.
Epigenetics. 23:1–13. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Griffiths EA and Gore SD: DNA
methyltransferase and histone deacetylase inhibitors in the
treatment of myelodysplastic syndromes. Semin Hematol. 45:23–30.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Connolly RM, Li H, Jankowitz RC, Zhang Z,
Rudek MA, Jeter SC, Slater SA, Powers P, Wolff AC, Fetting JH, et
al: Combination epigenetic therapy in advanced breast cancer with
5-azacitidine and entinostat: A phase ii national cancer
institute/stand up to cancer study. Clin Cancer Res. 23:2691–2701.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang Q, Gun M and Hong XY: Induced
tamoxifen resistance is mediated by increased methylation of
e-cadherin in estrogen receptor-expressing breast cancer cells. Sci
Rep. 9:141402019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Muvarak NE, Chowdhury K, Xia L, Robert C,
Choi EY, Cai Y, Bellani M, Zou Y, Singh ZN, Duong VH, et al:
Enhancing the cytotoxic effects of PARP inhibitors with DNA demethy
lating agents - a potential therapy for cancer. Cancer Cell.
30:637–650. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
McLaughlin LJ, Stojanovic L, Kogan AA,
Rutherford JL, Choi EY, Yen RC, Xia L, Zou Y, Lapidus RG, Baylin
SB, et al: Pharmacologic induction of innate immune signaling
directly drives homologous recombination deficiency. Proc Natl Acad
Sci USA. 117:17785–17795. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Selvakumar P, Badgeley A, Murphy P, Anwar
H, Sharma U, Lawrence K and Lakshmikuttyamma A: Flavonoids and
other polyphenols act as epigenetic modifiers in breast cancer.
Nutrients. 12:7612020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Su Y, Hopfinger NR, Nguyen TD, Pogash TJ,
Santucci-Pereira J and Russo J: Epigenetic reprogramming of
epithelial mesenchymal transition in triple negative breast cancer
cells with DNA methyltransferase and histone deacetylase
inhibitors. J Exp Clin Cancer Res. 37:3142018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Scognamiglio G, De Chiara A, Parafioriti
A, Armiraglio E, Fazioli F, Gallo M, Aversa L, Camerlingo R,
Cacciatore F, Colella G, et al: Patient-derived organoids as a
potential model to predict response to PD-1/PD-L1 checkpoint
inhibitors. Br J Cancer. 121:979–982. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Terracciano D, Terreri S, de Nigris F,
Costa V, Calin GA and Cimmino A: The role of a new class of long
noncoding RNAs transcribed from ultraconserved regions in cancer.
Biochim Biophys Acta Rev Cancer. 1868:449–455. 2017. View Article : Google Scholar : PubMed/NCBI
|