|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Network (NCCN): NCC: Clinical Practice
Guidelines in Oncology. Pancreatic Adenocarcinoma, Version 1. NCCN;
Pennsylvania: 2020, https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf.
Accessed November 26, 2019.
|
|
4
|
Marchesi JR, Adams DH, Fava F, Hermes GDA,
Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM,
et al: The gut microbiota and host health: A new clinical frontier.
Gut. 65:330–339. 2016. View Article : Google Scholar
|
|
5
|
Heintz-Buschart A and Wilmes P: Human gut
microbiome: Function matters. Trends Microbiol. 26:563–574. 2018.
View Article : Google Scholar
|
|
6
|
Human Microbiome Project Consortium:
Structure, function and diversity of the healthy human microbiome.
Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kolodziejczyk AA, Zheng D and Elinav E:
Diet-microbiota interactions and personalized nutrition. Nat Rev
Microbiol. 17:742–753. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ianiro G, Tilg H and Gasbarrini A:
Antibiotics as deep modulators of gut microbiota: Between good and
evil. Gut. 65:1906–1915. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Guyton K and Alverdy JC: The gut
microbiota and gastrointestinal surgery. Nat Rev Gastroenterol
Hepatol. 14:43–54. 2017. View Article : Google Scholar
|
|
10
|
Imhann F, Bonder MJ, Vila AV, Fu J,
Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC,
Harmsen HJ, et al: Proton pump inhibitors affect the gut
microbiome. Gut. 65:740–748. 2016. View Article : Google Scholar
|
|
11
|
Tilg H and Adolph TE: Beyond digestion:
The pancreas shapes intestinal microbiota and immunity. Cell Metab.
25:495–496. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ahuja M, Schwartz DM, Tandon M, Son A,
Zeng M, Swaim W, Eckhaus M, Hoffman V, Cui Y, Xiao B, et al:
Orai1-mediated antimicrobial secretion from pancreatic acini shapes
the gut microbiome and regulates gut innate immunity. Cell Metab.
25:635–646. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Panebianco C, Potenza A, Andriulli A and
Pazienza V: Exploring the microbiota to better understand
gastrointestinal cancers physiology. Clin Chem Lab Med.
56:1400–1412. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Balhouse BN, Patterson L, Schmelz EM,
Slade DJ and Verbridge SS: N-(3-oxododecanoyl)-L-homoserine lactone
interactions in the breast tumor microenvironment: Implications for
breast cancer viability and proliferation in vitro. PLoS One.
12:e01803722017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Grąt M, Wronka KM, Krasnodębski M, Masior
L, Lewandowski Z, Kosińska I, Grąt K, Stypułkowski J, Rejowski S,
Wasilewicz M, et al: Profile of gut microbiota associated with the
presence of hepatocellular cancer in patients with liver cirrhosis.
Transplant Proc. 48:1687–1691. 2016. View Article : Google Scholar
|
|
16
|
Zaidi AH, Kelly LA, Kreft RE, Barlek M,
Omstead AN, Matsui D, Boyd NH, Gazarik KE, Heit MI, Nistico L, et
al: Associations of microbiota and toll-like receptor signaling
pathway in esophageal adenocarcinoma. BMC Cancer. 16:522016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wei MY, Shi S, Liang C, Meng QC, Hua J,
Zhang YY, Liu J, Zhang B, Xu J and Yu XJ: The microbiota and
microbiome in pancreatic cancer: More influential than expected.
Mol Cancer. 18:972019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Roy S and Trinchieri G: Microbiota: A key
orchestrator of cancer therapy. Nat Rev Cancer. 17:271–285. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Aarnoutse R, Ziemons J, Penders J, Rensen
SS, de Vos-Geelen J and Smidt ML: The clinical link between human
intestinal microbiota and systemic cancer therapy. Int J Mol Sci.
20:41452019. View Article : Google Scholar :
|
|
20
|
Fan X, Alekseyenko AV, Wu J, Peters BA,
Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R,
Miller G, et al: Human oral microbiome and prospective risk for
pancreatic cancer: A population-based nested case-control study.
Gut. 67:120–127. 2018. View Article : Google Scholar
|
|
21
|
Torres PJ, Fletcher EM, Gibbons SM, Bouvet
M, Doran KS and Kelley ST: Characterization of the salivary
microbiome in patients with pancreatic cancer. PeerJ. 3:e13732015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Olson SH, Satagopan J, Xu Y, Ling L, Leong
S, Orlow I, Saldia A, Li P, Nunes P, Madonia V, et al: The oral
microbiota in patients with pancreatic cancer, patients with IPMNs,
and controls: A pilot study. Cancer Causes Control. 28:959–969.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Michaud DS, Izard J, Wilhelm-Benartzi CS,
You DH, Grote VA, Tjønneland A, Dahm CC, Overvad K, Jenab M,
Fedirko V, et al: Plasma antibodies to oral bacteria and risk of
pancreatic cancer in a large European prospective cohort study.
Gut. 62:1764–1770. 2013. View Article : Google Scholar
|
|
24
|
Farrell JJ, Zhang L, Zhou H, Chia D,
Elashoff D, Akin D, Paster BJ, Joshipura K and Wong DT: Variations
of oral microbiota are associated with pancreatic diseases
including pancreatic cancer. Gut. 61:582–588. 2012. View Article : Google Scholar
|
|
25
|
Sun H, Zhao X, Zhou Y, Wang J, Ma R, Ren
X, Wang H and Zou L: Characterization of oral microbiome and
exploration of potential biomarkers in patients with pancreatic
cancer. Biomed Res Int. 2020:47124982020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vogtmann E, Han Y, Caporaso JG, Bokulich
N, Mohamadkhani A, Moayyedkazemi A, Hua X, Kamangar F, Wan Y, Suman
S, et al: Oral microbial community composition is associated with
pancreatic cancer: A case-control study in Iran. Cancer Med.
9:797–806. 2020. View Article : Google Scholar
|
|
27
|
Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga
Y, Ito M, Kurihara H, Kanno S, Igarashi H, Naito T, Adachi Y, et
al: Association of Fusobacterium species in pancreatic cancer
tissues with molecular features and prognosis. Oncotarget.
6:7209–7220. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Half E, Keren N, Dorfman T, Reshef L,
Lachter I, Kluger Y, Konikoff F and Gphna U: Specific changes in
fecal microbiota may differentiate Pancreatic Cancer patients from
healthy individuals. Ann Oncol. 26:iv482015. View Article : Google Scholar
|
|
29
|
Ren Z: Gut microbial profile analysis by
MiSeq sequencing of pancreatic carcinoma patients in China.
Oncotarget. 8:95176–95191. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sethi V, Kurtom S, Tarique M, Lavania S,
Malchiodi Z, Hellmund L, Zhang L, Sharma U, Giri B, Garg B, et al:
Gut microbiota promotes tumor growth in mice by modulating immune
response. Gastroenterology. 155:33–37.e36. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Half E, Keren N, Reshef L, Dorfman T,
Lachter I, Kluger Y, Reshef N, Knobler H, Maor Y, Stein A, et al:
Fecal microbiome signatures of pancreatic cancer patients. Sci Rep.
9:168012019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Riquelme E, Zhang Y, Zhang L, Montiel M,
Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, Lucas AS, et al:
Tumor microbiome diversity and composition influence pancreatic
cancer outcomes. Cell. 178:795–806.e712. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pushalkar S, Hundeyin M, Daley D,
Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres
LE, et al: The pancreatic cancer microbiome promotes oncogenesis by
induction of innate and adaptive immune suppression. Cancer Discov.
8:403–416. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ikebe M, Kitaura Y, Nakamura M, Tanaka H,
Yamasaki A, Nagai S, Wada J, Yanai K, Koga K, Sato N, et al:
Lipopolysaccharide (LPS) increases the invasive ability of
pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J
Surg Oncol. 100:725–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Eibl G and Rozengurt E: KRAS, YAP, and
obesity in pancreatic cancer: A signaling network with multiple
loops. Semin Cancer Biol. 54:50–62. 2019. View Article : Google Scholar
|
|
36
|
Aykut B, Pushalkar S, Chen R, Li Q,
Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al:
The fungal mycobiome promotes pancreatic oncogenesis via activation
of MBL. Nature. 574:264–267. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gaida MM, Mayer C, Dapunt U, Stegmaier S,
Schirmacher P, Wabnitz GH and Hänsch GM: Expression of the bitter
receptor T2R38 in pancreatic cancer: Localization in lipid droplets
and activation by a bacteria-derived quorum-sensing molecule.
Oncotarget. 7:12623–12632. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mendez R, Kesh K, Arora N, Martino LD,
McAllister F, Merchant N and Banerjee S and Banerjee S: Microbial
dysbiosis and polyamine metabolism as predictive markers for early
detection of pancreatic cancer. Carcinogenesis. 41:561–570. 2020.
View Article : Google Scholar :
|
|
39
|
Burris HA III, Moore MJ, Andersen J, Green
MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo
AM, Tarassoff P, et al: Improvements in survival and clinical
benefit with gemcitabine as first-line therapy for patients with
advanced pancreas cancer: A randomized trial. J Clin Oncol.
15:2403–2413. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Von Hoff DD, Ramanathan RK, Borad MJ,
Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Trieu V, Iglesias
JL, et al: Gemcitabine plus nab-paclitaxel is an active regimen in
patients with advanced pancreatic cancer: A phase I/II trial. J
Clin Oncol. 29:4548–4554. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gnanamony M and Gondi CS: Chemoresistance
in pancreatic cancer: Emerging concepts. Oncol Lett. 13:2507–2513.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Neale GA, Mitchell A and Finch LR: Enzymes
of pyrimidine deoxyribonucleotide metabolism in Mycoplasma mycoides
subsp. Mycoides J Bacteriol. 156:1001–1005. 1983. View Article : Google Scholar
|
|
43
|
Voorde JV, Sabuncuoğlu S, Noppen S, Hofer
A, Ranjbarian F, Fieuws S, Balzarini J and Liekens S:
Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell
cultures compromise the cytostatic activity of the anticancer drug
gemcitabine. J Biol Chem. 289:13054–13065. 2014. View Article : Google Scholar
|
|
44
|
Geller LT, Barzily-Rokni M, Danino T,
Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee
K, et al: Potential role of intratumor bacteria in mediating tumor
resistance to the chemotherapeutic drug gemcitabine. Science.
357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lehouritis P, Cummins J, Stanton M, Murphy
CT, McCarthy FO, Reid G, Urbaniak C, Byrne WL and Tangney M: Local
bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep.
5:145542015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kesh K, Mendez R, Abdelrahman L and
Banerjee S and Banerjee S: Type 2 diabetes induced microbiome
dysbiosis is associated with therapy resistance in pancreatic
adenocarcinoma. Microb Cell Fact. 19:752020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Florez AB, Sierra M, Ruas-Madiedo P and
Mayo B: Susceptibility of lactic acid bacteria, bifidobacteria and
other bacteria of intestinal origin to chemotherapeutic agents. Int
J Antimicrob Agents. 48:547–550. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Loman BR, Jordan KR, Haynes B, Bailey MT
and Pyter LM: Chemotherapy-induced neuroinflammation is associated
with disrupted colonic and bacterial homeostasis in female mice.
Sci Rep. 9:16490. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ramakrishna C, Corleto J, Ruegger PM,
Logan GD, Peacock BB, Mendonca S, Yamaki S, Adamson T, Ermel R,
McKemy D, et al: Dominant role of the gut microbiota in
chemotherapy induced neuropathic pain. Sci Rep. 9:20324. 2019.
View Article : Google Scholar
|
|
50
|
Peretz A, Shlomo IB, Nitzan O, Bonavina L,
Schaffer PM and Schaffer M: Clostridium difficile Infection:
Associations with chemotherapy, radiation therapy, and targeting
therapy treatments. Curr Med Chem. 23:4442–4449. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Su J, Li D, Chen Q, Li M, Su L, Luo T,
Liang D, Lai G, Shuai O, Jiao C, et al: Anti-breast cancer
enhancement of a polysaccharide from spore of ganoderma lucidum
with paclitaxel: Suppression on tumor metabolism with gut
microbiota reshaping. Front Microbiol. 9:30992018. View Article : Google Scholar
|
|
52
|
Stringer AM, Gibson RJ, Logan RM, Bowen
JM, Yeoh AS, Hamilton J and Keefe DM: Gastrointestinal microflora
and mucins may play a critical role in the development of
5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med
(Maywood). 234:430–441. 2009. View Article : Google Scholar
|
|
53
|
Yeung CY, Chiau JS, Cheng ML, Chan WT,
Chang SW, Chang YH, Jiang CB and Lee HC: Modulations of probiotics
on gut microbiota in a 5-fluorouracil-induced mouse model of
mucositis. J Gastroenterol Hepatol. 35:806–814. 2020. View Article : Google Scholar
|
|
54
|
Vanlancker E, Vanhoecke B, Smet R, Props R
and Van de Wiele T: 5-Fluorouracil sensitivity varies among oral
micro-organisms. J Med Microbiol. 65:775–783. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Saegusa Y, Ichikawa T, Iwai T, Goso Y,
Okayasu I, Ikezawa T, Shikama N, Saigenji K and Ishihara K: Changes
in the mucus barrier of the rat during 5-fluorouracil-induced
gastrointestinal mucositis. Scand J Gastroenterol. 43:59–65. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ichim TE, Kesari S and Shafer K:
Protection from chemotherapy- and antibiotic-mediated dysbiosis of
the gut microbiota by a probiotic with digestive enzymes
supplement. Oncotarget. 9:30919–30935. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nakayama H, Kinouchi T, Kataoka K, Akimoto
S, Matsuda Y and Ohnishi Y: Intestinal anaerobic bacteria hydrolyse
sorivudine, producing the high blood concentration of
5-(E)-(2-bromovinyl) uracil that increases the level and toxicity
of 5-fluorouracil. Pharmacogenetics. 7:35–43. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yuan L, Zhang S, Li H, Yang F, Mushtaq N,
Ullah S, Shi Y, An C and Xu J: The influence of gut microbiota
dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal
cancer. Biomed Pharmacother. 108:184–193. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bronckaers A, Balzarini J and Liekens S:
The cytostatic activity of pyrimidine nucleosides is strongly
modulated by Mycoplasma hyorhinis infection: Implications for
cancer therapy. Biochem Pharmacol. 76:188–197. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J,
Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium
nucleatum promotes chemoresistance to colorectal cancer by
modulating autophagy. Cell. 170:548–563.e516. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang S, Yang Y, Weng W, Guo B, Cai G, Ma
Y and Cai S: Fusobacterium nucleatum promotes chemoresistance to
5-fluorouracil by upregulation of BIRC3 expression in colorectal
cancer. J Exp Clin Cancer Res. 38:142019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
García-González AP, Ritter AD, Shrestha S,
Andersen EC, Yilmaz LS and Walhout AJM: Bacterial metabolism
affects the C. Elegans response to cancer chemotherapeutics. Cell.
169:431–441. 2017. View Article : Google Scholar :
|
|
63
|
Scott TA, Quintaneiro LM, Norvaisas P, Lui
PP, Wilson MP, Leung KY, Herrera-Dominguez L, Sudiwala S, Pessia A,
Clayton PT, et al: Host-microbe co-metabolism dictates cancer drug
efficacy in C. Elegans. Cell. 169:442–456.e418. 2017. View Article : Google Scholar
|
|
64
|
Fogelman D, Sugar EA, Oliver G, Shah N,
Klein A, Alewine C, Wang H, Javle M, Shroff R, Wolff RA, et al:
Family history as a marker of platinum sensitivity in pancreatic
adenocarcinoma. Cancer Chemother Pharmacol. 76:489–498. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Siddik ZH: Cisplatin: Mode of cytotoxic
action and molecular basis of resistance. Oncogene. 22:7265–7279.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hato SV, Khong A, de Vries IJM and
Lesterhuis WJ: Molecular pathways: The immunogenic effects of
platinum-based chemotherapeutics. Clin Cancer Res. 20:2831–2837.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pflug N, Kluth S, Vehreschild JJ, Bahlo J,
Tacke D, Biehl L, Eichhorst B, Fischer K, Cramer P, Fink AM, et al:
Efficacy of antineoplastic treatment is associated with the use of
antibiotics that modulate intestinal microbiota. Oncoimmunology.
5:e11503992016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shahid F, Farooqui Z and Khan F:
Cisplatin-induced gastrointestinal toxicity: An update on possible
mechanisms and on available gastroprotective strategies. Eur J
Pharmacol. 827:49–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gui QF, Lu HF, Zhang CX, Xu ZR and Yang
YH: Well-balanced commensal microbiota contributes to anti-cancer
response in a lung cancer mouse model. Genet Mol Res. 14:5642–5651.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wu CH, Ko JL, Liao JM, Huang SS, Lin MY,
Lee LH, Chang LY and Ou CC: D-methionine alleviates
cisplatin-induced mucositis by restoring the gut microbiota
structure and improving intestinal inflammation. Ther Adv Med
Oncol. 11:17588359188210212019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Feng X, Cheng Q, Meng Q, Yang Y and Nie K:
Effects of ondansetron and [6]-gingerol on pica and gut microbiota
in rats treated with cisplatin. Drug Des Devel Ther. 13:2633–2641.
2019. View Article : Google Scholar :
|
|
72
|
Zhou P, Li Z, Xu D, Wang Y, Bai Q, Feng Y,
Su G, Chen P, Wang Y, Liu H, et al: Cepharanthine hydrochloride
improves cisplatin chemotherapy and enhances immunity by regulating
intestinal microbes in mice. Front Cell Infect Microbiol.
9:22510.3389. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lee TH, Park D, Kim YJ, Lee I, Kim S, Oh
CT, Kim JY, Yang J and Jo SK: Lactobacillus salivarius BP121
prevents cisplatin-induced acute kidney injury by inhibition of
uremic toxins such as indoxyl sulfate and p-cresol sulfate via
alleviating dysbiosis. Int J Mol Med. 45:1130–1140. 2020.PubMed/NCBI
|
|
74
|
Lee YJ, Li KY, Wang PJ, Huang HW and Chen
MJ: Alleviating chronic kidney disease progression through
modulating the critical genus of gut microbiota in a
cisplatin-induced Lanyu pig model. J Food Drug Anal. 28:103–114.
2020. View Article : Google Scholar
|
|
75
|
Zhao L, Xing C, Sun W, Hou G, Yang G and
Yuan L: Lactobacillus supplementation prevents cisplatin-induced
cardiotoxicity possibly by inflammation inhibition. Cancer
Chemother Pharmacol. 82:999–1008. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Iida N, Dzutsev A, Stewart CA, Smith L,
Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S,
et al: Commensal bacteria control cancer response to therapy by
modulating the tumor microenvironment. Science. 342:967–970. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ozben T: Oxidative stress and apoptosis:
Impact on cancer therapy. J Pharm Sci. 96:2181–2196. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ewertz M, Qvortrup C and Eckhoff L:
Chemotherapy-induced peripheral neuropathy in patients treated with
taxanes and platinum derivatives. Acta Oncol. 54:587–591. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Stojanovska V, Sakkal S and Nurgali K:
Platinum-based chemotherapy: Gastrointestinal immunomodulation and
enteric nervous system toxicity. Am J Physiol Gastrointest Liver
Physiol. 308:G223–G232. 2015. View Article : Google Scholar
|
|
80
|
Shen S, Lim G, You Z, Ding W, Huang P, Ran
C, Doheny J, Caravan J, Tate S, Hu K, et al: Gut microbiota is
critical for the induction of chemotherapy-induced pain. Nat
Neurosci. 20:1213–1216. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sprowl JA, Ciarimboli G, Lancaster CS,
Giovinazzo H, Gibson AA, Du G, Janke LJ, Cavaletti G, Shields AF
and Sparreboom A: Oxaliplatin-induced neurotoxicity is dependent on
the organic cation transporter OCT2. Proc Natl Acad Sci USA.
110:11199–11204. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Forsgård RA, Marrachelli VG, Korpela K,
Frias R, Collado MC, Korpela R, Monleon D, Spillmann T and
Österlund P: Chemotherapy-induced gastrointestinal toxicity is
associated with changes in serum and urine metabolome and fecal
microbiota in male Sprague-Dawley rats. Cancer Chemother Pharmacol.
80:317–332. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chang CW, Liu CY, Lee HC, Huang YH, Li LH,
Chiau JS, Wang TE, Chu CH, Shih SC, Tsai TH and Chen YJ: Variety
probiotic preventively attenuates
5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic
colorectal cancer model. Front Microbiol. 9:9832018. View Article : Google Scholar
|
|
84
|
Chang CW, Lee HC, Li LH, Chiau JS, Wang
TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al: Fecal
microbiota transplantation prevents intestinal injury, upregulation
of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced
toxicity in colorectal cancer. Int J Mol Sci. 21:3862020.
View Article : Google Scholar :
|
|
85
|
Conroy T, Desseigne F, Ychou M, Bouché O,
Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de
la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for
metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Vanhoefer U, Harstrick A, Achterrath W,
Cao S, Seeber S and Rustum YM: Irinotecan in the treatment of
colorectal cancer: Clinical overview. J Clin Oncol. 19:1501–1518.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sparreboom A, de Jonge MJ, de Bruijn P,
Brouwer E, Nooter K, Loos WJ, van Alphen RJ, Mathijssen RH, Stoter
G and Verweij J: Irinotecan (CPT-11) metabolism and disposition in
cancer patients. Clin Cancer Res. 4:2747–2754. 1998.PubMed/NCBI
|
|
88
|
Takasuna K, Hagiwara T, Hirohashi M, Kato
M, Nomura M, Nagai E, Yokoi T and Kamataki T: Involvement of
beta-glucuronidase in intestinal microflora in the intestinal
toxicity of the antitumor camptothecin derivative irinotecan
hydrochloride (CPT-11) in rats. Cancer Res. 56:3752–3757.
1996.PubMed/NCBI
|
|
89
|
Brandi G, Dabard J, Raibaud P, Battista
MD, Bridonneau C, Pisi AM, Labate AM, Pantaleo MA, Vivo AD and
Biasco G: Intestinal microflora and digestive toxicity of
irinotecan in mice. Clin Cancer Res. 12:1299–1307. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wardill HR, Gibson RJ, Van Sebille YZA,
Secombe KR, Coller JK, White IA, Manavis J, Hutchinson MR,
Staikopoulos V, Logan RM and Bowen JM: Irinotecan-induced
gastrointestinal dysfunction and pain are mediated by common
TLR4-dependent mechanisms. Mol Cancer Ther. 15:1376–1386. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Pedroso SHSP, Vieira AT, Bastos RW,
Oliveira JS, Cartelle CT, Arantes RM, Soares PM, Generoso SV,
Cardoso VN, Teixeira MM, et al: Evaluation of mucositis induced by
irinotecan after microbial colonization in germ-free mice.
Microbiology. 161:1950–1960. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ribeiro RA, Wanderley CWS, Wong DVT, Mota
JM, Leite CA, Souza MH, Cunha FQ and Lima-Júnior RC: Irinotecan-
and 5-fluorouracil-induced intestinal mucositis: Insights into
pathogenesis and therapeutic perspectives. Cancer Chemother
Pharmacol. 78:881–893. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Moore MJ, Goldstein D, Hamm J, Figer A,
Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al:
Erlotinib plus gemcitabine compared with gemcitabine alone in
patients with advanced pancreatic cancer: A phase III trial of the
national cancer institute of Canada clinical trials group. J Clin
Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Forsgård RA, Marrachelli VG, Lindén J,
Frias R, Collado MC, Korpela R, Monleon D, Spillmann T and
Österlund P: Two-week aflibercept or erlotinib administration does
not induce changes in intestinal morphology in male sprague-dawley
rats but aflibercept affects serum and urine metabolic profiles.
Transl Oncol. 12:1122–1130. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Heshiki Y, Vazquez-Uribe R, Li J, Ni Y,
Quainoo S, Imamovic L, Li J, Sørensen M, Chow BK, Weiss GJ, et al:
Predictable modulation of cancer treatment outcomes by the gut
microbiota. Microbiome. 8:282020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Panebianco C, Andriulli A and Pazienza V:
Pharmacomicrobiomics: Exploiting the drug-microbiota interactions
in anticancer therapies. Microbiome. 6:922018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chiu CY and Miller SA: Clinical
metagenomics. Net Rev Genet. 20:341–355. 2019. View Article : Google Scholar
|
|
98
|
Chaput N, Lepage P, Coutzac C, Soularue E,
Roux KL, Monot C, Boselli L, Routier E, Cassard L, Collins M, et
al: Baseline gut microbiota predicts clinical response and colitis
in metastatic melanoma patients treated with ipilimumab. Ann Oncol.
28:1368–1379. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Farowski F, Solbach P, Tsakmaklis A,
Brodesser S, Aguilar MR, Cornely OA, Dettmer K, Higgins PG,
Suerbaum S, Jazmati N, et al: Potential biomarkers to predict
outcome of faecal microbiota transfer for recurrent Clostridioides
difficile infection. Dig Liver Dis. 51:944–951. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Khanna S, Montassier E, Schmidt B, Patel
R, Knights D, Pardi DS and Kashyap P: Gut microbiome predictors of
treatment response and recurrence in primary clostridium difficile
infection. Aliment Pharmacol Ther. 44:715–727. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Aarnoutse R, de Vos-Geelen JMPGM, Penders
J, Boerma EG, Warmerdam FA, Goorts B, Damink SWM, Soons Z, Rensen
SS and Smidt ML: Study protocol on the role of intestinal
microbiota in colorectal cancer treatment: A pathway to
personalized medicine 2.0. Int J Colorectal Dis. 32:1077–1084.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Stringer AM, Al-Dasooqi N, Bowen JM, Tan
TH, Radzuan M, Logan RM, Mayo B, Keefe DM and Gibson RJ: Biomarkers
of chemotherapy-induced diarrhoea: A clinical study of intestinal
microbiome alterations, inflammation and circulating matrix
metalloproteinases. Support Care Cancer. 21:1843–1852. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lin XB, Dieleman LA, Ketabi A, Bibova I,
Sawyer MB, Xue H, Field CJ, Baracos VE and Gänzle MG: Irinotecan
(CPT-11) chemotherapy alters intestinal microbiota in tumour
bearing rats. PLoS One. 7:e397642012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Panebianco C, Adamberg K, Jaagura M,
Copetti M, Fontana A, Adamberg S, Kolk K, Vilu R, Andriulli A and
Pazienza V: Influence of gemcitabine chemotherapy on the microbiota
of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol.
81:773–782. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Meunier A, Nerich V, Fagnoni-Legat C,
Richard M, Mazel D, Adotevi O, Bertrand X and Hocquet D: Enhanced
emergence of antibiotic-resistant pathogenic bacteria after in
vitro induction with cancer chemotherapy drugs. J Antimicrob
Chemother. 74:1572–1577. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zwielehner J, Lassl C, Hippe B, Pointner
A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R and Haslberger AG:
Changes in human fecal microbiota due to chemotherapy analyzed by
TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One.
6:e286542011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Montassier E, Gastinne T, Vangay P,
Al-Ghalith GA, des Varannes SB, Massart S, Moreau P, Potel G, de La
Cochetière MF, Batard E and Knights D: Chemotherapy- driven
dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther.
42:515–528. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kong C, Gao R, Yan X, Huang L, He J, Li H,
You J and Qin H: Alterations in intestinal microbiota of colorectal
cancer patients receiving radical surgery combined with adjuvant
CapeOx therapy. Sci China Life Sci. 62:1178–1193. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lozupone CA, Stombaugh JI, Gordon JI,
Jansson JK and Knight R: Diversity, stability and resilience of the
human gut microbiota. Nature. 489:220–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bhatt AP, Pellock SJ, Biernat KA, Walton
WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID,
Roques JR, et al: Targeted inhibition of gut bacterial
β-glucuronidase activity enhances anticancer drug efficacy. Proc
Natl Acad Sci USA. 117:7374–7381. 2020. View Article : Google Scholar
|
|
111
|
Roberts AB, Wallace BD, Venkatesh MK, Mani
S and Redinbo MR: Molecular insights into microbial β-glucuronidase
inhibition to abrogate CPT-11 toxicity. Mol Pharmacol. 84:208–217.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pellock SJ, Walton WG, Biernat KA,
Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ
and Redinbo MR: Three structurally and functionally distinct
β-glucuronidases from the human gut microbe. J Biol Chem.
293:18559–18573. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wallace BD, Roberts AB, Pollet RM, Ingle
JD, Biernat KA, Pellock SJ, Venkatesh MK, Guthrie L, O'Neal SK,
Robinson SJ, et al: Structure and inhibition of microbiome
β-glucuronidases essential to the alleviation of cancer drug
toxicity. Chem Biol. 22:1238–1249. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wallace BD, Wang H, Lane KT, Scott JE,
Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S and Redinbo
MR: Alleviating cancer drug toxicity by inhibiting a bacterial
enzyme. Science. 330:831–835. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chamseddine AN, Ducreux M, Armand JP,
Paoletti X, Satar T, Paci A and Mir O: Intestinal bacterial
β-glucuronidase as a possible predictive biomarker of
irinotecan-induced diarrhea severity. Pharmacol Ther. 199:1–15.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Arumugam M, Raes J, Pelletier E, Paslier
DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et
al: Enterotypes of the human gut microbiome. Nature. 473:174–180.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Dougan SK: The pancreatic cancer
microenvironment. Cancer J. 23:321–325. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Binenbaum Y, Na'ara S and Gil Z:
Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug
Resist Updat. 23:55–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Halbrook CJ, Pontious C, Kovalenko I,
Lapienyte L, Dreyer S, Lee HJ, Thurston G, Zhang Y, Lazarus J,
Sajjakulnukit P, et al: Macrophage-released pyrimidines inhibit
gemcitabine therapy in pancreatic cancer. Cell Metab. 29:1390–1399.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Alexander JL, Wilson ID, Teare J, Marchesi
JR, Nicholson JK and Kinross JM: Gut microbiota modulation of
chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol.
14:356–365. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Villéger R, Lopès A, Carrier G, Veziant J,
Billard E, Barnich N, Gagnière J, Vazeille E and Bonnet M:
Intestinal microbiota: A novel target to improve anti-tumor
treatment? Int J Mol Sci. 20:45842019. View Article : Google Scholar :
|
|
122
|
McQuade JL, Daniel CR, Helmink BA and
Wargo JA: Modulating the microbiome to improve therapeutic response
in cancer. Lancet Oncol. 20:e77–e91. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Becattini S, Taur Y and Pamer EG:
Antibiotic-induced changes in the intestinal microbiota and
disease. Trends Mol Med. 22:458–478. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Flieger D, Klassert C, Hainke S, Keller R,
Kleinschmidt R and Fischbach W: Phase II clinical trial for
prevention of delayed diarrhea with cholestyramine/levofloxacin in
the second-line treatment with irinotecan biweekly in patients with
metastatic colorectal carcinoma. Oncology. 72:10–16. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kurita A, Kado S, Matsumoto T, Asakawa N,
Kaneda N, Kato I, Uchida K, Onoue M and Yokokura T: Streptomycin
alleviates irinotecan-induced delayed-onset diarrhea in rats by a
mechanism other than inhibition of β-glucuronidase activity in
intestinal lumen. Cancer Chemother Pharmacol. 67:201–213. 2011.
View Article : Google Scholar
|
|
126
|
Iida N, Mizukoshi E, Yamashita T,
Terashima T, Arai K, Seishima J and Kaneko S: Overuse of
antianaerobic drug is associated with poor postchemotherapy
prognosis of patients with hepatocellular carcinoma. Int J Cancer.
145:2701–2711. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Levy SB and Marshall B: Antibacterial
resistance worldwide: Causes, challenges and responses. Nat Med.
10(12 Suppl): S122–S129. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
128
|
George Kerry R, Patra JK, Gouda S, Park Y,
Shin HS and Das G: Benefaction of probiotics for human health: A
review. J Food Drug Anal. 26:927–939. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Yu AQ and Li L: The potential role of
probiotics in cancer prevention and treatment. Nutr Cancer.
68:535–544. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Vivarelli S, Salemi R, Candido S, Falzone
L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra
M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers
(Basel). 11:382019. View Article : Google Scholar
|
|
131
|
An J and Ha EM: Combination therapy of
lactobacillus plantarum supernatant and 5-fluouracil increases
chemosensitivity in colorectal cancer cells. J Microbiol
Biotechnol. 26:1490–1503. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chang CW, Liu CY, Lee HC, Huang YH, Li LH,
Chiau JS, Wang TE, Chu CH, Shih SC, Tsai TH and Chen YJ:
Lactobacillus casei variety rhamnosus probiotic preventively
attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in
a syngeneic colorectal cancer model. Front Microbiol. 9:9832018.
View Article : Google Scholar :
|
|
133
|
Wang Y, Sun L, Chen S, Guo S, Yue T, Hou
Q, Feng M, Xu H, Liu Y, Wang P and Pan Y: The administration of
Escherichia coli Nissle 1917 ameliorates irinotecan-induced
intestinal barrier dysfunction and gut microbial dysbiosis in mice.
Life Sci. 231:1165292019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Serkova MI, Urtenova MA, Tkachenko EI,
Avalueva EB, Orlov SV, Ivanov SV, Orishak EA and Skazyvaeva EV: On
the possibilities of correction of changes of the gastrointestinal
tract microbiota in patients with lung cancer treated receiving
chemotherapy. Eksp Klin Gastroenterol. 15–20. 2013.
|
|
135
|
Mego M, Koncekova R, Mikuskova E, Drgona
L, Ebringer L, Demitrovicova L, Nemova I, Trupl J, Mardiak J, Koza
I and Zajac V: Prevention of febrile neutropenia in cancer patients
by probiotic strain Enterococcus faecium M-74. Phase II study
Support Care Cancer. 14:285–290. 2006. View Article : Google Scholar
|
|
136
|
Picó-Monllor JA and Mingot-Ascencao JM:
Search and selection of probiotics that improve mucositis symptoms
in oncologic patients. A systematic review. Nutrients. 11:23222019.
View Article : Google Scholar :
|
|
137
|
González-Sarrías A, Tome-Carneiro J,
Bellesia A, Tomás-Barberán FA and Espin JC: The ellagic
acid-derived gut microbiota metabolite, urolithin A, potentiates
the anticancer effects of 5-fluorouracil chemotherapy on human
colon cancer cells. Food Funct. 6:1460–1469. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Le Bastard Q, Ward T, Sidiropoulos D,
Hillmann BM, Chun CL, Sadowsky MJ, Knights D and Montassier E:
Fecal microbiota transplantation reverses antibiotic and
chemotherapy-induced gut dysbiosis in mice. Sci Rep. 8:62192018.
View Article : Google Scholar : PubMed/NCBI
|