Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review)

  • Authors:
    • Xingyu Ma
    • Yanxi Liu
    • Qianlan Han
    • Yunwei Han
    • Jing Wang
    • Hongwei Zhang
  • View Affiliations / Copyright

    Affiliations: Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
  • Article Number: 108
    |
    Published online on: November 25, 2021
       https://doi.org/10.3892/ijo.2021.5288
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Red blood cell (RBC) transfusions may have a negative impact on the prognosis of patients with cancer, where transfusion‑related immunomodulation (TRIM) may be a significant contributing factor. A number of components have been indicated to be associated with TRIM. Among these, the impact of extracellular vesicles (EVs) has been garnering increasing attention from researchers. EVs are defined as nano‑scale, cell‑derived vesicles that carry a variety of bioactive molecules, including proteins, nucleic acids and lipids, to mediate cell‑to‑cell communication and exert immunoregulatory functions. RBCs in storage constitutively secrete EVs, which serve an important role in TRIM in patients with cancer receiving a blood transfusion. Therefore, the present review aimed to first summarize the available information on the biogenesis and characterization of EVs. Subsequently, the possible mechanisms of TRIM in patients with cancer and the impact of EVs on TRIM were discussed, aiming to provide an outlook for future studies, specifically for formulating recommendations for managing patients with cancer receiving RBC transfusions.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Gantt CL: Red blood cells for patients with cancer. Lancet. 2:3631981. View Article : Google Scholar : PubMed/NCBI

2 

Parmiani G, Fossati G and Della Porta G: The undefined relationship between tumor antigens and histocompatibility antigens on cancer cells. Ric Clin Lab. 10:481–492. 1980. View Article : Google Scholar : PubMed/NCBI

3 

Jiang XB, Zhang LP, Wang YJ and Ma C: Research advance on clinical blood transfusion and tumor therapy. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 18:1092–1095. 2010.(In Chinese). PubMed/NCBI

4 

Kenar G, Köksoy EB, Ürün Y and Utkan G: Prevalence, etiology and risk factors of anemia in patients with newly diagnosed cancer. Support Care Cancer. 28:5235–5242. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Owusu C, Cohen HJ, Feng T, Tew W, Mohile SG, Klepin HD, Gross CP, Gajra A, Lichtman SM and Hurria A; Cancer Aging Research Group (CARG), . Anemia and functional disability in older adults with cancer. J Natl Compr Canc Netw. 13:1233–1239. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Watkins T, Surowiecka MK and McCullough J: Transfusion indications for patients with cancer. Cancer Control. 22:38–46. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Dicato M, Plawny L and Diederich M: Anemia in cancer. Ann Oncol. 21 (Suppl 7):vii167–vii172. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Shortt J, Polizzotto MN, Waters N, Borosak M, Moran M, Comande M, Devine A, Jolley DJ and Wood EM: Assessment of the urgency and deferability of transfusion to inform emergency blood planning and triage: The bloodhound prospective audit of red blood cell use. Transfusion. 49:2296–2303. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Tzounakas VL, Seghatchian J, Grouzi E, Kokoris S and Antonelou MH: Red blood cell transfusion in surgical cancer patients: Targets, risks, mechanistic understanding and further therapeutic opportunities. Transfus Apher Sci. 56:291–304. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Al-Refaie WB, Parsons HM, Markin A, Abrams J and Habermann EB: Blood transfusion and cancer surgery outcomes: A continued reason for concern. Surgery. 152:344–354. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Aguilar-Nascimento JE, Zampieri-Filho JP and Bordin JO: Implications of perioperative allogeneic red blood cell transfusion on the immune-inflammatory response. Hematol Transfus Cell Ther. 43:58–64. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Connor JP, O'Shea A, McCool K, Sampene E and Barroilhet LM: Peri-operative allogeneic blood transfusion is associated with poor overall survival in advanced epithelial ovarian cancer; potential impact of patient blood management on cancer outcomes. Gynecol Oncol. 151:294–298. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Goubran H, Sheridan D, Radosevic J, Burnouf T and Seghatchian J: Transfusion-related immunomodulation and cancer. Transfus Apher Sci. 56:336–340. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, et al: Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 58:804–815. 2018. View Article : Google Scholar : PubMed/NCBI

15 

D'Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS and Zolla L: An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 55:205–219. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Laurén E, Tigistu-Sahle F, Valkonen S, Westberg M, Valkeajärvi A, Eronen J, Siljander P, Pettilä V, Käkelä R, Laitinen S and Kerkelä E: Phospholipid composition of packed red blood cells and that of extracellular vesicles show a high resemblance and stability during storage. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:1–8. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Antonelou MH and Seghatchian J: Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci. 55:292–301. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Hoehn RS, Jernigan PL, Chang AL, Edwards MJ and Pritts TA: Molecular mechanisms of erythrocyte aging. Biol Chem. 396:621–631. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Nieuwland R, Falcon-Perez JM, Soekmadji C, Boilard E, Carter D and Buzas EI: Essentials of extracellular vesicles: Posters on basic and clinical aspects of extracellular vesicles. J Extracell Vesicles. 7:15482342018. View Article : Google Scholar : PubMed/NCBI

20 

van der Pol E, Böing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012. View Article : Google Scholar : PubMed/NCBI

21 

van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, Heitman JW and Norris PJ: Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 123:687–696. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Kriebardis AG, Antonelou MH, Stamoulis KE, Economou-Petersen E, Margaritis LH and Papassideri IS: RBC-derived vesicles during storage: Ultrastructure, protein composition, oxidation, and signaling components. Transfusion. 48:1943–1953. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Azarov I, Liu C, Reynolds H, Tsekouras Z, Lee JS, Gladwin MT and Kim-Shapiro DB: Mechanisms of slower nitric oxide uptake by red blood cells and other hemoglobin-containing vesicles. J Biol Chem. 286:33567–33579. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Bosman GJ, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotný VM, Bos H and De Grip WJ: The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion. 48:827–835. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Huang H, Zhu J, Fan L, Lin Q, Fu D, Wei B and Wei S: MicroRNA profiling of exosomes derived from red blood cell units: Implications in transfusion-related immunomodulation. Biomed Res Int. 2019:20459152019. View Article : Google Scholar : PubMed/NCBI

27 

Saas P, Angelot F, Bardiaux L, Seilles E, Garnache-Ottou F and Perruche S: Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol. 19:90–97. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Deeb AP, Aquina CT, Monson JRT, Blumberg N, Becerra AZ and Fleming FJ: Allogeneic leukocyte-reduced red blood cell transfusion is associated with postoperative infectious complications and cancer recurrence after colon cancer resection. Dig Surg. 37:163–170. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Tamini N, Deghi G, Gianotti L, Braga M and Nespoli L: Colon cancer surgery: Does preoperative blood transfusion influence short-term postoperative outcomes? J Invest Surg. 34:974–978. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Qiu L, Wang DR, Zhang XY, Gao S, Li XX, Sun GP and Lu XB: Impact of perioperative blood transfusion on immune function and prognosis in colorectal cancer patients. Transfus Apher Sci. 54:235–241. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Acheson AG, Brookes MJ and Spahn DR: Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis. Ann Surg. 256:235–244. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Liu X, Ma M, Huang H and Wang Y: Effect of perioperative blood transfusion on prognosis of patients with gastric cancer: A retrospective analysis of a single center database. BMC Cancer. 18:6492018. View Article : Google Scholar : PubMed/NCBI

33 

Benson D and Barnett CC Jr: Perioperative blood transfusions promote pancreas cancer progression. J Surg Res. 166:275–279. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Churchhouse AM, Mathews TJ, McBride OM and Dunning J: Does blood transfusion increase the chance of recurrence in patients undergoing surgery for lung cancer? Interact Cardiovasc Thorac Surg. 14:85–90. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Seon DY, Kwak C, Kim HH, Ku JH and Kim HS: Impact of perioperative blood transfusion on oncologic outcomes in patients with nonmetastatic renal cell carcinoma treated with curative nephrectomy: A retrospective analysis of a large, single-institutional cohort. Investig Clin Urol. 61:136–145. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Nizri E, Kusamura S, Fallabrino G, Guaglio M, Baratti D and Deraco M: Dose-dependent effect of red blood cells transfusion on perioperative and long-term outcomes in peritoneal surface malignancies treated with cytoreduction and HIPEC. Ann Surg Oncol. 25:3264–3270. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Cata JP, Wang H, Gottumukkala V, Reuben J and Sessler DI: Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth. 110:690–701. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Wu HL, Tai YH, Lin SP, Chan MY, Chen HH and Chang KY: The impact of blood transfusion on recurrence and mortality following colorectal cancer resection: A propensity score analysis of 4,030 patients. Sci Rep. 8:133452018. View Article : Google Scholar : PubMed/NCBI

39 

Grasso M, Pacella G, Sangiuliano N, De Palma M and Puzziello A: Gastric cancer surgery: clinical outcomes and prognosis are influenced by perioperative blood transfusions. Updates Surg. 71:439–443. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Gunka I, Dostalik J, Martinek L, Gunkova P and Mazur M: Impact of blood transfusions on survival and recurrence in colorectal cancer surgery. Indian J Surg. 75:94–101. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Halabi WJ, Jafari MD, Nguyen VQ, Carmichael JC, Mills S, Pigazzi A and Stamos MJ: Blood transfusions in colorectal cancer surgery: Incidence, outcomes, and predictive factors: An American college of surgeons national surgical quality improvement program analysis. Am J Surg. 206:1024–1033. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Baguena G, Pellino G, Frasson M, Escrig J, Marinello F, Espí A, García-Granero A, Roselló S, Cervantes A and García-Granero E: Impact of perioperative transfusions and sepsis on long-term oncologic outcomes after curative colon cancer resection. A retrospective analysis of a prospective database. Gastroenterol Hepatol. 43:63–72. 2020.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI

43 

Tarantino I, Ukegjini K, Warschkow R, Schmied BM, Steffen T, Ulrich A and Müller SA: Blood transfusion does not adversely affect survival after elective colon cancer resection: A propensity score analysis. Langenbecks Arch Surg. 398:841–849. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Hunsicker O, Gericke S, Graw JA, Krannich A, Boemke W, Meyer O, Braicu I, Spies C, Sehouli J, Pruß A and Feldheiser A: Transfusion of red blood cells does not impact progression-free and overall survival after surgery for ovarian cancer. Transfusion. 59:3589–3600. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Zaw AS, Kantharajanna SB, Maharajan K, Tan B, Vellayappan B and Kumar N: Perioperative blood transfusion: Does it influence survival and cancer progression in metastatic spine tumor surgery? Transfusion. 57:440–450. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Chang CC, Lee TC, Su MJ, Lin HC, Cheng FY, Chen YT, Yen TH and Chu FY: Transfusion-associated adverse reactions (TAARs) and cytokine accumulations in the stored blood components: The impact of prestorage versus poststorage leukoreduction. Oncotarget. 9:4385–4394. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Chalfin HJ, Liu JJ, Gandhi N, Feng Z, Johnson D, Netto GJ, Drake CG, Hahn NM, Schoenberg MP, Trock BJ, et al: Blood transfusion is associated with increased perioperative morbidity and adverse oncologic outcomes in bladder cancer patients receiving neoadjuvant chemotherapy and radical cystectomy. Ann Surg Oncol. 23:2715–2722. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, Gernsheimer T, Holcomb JB, Kaplan LJ, Katz LM, et al: Clinical practice guidelines from the AABB: Red blood cell transfusion thresholds and storage. JAMA. 316:2025–2035. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Alkhalid Y, Lagman C, Sheppard JP, Nguyen T, Prashant GN, Ziman AF and Yang I: Restrictive transfusion threshold is safe in high-risk patients undergoing brain tumor surgery. Clin Neurol Neurosurg. 163:103–107. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Boone JD, Kim KH, Marques M and Straughn JM: Compliance rates and outcomes associated with a restrictive transfusion policy in gynecologic oncology patients. Gynecol Oncol. 132:227–230. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Syan-Bhanvadia S, Drangsholt S, Shah S, Cai J, Miranda G, Djaladat H and Daneshmand S: Restrictive transfusion in radical cystectomy is safe. Urol Oncol. 35:528.e15–528.e21. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Wehry J, Agle S, Philips P, Cannon R, Scoggins CR, Puffer L, McMasters KM and Martin RC: Restrictive blood transfusion protocol in malignant upper gastrointestinal and pancreatic resections patients reduces blood transfusions with no increase in patient morbidity. Am J Surg. 210:1197–1205. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Prescott LS, Taylor JS, Lopez-Olivo MA, Munsell MF, VonVille HM, Lairson DR and Bodurka DC: How low should we go: A systematic review and meta-analysis of the impact of restrictive red blood cell transfusion strategies in oncology. Cancer Treat Rev. 46:1–8. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Ozben V, Stocchi L, Ashburn J, Liu X and Gorgun E: Impact of a restrictive vs liberal transfusion strategy on anastomotic leakage and infectious complications after restorative surgery for rectal cancer. Colorectal Dis. 19:772–780. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Bergamin FS, Almeida JP, Landoni G, Galas FRBG, Fukushima JT, Fominskiy E, Park CHL, Osawa EA, Diz MPE, Oliveira GQ, et al: Liberal versus restrictive transfusion strategy in critically Ill oncologic patients: The transfusion requirements in critically Ill oncologic patient randomized controlled trial. Crit Care Med. 45:766–773. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Crawford TM, Andersen CC and Stark MJ: Effect of repeat transfusion exposure on plasma cytokine and markers of endothelial activation in the extremely preterm neonate. Transfusion. 60:2217–2224. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Muszynski JA, Spinella PC, Cholette JM, Acker JP, Hall MW, Juffermans NP, Kelly DP, Blumberg N, Nicol K, Liedel J, et al: Transfusion-related immunomodulation: Review of the literature and implications for pediatric critical illness. Transfusion. 57:195–206. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Opelz G, Sengar DP, Mickey MR and Terasaki PI: Effect of blood transfusions on subsequent kidney transplants. Transplant Proc. 5:253–259. 1973.PubMed/NCBI

59 

Carpenter CB: Blood transfusion effects in kidney transplantation. Yale J Biol Med. 63:435–443. 1990.PubMed/NCBI

60 

Abdolmohammadi K, Mahmoudi T, Jafari-Koshki T, Hassan ZM and Pourfathollah AA: Immunomodulatory effects of blood transfusion on tumor size, metastasis, and survival in experimental fibrosarcoma. Indian J Hematol Blood Transfus. 34:697–702. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Atzil S, Arad M, Glasner A, Abiri N, Avraham R, Greenfeld K, Rosenne E, Beilin B and Ben-Eliyahu S: Blood transfusion promotes cancer progression: A critical role for aged erythrocytes. Anesthesiology. 109:989–997. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Sugita S, Sasaki A, Iwaki K, Uchida H, Kai S, Shibata K, Ohta M and Kitano S: Prognosis and postoperative lymphocyte count in patients with hepatocellular carcinoma who received intraoperative allogenic blood transfusion: A retrospective study. Eur J Surg Oncol. 34:339–345. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Chen G, Zhang FJ, Gong M and Yan M: Effect of perioperative autologous versus allogeneic blood transfusion on the immune system in gastric cancer patients. J Zhejiang Univ Sci B. 8:560–565. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Tao CJ, Chen YY, Jiang F, Feng XL, Jin QF, Jin T, Piao YF and Chen XZ: A prognostic model combining CD4/CD8 ratio and N stage predicts the risk of distant metastasis for patients with nasopharyngeal carcinoma treated by intensity modulated radiotherapy. Oncotarget. 7:46653–46661. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Sparrow RL: Red blood cell storage and transfusion-related immunomodulation. Blood Transfus. 8 (Suppl 3):s26–s30. 2010.PubMed/NCBI

66 

Clark DA, Gorczynski RM and Blajchman MA: Transfusion-related immunomodulation due to peripheral blood dendritic cells expressing the CD200 tolerance signaling molecule and alloantigen. Transfusion. 48:814–821. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Teicher BA: Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res. 13:6247–6251. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Pinheiro MK, Tamagne M, Elayeb R, Andrieu M, Pirenne F and Vingert B: Blood microparticles are a component of immune modulation in red blood cell transfusion. Eur J Immunol. 50:1237–1240. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Ghio M, Contini P, Ubezio G, Mazzei C, Puppo F and Indiveri F: Immunomodulatory effects of blood transfusions: The synergic role of soluble HLA Class I free heavy-chain molecules detectable in blood components. Transfusion. 48:1591–1597. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S and Puppo F: Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol. 33:125–134. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Ottonello L, Ghio M, Contini P, Bertolotto M, Bianchi G, Montecucco F, Colonna M, Mazzei C, Dallegri F and Indiveri F: Nonleukoreduced red blood cell transfusion induces a sustained inhibition of neutrophil chemotaxis by stimulating in vivo production of transforming growth factor-beta1 by neutrophils: Role of the immunoglobulinlike transcript 1, sFasL, and sHLA-I. Transfusion. 47:1395–1404. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Baumgartner JM, Silliman CC, Moore EE, Banerjee A and McCarter MD: Stored red blood cell transfusion induces regulatory T cells. J Am Coll Surg. 208:110–119. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Zhuang Y, Zhang T, Wei C, Pan JC, Wang SF, Zhang AQ and Wang DQ: Effect of leukoreduction on tumor-associated cytokine accumutation in supernatant of stored packed red cells and its effect on tumor cell proliferation in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 23:217–221. 2015.(In Chinese). PubMed/NCBI

74 

Baumgartner JM, Nydam TL, Clarke JH, Banerjee A, Silliman CC and McCarter MD: Red blood cell supernatant potentiates LPS-induced proinflammatory cytokine response from peripheral blood mononuclear cells. J Interferon Cytokine Res. 29:333–338. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Long K, Meier C, Ward M, Williams D, Woodward J and Bernard A: Immunologic profiles of red blood cells using in vitro models of transfusion. J Surg Res. 184:567–571. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Ohue Y and Nishikawa H: Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 110:2080–2089. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Almizraq RJ, Holovati JL and Acker JP: Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method. Transfus Med Hemother. 45:185–193. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Menocha S and Muszynski JA: Transfusion-related immune modulation: Functional consequence of extracellular vesicles? Transfusion. 59:3553–3555. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Almizraq RJ, Seghatchian J and Acker JP: Extracellular vesicles in transfusion-related immunomodulation and the role of blood component manufacturing. Transfus Apher Sci. 55:281–291. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Sut C, Tariket S, Chou ML, Garraud O, Laradi S, Hamzeh-Cognasse H, Seghatchian J, Burnouf T and Cognasse F: Duration of red blood cell storage and inflammatory marker generation. Blood Transfus. 15:145–152. 2017.PubMed/NCBI

81 

Sadallah S, Eken C and Schifferli JA: Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol. 84:1316–1325. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Straat M, van Hezel ME, Böing A, Tuip-De Boer A, Weber N, Nieuwland R, van Bruggen R and Juffermans NP: Monocyte-mediated activation of endothelial cells occurs only after binding to extracellular vesicles from red blood cell products, a process mediated by β-integrin. Transfusion. 56:3012–3020. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Cole SW: Chronic inflammation and breast cancer recurrence. J Clin Oncol. 27:3418–3419. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Nakagawa K, Sho M, Akahori T, Nagai M, Nakamura K, Takagi T, Tanaka T, Nishiofuku H, Ohbayashi C, Kichikawa K and Ikeda N: Significance of the inflammation-based prognostic score in recurrent pancreatic cancer. Pancreatology. 19:722–728. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Guo D, Zhang J, Jing W, Liu J, Zhu H, Fu L, Li M, Kong L, Yue J and Yu J: Prognostic value of systemic immune-inflammation index in patients with advanced non-small-cell lung cancer. Future Oncol. 14:2643–2650. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Matsubara D, Arita T, Nakanishi M, Kuriu Y, Murayama Y, Kudou M, Konishi H, Komatsu S, Shiozaki A and Otsuji E: The impact of postoperative inflammation on recurrence in patients with colorectal cancer. Int J Clin Oncol. 25:602–613. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Yoshida D, Minami K, Sugiyama M, Ota M, Ikebe M, Morita M, Matsukuma A and Toh Y: Prognostic impact of the neutrophil-to-lymphocyte ratio in stage I–II rectal cancer patients. J Surg Res. 245:281–287. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Acker JP, Almizraq RJ, Millar D and Maurer-Spurej E: Screening of red blood cells for extracellular vesicle content as a product quality indicator. Transfusion. 58:2217–2226. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Almizraq RJ, Seghatchian J, Holovati JL and Acker JP: Extracellular vesicle characteristics in stored red blood cell concentrates are influenced by the method of detection. Transfus Apher Sci. 56:254–260. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Donadee C, Raat NJ, Kanias T, Tejero J, Lee JS, Kelley EE, Zhao X, Liu C, Reynolds H, Azarov I, et al: Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation. 124:465–476. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Almizraq RJ, Norris PJ, Inglis H, Menocha S, Wirtz MR, Juffermans N, Pandey S, Spinella PC, Acker JP and Muszynski JA: Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity. Blood Adv. 2:2296–2306. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Richter JR, Sutton JM, Hexley P, Johannigman TA, Lentsch AB and Pritts TA: Leukoreduction of packed red blood cells attenuates proinflammatory properties of storage-derived microvesicles. J Surg Res. 223:128–135. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Bicalho B, Pereira AS and Acker JP: Buffy coat (top/bottom)- and whole-blood filtration (top/top)-produced red cell concentrates differ in size of extracellular vesicles. Vox Sang. 109:214–220. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Gamonet C, Desmarets M, Mourey G, Biichle S, Aupet S, Laheurte C, François A, Resch E, Bigey F, Binda D, et al: Processing methods and storage duration impact extracellular vesicle counts in red blood cell units. Blood Adv. 4:5527–5539. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Yoshida T, Prudent M and D'Alessandro A: Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 17:27–52. 2019.PubMed/NCBI

96 

Kozlova E, Chernysh A, Moroz V, Kozlov A, Sergunova V, Sherstyukova E and Gudkova O: Two-step process of cytoskeletal structural damage during long-term storage of packed red blood cells. Blood Transfus. 19:124–134. 2021.PubMed/NCBI

97 

Kaczmarska M, Grosicki M, Bulat K, Mardyla M, Szczesny-Malysiak E, Blat A, Dybas J, Sacha T and Marzec KM: Temporal sequence of the human RBCs' vesiculation observed in nano-scale with application of AFM and complementary techniques. Nanomedicine. 28:1022212020. View Article : Google Scholar : PubMed/NCBI

98 

Bicalho B, Holovati JL and Acker JP: Phospholipidomics reveals differences in glycerophosphoserine profiles of hypothermically stored red blood cells and microvesicles. Biochim Biophys Acta. 1828:317–326. 2013. View Article : Google Scholar : PubMed/NCBI

99 

McVey MJ, Kuebler WM, Orbach A, Arbell D, Zelig O, Barshtein G and Yedgar S: Reduced deformability of stored red blood cells is associated with generation of extracellular vesicles. Transfus Apher Sci. 59:1028512020. View Article : Google Scholar : PubMed/NCBI

100 

Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, Verhoeven AJ, de Korte D and van Bruggen R: Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol. 160:377–386. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Arashiki N and Takakuwa Y: Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: Implications for erythrocyte functions. Curr Opin Hematol. 24:167–172. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Wesseling MC, Wagner-Britz L, Nguyen DB, Asanidze S, Mutua J, Mohamed N, Hanf B, Ghashghaeinia M, Kaestner L and Bernhardt I: Novel insights in the regulation of phosphatidylserine exposure in human red blood cells. Cell Physiol Biochem. 39:1941–1954. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L and Bernhardt I: Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem. 28:847–856. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Tanaka Y and Schroit AJ: Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem. 258:11335–11343. 1983. View Article : Google Scholar : PubMed/NCBI

105 

Orbach A, Zelig O, Yedgar S and Barshtein G: Biophysical and biochemical markers of red blood cell fragility. Transfus Med Hemother. 44:183–187. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Sudnitsyna J, Skverchinskaya E, Dobrylko I, Nikitina E, Gambaryan S and Mindukshev I: Microvesicle formation induced by oxidative stress in human erythrocytes. Antioxidants (Basel). 9:9292020. View Article : Google Scholar : PubMed/NCBI

107 

Prudent M, Delobel J, Hübner A, Benay C, Lion N and Tissot JD: Proteomics of stored red blood cell membrane and storage-induced microvesicles reveals the association of flotillin-2 with band 3 complexes. Front Physiol. 9:4212018. View Article : Google Scholar : PubMed/NCBI

108 

Willekens FL, Werre JM, Groenen-Döpp YA, Roerdinkholder-Stoelwinder B, de Pauw B and Bosman GJ: Erythrocyte vesiculation: A self-protective mechanism? Br J Haematol. 141:549–556. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Tissot JD, Rubin O and Canellini G: Analysis and clinical relevance of microparticles from red blood cells. Curr Opin Hematol. 17:571–577. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Wagner-Britz L, Wang J, Kaestner L and Bernhardt I: Protein kinase Cα and P-type Ca channel CaV2.1 in red blood cell calcium signalling. Cell Physiol Biochem. 31:883–891. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Cloos AS, Ghodsi M, Stommen A, Vanderroost J, Dauguet N, Pollet H, D'Auria L, Mignolet E, Larondelle Y, Terrasi R, et al: Interplay between plasma membrane lipid alteration, oxidative stress and calcium-based mechanism for extracellular vesicle biogenesis from erythrocytes during blood storage. Front Physiol. 11:7122020. View Article : Google Scholar : PubMed/NCBI

112 

Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Nguyen DB, Ly TB, Wesseling MC, Hittinger M, Torge A, Devitt A, Perrie Y and Bernhardt I: Characterization of microvesicles released from human red blood cells. Cell Physiol Biochem. 38:1085–1099. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, et al: Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood. 135:755–765. 2020. View Article : Google Scholar : PubMed/NCBI

115 

van der Pol E, Coumans F, Varga Z, Krumrey M and Nieuwland R: Innovation in detection of microparticles and exosomes. J Thromb Haemost. 11 (Suppl 1):S36–S45. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ and Harrison P: Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang. 96:206–212. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar : PubMed/NCBI

118 

Muszynski JA, Bale J, Nateri J, Nicol K, Wang Y, Wright V, Marsh CB, Gavrilin MA, Sarkar A, Wewers MD and Hall MW: Supernatants from stored red blood cell (RBC) units, but not RBC-derived microvesicles, suppress monocyte function in vitro. Transfusion. 55:1937–1945. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, Blanco P and Duffau P: Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev. 15:174–183. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Vasconcelos MH, Caires HR, Ābols A, Xavier CPR and Linē A: Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 47:1006472019. View Article : Google Scholar : PubMed/NCBI

121 

Naito Y, Yoshioka Y, Yamamoto Y and Ochiya T: How cancer cells dictate their microenvironment: Present roles of extracellular vesicles. Cell Mol Life Sci. 74:697–713. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Zecher D, Cumpelik A and Schifferli JA: Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement. Arterioscler Thromb Vasc Biol. 34:313–320. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Liu C, Zhao W, Christ GJ, Gladwin MT and Kim-Shapiro DB: Nitric oxide scavenging by red cell microparticles. Free Radic Biol Med. 65:1164–1173. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Kim-Shapiro DB, Lee J and Gladwin MT: Storage lesion: Role of red blood cell breakdown. Transfusion. 51:844–851. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Said AS and Doctor A: Influence of red blood cell-derived microparticles upon vasoregulation. Blood Transfus. 15:522–534. 2017.PubMed/NCBI

126 

Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M and Gorska-Ponikowska M: Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide. 93:102–114. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Oliveira GP Jr, Zigon E, Rogers G, Davodian D, Lu S, Jovanovic-Talisman T, Jones J, Tigges J, Tyagi S and Ghiran IC: Detection of extracellular vesicle RNA using molecular beacons. iScience. 23:1007822020. View Article : Google Scholar : PubMed/NCBI

128 

Miyashita Y, Ishikawa K, Fukushima Y, Kouwaki T, Nakamura K and Oshiumi H: Immune-regulatory microRNA expression levels within circulating extracellular vesicles correspond with the appearance of local symptoms after seasonal flu vaccination. PLoS One. 14:e02195102019. View Article : Google Scholar : PubMed/NCBI

129 

Okamoto M, Fukushima Y, Kouwaki T, Daito T, Kohara M, Kida H and Oshiumi H: MicroRNA-451a in extracellular, blood-resident vesicles attenuates macrophage and dendritic cell responses to influenza whole-virus vaccine. J Biol Chem. 293:18585–18600. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Liu Z, Miao T, Feng T, Jiang Z, Li M, Zhou L and Li H: miR-451a inhibited cell proliferation and enhanced tamoxifen sensitive in breast cancer via macrophage migration inhibitory factor. Biomed Res Int. 2015:2076842015.PubMed/NCBI

131 

Yamada Y, Arai T, Sugawara S, Okato A, Kato M, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. Cancer Sci. 109:1239–1253. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Nobre CC, de Araújo JM, Fernandes TA, Cobucci RN, Lanza DC, Andrade VS and Fernandes JV: Macrophage migration inhibitory factor (MIF): Biological activities and relation with cancer. Pathol Oncol Res. 23:235–244. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Almizraq RJ, Kipkeu BJ and Acker JP: Platelet vesicles are potent inflammatory mediators in red blood cell products and washing reduces the inflammatory phenotype. Transfusion. 60:378–390. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Nelson KA, Aldea GS, Warner P, Latchman Y, Gunasekera D, Tamir A, Gernsheimer T, Bolgiano D and Slichter SJ: Transfusion-related immunomodulation: Gamma irradiation alters the effects of leukoreduction on alloimmunization. Transfusion. 59:3396–3404. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Sanchez R, Lee TH, Wen L, Montalvo L, Schechterly C, Colvin C, Alter HJ, Luban NL and Busch MP: Absence of transfusion-associated microchimerism in pediatric and adult recipients of leukoreduced and gamma-irradiated blood components. Transfusion. 52:936–945. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Bohlius J, Bohlke K, Castelli R, Djulbegovic B, Lustberg MB, Martino M, Mountzios G, Peswani N, Porter L, Tanaka TN, et al: Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. Blood Adv. 3:1197–1210. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma X, Liu Y, Han Q, Han Y, Wang J and Zhang H: Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol 59: 108, 2021.
APA
Ma, X., Liu, Y., Han, Q., Han, Y., Wang, J., & Zhang, H. (2021). Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). International Journal of Oncology, 59, 108. https://doi.org/10.3892/ijo.2021.5288
MLA
Ma, X., Liu, Y., Han, Q., Han, Y., Wang, J., Zhang, H."Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review)". International Journal of Oncology 59.6 (2021): 108.
Chicago
Ma, X., Liu, Y., Han, Q., Han, Y., Wang, J., Zhang, H."Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review)". International Journal of Oncology 59, no. 6 (2021): 108. https://doi.org/10.3892/ijo.2021.5288
Copy and paste a formatted citation
x
Spandidos Publications style
Ma X, Liu Y, Han Q, Han Y, Wang J and Zhang H: Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol 59: 108, 2021.
APA
Ma, X., Liu, Y., Han, Q., Han, Y., Wang, J., & Zhang, H. (2021). Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). International Journal of Oncology, 59, 108. https://doi.org/10.3892/ijo.2021.5288
MLA
Ma, X., Liu, Y., Han, Q., Han, Y., Wang, J., Zhang, H."Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review)". International Journal of Oncology 59.6 (2021): 108.
Chicago
Ma, X., Liu, Y., Han, Q., Han, Y., Wang, J., Zhang, H."Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review)". International Journal of Oncology 59, no. 6 (2021): 108. https://doi.org/10.3892/ijo.2021.5288
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team