|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
Cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Łukasiewicz S, Czeczelewski M, Forma A,
Baj J, Sitarz R and Stanisławek A: Breast cancer-epidemiology, risk
factors, classification, prognostic markers, and current treatment
strategies-an updated review. Cancers (Basel). 13:42872021.
View Article : Google Scholar
|
|
3
|
Falzone L, Scandurra G, Lombardo V,
Gattuso G, Lavoro A, Distefano AB, Scibilia G and Scollo P: A
multidisciplinary approach remains the best strategy to improve and
strengthen the management of ovarian cancer (Review). Int J Oncol.
59:532021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Winters S, Martin C, Murphy D and Shokar
NK: Breast cancer epidemiology, prevention, and screening. Prog Mol
Biol Transl Sci. 151:1–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
La Vecchia C: Ovarian cancer: Epidemiology
and risk factors. Eur J Cancer Prev. 26:55–62. 2017. View Article : Google Scholar
|
|
6
|
D'Alonzo M, Bounous VE, Villa M and Biglia
N: Current evidence of the oncological benefit-risk profile of
hormone replacement therapy. Medicina (Kaunas). 55:5732019.
View Article : Google Scholar
|
|
7
|
Prentice RL, Aragaki AK, Chlebowski RT,
Rossouw JE, Anderson GL, Stefanick ML, Wactawski-Wende J, Kuller
LH, Wallace R, Johnson KC, et al: Randomized trial evaluation of
the benefits and risks of menopausal hormone therapy among women
50-59 years of age. Am J Epidemiol. 190:365–375. 2021. View Article : Google Scholar
|
|
8
|
Beaber EF, Malone KE, Tang MT, Barlow WE,
Porter PL, Daling JR and Li CI: Oral contraceptives and breast
cancer risk overall and by molecular subtype among young women.
Cancer Epidemiol Biomarkers Prev. 23:755–764. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Havrilesky LJ, Moorman PG, Lowery WJ,
Gierisch JM, Coeytaux RR, Urrutia RP, Dinan M, McBroom AJ,
Hasselblad V, Sanders GD and Myers ER: Oral contraceptive pills as
primary prevention for ovarian cancer: A systematic review and
meta-analysis. Obstet Gynecol. 112:139–147. 2013. View Article : Google Scholar
|
|
10
|
Benfatto G, Zanghì G, Catalano F, Di
Stefano G, Fancello R, Mugavero F and Giovanetto A: Day surgery for
breast cancer in the elderly. G Chir. 27:49–52. 2006.In Italian.
PubMed/NCBI
|
|
11
|
Shoemaker ML, White MC, Wu M, Weir HK and
Romieu I: Differences in breast cancer incidence among young women
aged 20-49 years by stage and tumor characteristics, age, race, and
ethnicity, 2004-2013. Breast Cancer Res Treat. 169:595–606. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sarink D, Wu AH, Le Marchand L, White KK,
Park SY, Setiawan VW, Hernandez BY, Wilkens LR and Merritt MA:
Racial/ethnic differences in ovarian cancer risk: Results from the
multiethnic cohort study. Cancer Epidemiol Biomarkers Prev.
29:2019–2025. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zeinomar N, Knight JA, Genkinger JM,
Phillips KA, Daly MB, Milne RL, Dite GS, Kehm RD, Liao Y, Southey
MC, et al: Alcohol consumption, cigarette smoking, and familial
breast cancer risk: Findings from the prospective family study
cohort (ProF-SC). Breast Cancer Res. 21:1282019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Friedenreich CM, Ryder-Burbidge C and
McNeil J: Physical activity, obesity and sedentary behavior in
cancer etiology: Epidemiologic evidence and biologic mechanisms.
Mol Oncol. 15:790–800. 2021. View Article : Google Scholar :
|
|
15
|
Dunneram Y, Greenwood DC and Cade JE:
Diet, menopause and the risk of ovarian, endometrial and breast
cancer. Proc Nutr Soc. 78:438–448. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bryere J, Dejardin O, Launay L, Colonna M,
Grosclaude P and Launoy G; French Network of Cancer Registries
(FRANCIM): Socioeconomic status and site-specific cancer incidence,
a Bayesian approach in a French cancer registries network study.
Eur J Cancer Prev. 27:391–398. 2018. View Article : Google Scholar
|
|
17
|
Falzone L, Grimaldi M, Celentano E,
Augustin LSA and Libra M: Identification of modulated MicroRNAs
associated with breast cancer, diet, and physical activity. Cancers
(Basel). 12:25552020. View Article : Google Scholar
|
|
18
|
Park HL: Epigenetic biomarkers for
environmental exposures and personalized breast cancer prevention.
Int J Environ Res Public Health. 17:11812020. View Article : Google Scholar :
|
|
19
|
Singh A, Gupta S and Sachan M: Epigenetic
biomarkers in the management of ovarian cancer: Current
prospectives. Front Cell Dev Biol. 7:1822019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang M, Xiao J, Nasca PC, Liu C, Lu Y,
Lawrence WR, Wang L, Chen Q and Lin S: Do multiple environmental
factors impact four cancers in women in the contiguous United
States? Environ Res. 179(PtA): 1087822019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Brewer HR, Jones ME, Schoemaker MJ,
Ashworth A and Swerdlow AJ: Family history and risk of breast
cancer: An analysis accounting for family structure. Breast Cancer
Res Treat. 165:193–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Flaum N, Crosbie EJ, Edmondson RJ, Smith
MJ and Evans DG: Epithelial ovarian cancer risk: A review of the
current genetic landscape. Clin Genet. 97:54–63. 2020. View Article : Google Scholar :
|
|
23
|
Bethea TN, Ochs-Balcom HM, Bandera EV,
Beeghly-Fadiel A, Camacho F, Chyn D, Cloyd EK, Harris HR, Joslin
CE, Myers E, et al: First- and second-degree family history of
ovarian and breast cancer in relation to risk of invasive ovarian
cancer in African American and white women. Int J Cancer.
148:2964–2973. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu L, Hao X, Song Z, Zhi X, Zhang S and
Zhang J: Correlation between family history and characteristics of
breast cancer. Sci Rep. 11:63602021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Welcsh PL and King MC: BRCA1 and BRCA2 and
the genetics of breast and ovarian cancer. Hum Mol Genet.
10:705–713. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yoshida K and Miki Y: Role of BRCA1 and
BRCA2 as regulators of DNA repair, transcription, and cell cycle in
response to DNA damage. Cancer Sci. 95:866–871. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Paul A and Paul S: The breast cancer
susceptibility genes (BRCA) in breast and ovarian cancers. Front
Biosci (Landmark Ed). 19:605–618. 2014. View Article : Google Scholar
|
|
28
|
Venkitaraman AR: How do mutations
affecting the breast cancer genes BRCA1 and BRCA2 cause cancer
susceptibility? DNA Repair (Amst). 81:1026682019. View Article : Google Scholar
|
|
29
|
Paalosalo-Harris K and Skirton H: Mixed
method systematic review: The relationship between breast cancer
risk perception and health-protective behaviour in women with
family history of breast cancer. J Adv Nurs. 73:760–764. 2017.
View Article : Google Scholar
|
|
30
|
Hanley GE, McAlpine JN, Miller D, Huntsman
D, Schrader KA, Gilks CB and Mitchell G: A population-based
analysis of germline BRCA1 and BRCA2 testing among ovarian cancer
patients in an era of histotype-specific approaches to ovarian
cancer prevention. BMC Cancer. 18:2542018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Moschetta M, George A, Kaye SB and
Banerjee S: BRCA somatic mutations and epigenetic BRCA
modifications in serous ovarian cancer. Ann Oncol. 27:1449–1455.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kuchenbaecker KB, Hopper JL, Barnes DR,
Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE,
Milne RL, Andrieu N, et al: Risks of breast, ovarian, and
contralateral breast cancer for BRCA1 and BRCA2 mutation carriers.
JAMA. 317:2402–2416. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Neff RT, Senter L and Salani R: BRCA
mutation in ovarian cancer: Testing, implications and treatment
considerations. Ther Adv Med Oncol. 9:519–531. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kotsopoulos J: BRCA mutations and breast
cancer prevention. Cancers (Basel). 10:5242018. View Article : Google Scholar
|
|
35
|
Cortesi L, Piombino C and Toss A: Germline
mutations in other homologous recombination repair-related genes
than BRCA1/2: Predictive or prognostic factors? J Pers Med.
11:2452021. View Article : Google Scholar :
|
|
36
|
Zhao W, Hu H, Mo Q, Guan Y, Li Y, Du Y and
Li L: Function and mechanism of combined PARP-1 and BRCA genes in
regulating the radiosensitivity of breast cancer cells. Int J Clin
Exp Pathol. 12:3915–3920. 2019.
|
|
37
|
Liu X, Wu K, Zheng D, Luo C, Fan Y, Zhong
X and Zheng H: Efficacy and safety of PARP inhibitors in advanced
or metastatic triple-negative breast cancer: A systematic review
and meta-analysis. Front Oncol. 11:7421392021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Dickson KA, Xie T, Evenhuis C, Ma Y and
Marsh DJ: PARP inhibitors display differential efficacy in models
of BRCA mutant high-grade serous ovarian cancer. Int J Mol Sci.
22:85062021. View Article : Google Scholar :
|
|
39
|
Al-Thoubaity FK: Molecular classification
of breast cancer: A retrospective cohort study. Ann Med Surg
(Lond). 49:44–48. 2019. View Article : Google Scholar
|
|
40
|
Makki J: Diversity of breast carcinoma:
Histological subtypes and clinical relevance. Clin Med Insights
Pathol. 8:23–31. 2015. View Article : Google Scholar
|
|
41
|
Magro G, Salvatorelli L, Puzzo L, Piombino
E, Bartoloni G, Broggi G and Vecchio GM: Practical approach to
diagnosis of bland-looking spindle cell lesions of the breast.
Pathologica. 111:344–360. 2019. View Article : Google Scholar
|
|
42
|
Gorodetska I, Kozeretska I and Dubrovska
A: BRCA genes: The role in genome stability, cancer stemness and
therapy resistance. J Cancer. 10:2109–2127. 2019. View Article : Google Scholar :
|
|
43
|
Tung NM and Garber JE: BRCA1/2 testing:
Therapeutic implications for breast cancer management. Br J Cancer.
119:141–152. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Broggi G, Filetti V, Ieni A, Rapisarda V,
Ledda C, Vitale E, Varricchio S, Russo D, Lombardo C, Tuccari G, et
al: MacroH2A1 immunoexpression in breast cancer. Front Oncol.
10:15192020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Miki Y, Swensen J, Shattuck-Eidens D,
Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM
and Ding W: A strong candidate for the breast and ovarian cancer
susceptibility gene BRCA1. Science. 266:66–71. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Nelson AC and Holt JT: Impact of RING and
BRCT domain mutations on BRCA1 protein stability, localization and
recruitment to DNA damage. Radiat Res. 174:1–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Christou CM and Kyriacou K: BRCA1 and its
network of interacting partners. Biology (Basel). 2:40–63.
2013.
|
|
48
|
Xia Y, Pao GM, Chen HW, Verma IM and
Hunter T: Enhancement of BRCA1 E3 ubiquitin ligase activity through
direct interaction with the BARD1 protein. J Biol Chem.
278:5255–5263. 2003. View Article : Google Scholar
|
|
49
|
Manke IA, Lowery DM, Nguyen A and Yaffe
MB: BRCT repeats as phosphopeptide-binding modules involved in
protein targeting. Science. 302:636–639. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Clapperton JA, Manke IA, Lowery DM, Ho T,
Haire LF, Yaffe MB and Smerdon SJ: Structure and mechanism of BRCA1
BRCT domain recognition of phosphorylated BACH1 with implications
for cancer. Nat Struct Mol Biol. 11:512–518. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Thanassoulas A, Nomikos M, Theodoridou M,
Yannoukakos D, Mastellos D and Nounesis G: Thermodynamic study of
the BRCT domain of BARD1 and its interaction with the
-pSER-X-X-Phemotif-containing BRIP1 peptide. Biochim Biophys Acta.
1804:1908–1916. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang B, Matsuoka S, Ballif BA, Zhang D,
Smogorzewska A, Gygi SP and Elledge SJ: Abraxas and RAP80 form a
BRCA1 protein complex required for the DNA damage response.
Science. 316:1194–1198. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen CF, Li S, Chen Y, Chen PL, Sharp ZD
and Lee WH: The nuclear localization sequences of the BRCA1 protein
interact with the importin-alpha subunit of the nuclear transport
signal receptor. J Biol Chem. 271:32863–32868. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Caestecker KW and Van de Walle GR: The
role of BRCA1 in DNA double-strand repair: past and present. Exp
Cell Res. 319:575–587. 2013. View Article : Google Scholar
|
|
55
|
Savage KI and Harkin DP: BRCA1, a
'complex' protein involved in the maintenance of genomic stability.
FEBS J. 282:630–646. 2015. View Article : Google Scholar
|
|
56
|
Sharma B, Kaur RP, Raut S and Munshi A:
BRCA1 mutation spectrum, functions, and therapeutic strategies: The
story so far. Curr Probl Cancer. 42:189–207. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Takaoka M and Miki Y: BRCA1 gene: Function
and deficiency. Int J Clin Oncol. 23:36–44. 2018. View Article : Google Scholar
|
|
58
|
Matsuoka S, Ballif BA, Smogorzewska A,
McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini
N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals
extensive protein networks responsive to DNA damage. Science.
316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Smith J, Tho LM, Xu N and Gillespie DA:
The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and
cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Syed A and Tainer JA: The MRE11-RAD50-NBS1
complex conducts the orchestration of damage signaling and outcomes
to stress in DNA replication and repair. Annu Rev Biochem.
87:263–294. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Simhadri S, Vincelli G, Huo Y, Misenko S,
Foo TK, Ahlskog J, Sørensen CS, Oakley GG, Ganesan S, Bunting SF
and Xia B: PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint
response. Oncogene. 38:1585–1596. 2019. View Article : Google Scholar :
|
|
62
|
Zhao W, Steinfeld JB, Liang F, Chen X,
Maranon DG, Ma CJ, Kwon Y, Rao T, Wang W, Sheng C, et al:
BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature.
550:360–365. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Coleman KA and Greenberg RA: The
BRCA1-RAP80 complex regulates DNA repair mechanism utilization by
restricting end resection. J Biol Chem. 286:13669–13680. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kumaraswamy E and Shiekhattar R:
Activation of BRCA1/BRCA2-associated helicase BACH1 is required for
timely progression through S phase. Mol Cell Biol. 27:6733–6741.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang Q, Zhang H, Kajino K and Greene MI:
BRCA1 binds c-Myc and inhibits its transcriptional and transforming
activity in cells. Oncogene. 17:1939–1948. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chai YL, Cui J, Shao N, Shyam E, Reddy P
and Rao VN: The second BRCT domain of BRCA1 proteins interacts with
p53 and stimulates transcription from the p21WAF1/CIP1 promoter.
Oncogene. 18:263–268. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Thurn KT, Thomas S, Raha P, Qureshi I and
Munster PN: Histone deacetylase regulation of ATM-mediated DNA
damage signaling. Mol Cancer Ther. 12:2078–2087. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Buckley NE, Hosey AM, Gorski JJ, Purcell
JW, Mulligan JM, Harkin DP and Mullan PB: BRCA1 regulates IFN-gamma
signaling through a mechanism involving the type I IFNs. Mol Cancer
Res. 5:261–270. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tan W, Zheng L, Lee WH and Boyer TG:
Functional dissection of transcription factor ZBRK1 reveals zinc
fingers with dual roles in DNA-binding and BRCA1-dependent
transcriptional repression. J Biol Chem. 279:6576–6587. 2004.
View Article : Google Scholar
|
|
70
|
Harte MT, O'Brien GJ, Ryan NM, Gorski JJ,
Savage KI, Crawford NT, Mullan PB and Harkin DP: BRD7, a subunit of
SWI/SNF complexes, binds directly to BRCA1 and regulates
BRCA1-dependent transcription. Cancer Res. 70:2538–2547. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yoshino Y, Qi H, Fujita H, Shirota M, Abe
S, Komiyama Y, Shindo K, Nakayama M, Matsuzawa A, Kobayashi A, et
al: BRCA1-interacting protein OLA1 requires interaction with BARD1
to regulate centrosome number. Mol Cancer Res. 16:1499–1511. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Harkin DP, Bean JM, Miklos D, Song YH,
Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S,
Oliner JD and Haber DA: Induction of GADD45 and JNK/SAPK-dependent
apoptosis following inducible expression of BRCA1. Cell.
97:575–586. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wooster R, Bignell G, Lancaster J, Swift
S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C and Micklem G:
Identification of the breast cancer susceptibility gene BRCA2.
Nature. 378:789–792. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chen J, Silver DP, Walpita D, Cantor SB,
Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM
and Scully R: Stable interaction between the products of the BRCA1
and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol
Cell. 2:317–328. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sharan SK and Bradley A: Functional
characterization of BRCA1 and BRCA2: Clues from their interacting
proteins. J Mammary Gland Biol Neoplasia. 3:413–421. 1998.
View Article : Google Scholar
|
|
76
|
Oliver AW, Swift S, Lord CJ, Ashworth A
and Pearl LH: Structural basis for recruitment of BRCA2 by PALB2.
EMBO Rep. 10:990–996. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Carreira A, Hilario J, Amitani I, Baskin
RJ, Shivji MK, Venkitaraman AR and Kowalczykowski SC: The BRC
repeats of BRCA2 modulate the DNA-binding selectivity of RAD51.
Cell. 136:1032–1043. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Davies OR and Pellegrini L: Interaction
with the BRCA2 C terminus protects RAD51-DNA filaments from
disassembly by BRC repeats. Nat Struct Mol Biol. 14:475–483. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Moynahan ME, Pierce AJ and Jasin M: BRCA2
is required for homology-directed repair of chromosomal breaks. Mol
Cell. 7:263–272. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Roy R, Chun J and Powell SN: BRCA1 and
BRCA2: Different roles in a common pathway of genome protection.
Nat Rev Cancer. 12:68–78. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yuan SS, Lee SY, Chen G, Song M, Tomlinson
GE and Lee EY: BRCA2 is required for ionizing radiation-induced
assembly of Rad51 complex in vivo. Cancer Res. 59:3547–3551.
1999.PubMed/NCBI
|
|
82
|
Milner J, Ponder B, Hughes-Davies L,
Seltmann M and Kouzarides T: Transcriptional activation functions
in BRCA2. Nature. 386:772–773. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Davies AA, Masson JY, McIlwraith MJ,
Stasiak AZ, Stasiak A, Venkitaraman AR and West SC: Role of BRCA2
in control of the RAD51 recombination and DNA repair protein. Mol
Cell. 7:273–282. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Esashi F, Galkin VE, Yu X, Egelman EH and
West SC: Stabilization of RAD51 nucleoprotein filaments by the
C-terminal region of BRCA2. Nat Struct Mol Biol. 14:468–474. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Henderson BR: Regulation of BRCA1, BRCA2
and BARD1 intracellular trafficking. Bioessays. 27:884–893. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Couturier AM, Fleury H, Patenaude AM,
Bentley VL, Rodrigue A, Coulombe Y, Niraj J, Pauty J, Berman JN,
Dellaire G, et al: Roles for APRIN (PDS5B) in homologous
recombination and in ovarian cancer prediction. Nucleic Acids Res.
44:10879–10897. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang H, Jeffrey PD, Miller J, Kinnucan E,
Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH and Pavletich NP: BRCA2
function in DNA binding and recombination from a BRCA2-DSS1-ssDNA
structure. Science. 297:1837–1848. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Buisson R, Niraj J, Pauty J, Maity R, Zhao
W, Coulombe Y, Sung P and Masson JY: Breast cancer proteins PALB2
and BRCA2 stimulate polymerase η in recombination-associated DNA
synthesis at blocked replication forks. Cell Rep. 6:553–564. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hussain S, Wilson JB, Medhurst AL, Hejna
J, Witt E, Ananth S, Davies A, Masson JY, Moses R, West SC, et al:
Direct interaction of FANCD2 with BRCA2 in DNA damage response
pathways. Hum Mol Genet. 13:1241–1248. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Higgs MR and Stewart GS: Protection or
resection: BOD1L as a novel replication fork protection factor.
Nucleus. 7:34–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Preobrazhenska O, Yakymovych M, Kanamoto
T, Yakymovych I, Stoika R, Heldin CH and Souchelnytskyi S: BRCA2
and Smad3 synergize in regulation of gene transcription. Oncogene.
21:5660–5664. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hughes-Davies L, Huntsman D, Ruas M, Fuks
F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, et al: EMSY
links the BRCA2 pathway to sporadic breast and ovarian cancer.
Cell. 115:523–535. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Marmorstein LY, Kinev AV, Chan GK, Bochar
DA, Beniya H, Epstein JA, Yen TJ and Shiekhattar R: A human BRCA2
complex containing a structural DNA binding component influences
cell cycle progression. Cell. 104:247–257. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Singh JK, Smith R, Rother MB, de Groot
AJL, Wiegant WW, Vreeken K, D'Augustin O, Kim RQ, Qian H, Krawczyk
PM, et al: Zinc finger protein ZNF384 is an adaptor of Ku to DNA
during classical non-homologous end-joining. Nat Commun.
12:65602021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Prakash R, Zhang Y, Feng W and Jasin M:
Homologous recombination and human health: The roles of BRCA1,
BRCA2, and associated proteins. Cold Spring Harb Perspect Biol.
7:a0166002015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang
J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, et al:
Pathogenic Germline variants in 10,389 adult cancers. Cell.
173:355–370. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Van Hout CV, Tachmazidou I, Backman JD,
Hoffman JD, Liu D, Pandey AK, Gonzaga-Jauregui C, Khalid S, Ye B,
Banerjee N, et al: Exome sequencing and characterization of 49,960
individuals in the UK Biobank. Nature. 586:749–756. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Engel C and Fischer C: Breast cancer risks
and risk prediction models. Breast Care (Basel). 10:7–12. 2015.
View Article : Google Scholar
|
|
99
|
Wu H, Wu X and Liang Z: Impact of germline
and somatic BRCA1/2 mutations: Tumor spectrum and detection
platforms. Gene Ther. 24:601–609. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Seo A, Steinberg-Shemer O, Unal S, Casadei
S, Walsh T, Gumruk F, Shalev S, Shimamura A, Akarsu NA, Tamary H
and King MC: Mechanism for survival of homozygous nonsense
mutations in the tumor suppressor gene BRCA1. Proc Natl Acad Sci
USA. 115:5241–5246. 2018. View Article : Google Scholar :
|
|
101
|
Petrucelli N, Daly MB and Pal T: BRCA1-
and BRCA2-Associated Hereditary Breast and Ovarian Cancer.
GeneReviews®. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH,
Gripp KW, Mirzaa GM and Amemiya A: University of Washington;
Seattle: pp. 1993–2022. 2022
|
|
102
|
Winter C, Nilsson MP, Olsson E, George AM,
Chen Y, Kvist A, Törngren T, Vallon-Christersson J, Hegardt C,
Häkkinen J, et al: Targeted sequencing of BRCA1 and BRCA2 across a
large unselected breast cancer cohort suggests that one-third of
mutations are somatic. Ann Oncol. 27:1532–1538. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cline MS, Liao RG, Parsons MT, Paten B,
Alquaddoomi F, Antoniou A, Baxter S, Brody L, Cook-Deegan R, Coffin
A, et al: BRCA challenge: BRCA exchange as a global resource for
variants in BRCA1 and BRCA2. PLoS Genet. 26:e10077522018.
View Article : Google Scholar
|
|
104
|
Anczuków O, Ware MD, Buisson M, Zetoune
AB, Stoppa-Lyonnet D, Sinilnikova OM and Mazoyer S: Does the
nonsense-mediated mRNA decay mechanism prevent the synthesis of
truncated BRCA1, CHK2, and p53 proteins? Hum Mutat. 29:65–73. 2008.
View Article : Google Scholar
|
|
105
|
Roa BB, Boyd AA, Volcik K and Richards CS:
Ashkenazi Jewish population frequencies for common mutations in
BRCA1 and BRCA2. Nat Genet. 14:185–187. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Struewing JP, Abeliovich D, Peretz T,
Avishai N, Kaback MM, Collins FS and Brody LC: The carrier
frequency of the BRCA1 185delAG mutation is approximately 1 percent
in Ashkenazi Jewish individuals. Nat Genet. 11:198–200. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ozolina S, Sinicka O, Jankevics E,
Inashkina I, Lubinski J, Gorski B, Gronwald J, Nasedkina T,
Fedorova O, Lyubchenko L and Tihomirova L: The 4154delA mutation
carriers in the BRCA1 gene share a common ancestry. Fam Cancer.
8:1–4. 2009. View Article : Google Scholar
|
|
108
|
Kaufman B, Laitman Y, Gronwald J, Lubinski
J and Friedman E: Haplotype of the C61G BRCA1 mutation in Polish
and Jewish individuals. Genet Test Mol Biomarkers. 13:465–469.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Borg A, Dørum A, Heimdal K, Maehle L,
Hovig E and Møller P: BRCA1 1675delA and 1135insA account for one
third of Norwegian familial breast-ovarian cancer and are
associated with later disease onset than less frequent mutations.
Dis Markers. 15:79–84. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Møller P, Heimdal K, Apold J, Fredriksen
A, Borg A, Hovig E, Hagen A, Hagen B, Pedersen JC, Maehle L, et al:
Genetic epidemiology of BRCA1 mutations in Norway. Eur J Cancer.
37:2428–2434. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Heimdal K, Maehle L, Apold J, Pedersen JC
and Møller P: The Norwegian founder mutations in BRCA1: High
penetrance confirmed in an incident cancer series and differences
observed in the risk of ovarian cancer. Eur J Cancer. 39:2205–2213.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sarantaus L, Huusko P, Eerola H, Launonen
V, Vehmanen P, Rapakko K, Gillanders E, Syrjäkoski K, Kainu T,
Vahteristo P, et al: Multiple founder effects and geographical
clustering of BRCA1 and BRCA2 families in Finland. Eur J Hum Genet.
8:757–763. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Thomassen M, Hansen TV, Borg A, Lianee HT,
Wikman F, Pedersen IS, Bisgaard ML, Nielsen FC, Kruse TA and Gerdes
AM: BRCA1 and BRCA2 mutations in Danish families with hereditary
breast and/or ovarian cancer. Acta Oncol. 47:772–777. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Einbeigi Z, Bergman A, Kindblom LG,
Martinsson T, Meis-Kindblom JM, Nordling M, Suurküla M, Wahlström
J, Wallgren A and Karlsson P: A founder mutation of the BRCA1 gene
in Western Sweden associated with a high incidence of breast and
ovarian cancer. Eur J Cancer. 37:1904–1909. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Muller D, Bonaiti-Pellié C, Abecassis J,
Stoppa-Lyonnet D and Fricker JP: BRCA1 testing in breast and/or
ovarian cancer families from northeastern France identifies two
common mutations with a founder effect. Fam Cancer. 3:15–20. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hartmann C, John AL, Klaes R, Hofmann W,
Bielen R, Koehler R, Janssen B, Bartram CR, Arnold N and Zschocke
J: Large BRCA1 gene deletions are found in 3% of German high-risk
breast cancer families. Hum Mutat. 24:5342004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Pisano M, Cossu A, Persico I, Palmieri G,
Angius A, Casu G, Palomba G, Sarobba MG, Rocca PC, Dedola MF, et
al: Identification of a founder BRCA2 mutation in Sardinia. Br J
Cancer. 82:553–559. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Baudi F, Quaresima B, Grandinetti C, Cuda
G, Faniello C, Tassone P, Barbieri V, Bisegna R, Ricevuto E,
Conforti S, et al: Evidence of a founder mutation of BRCA1 in a
highly homogeneous population from southern Italy with
breast/ovarian cancer. Hum Mutat. 18:163–164. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Cipollini G, Tommasi S, Paradiso A,
Aretini P, Bonatti F, Brunetti I, Bruno M, Lombardi G, Schittulli
F, Sensi E, et al: Genetic alterations in hereditary breast cancer.
Ann Oncol. 15(Supp 1): SI7–SI13. 2004. View Article : Google Scholar
|
|
120
|
Ikeda N, Miyoshi Y, Yoneda K, Shiba E,
Sekihara Y, Kinoshita M and Noguchi S: Frequency of BRCA1 and BRCA2
germline mutations in Japanese breast cancer families. Int J
Cancer. 91:83–88. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sekine M, Nagata H, Tsuji S, Hirai Y,
Fujimoto S, Hatae M, Kobayashi I, Fujii T, Nagata I, Ushijima K, et
al: Japanese Familial Ovarian Cancer Study Group. Mutational
analysis of BRCA1 and BRCA2 and clinicopathologic analysis of
ovarian cancer in 82 ovarian cancer families: Two common founder
mutations of BRCA1 in Japanese population. Clin Cancer Res.
7:3144–3150. 2001.PubMed/NCBI
|
|
122
|
Kang E and Kim SW: The korean hereditary
breast cancer study: Review and future perspectives. J Breast
Cancer. 16:245–253. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kang E, Seong MW, Park SK, Lee JW, Lee J,
Kim LS, Lee JE, Kim SY, Jeong J, Han SA, et al: Korean hereditary
breast cancer study group. The prevalence and spectrum of BRCA1 and
BRCA2 mutations in Korean population: Recent update of the Korean
hereditary breast cancer (KOHBRA) study. Breast Cancer Res Treat.
151:157–168. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Kwong A, Ng EK, Wong CL, Law FB, Au T,
Wong HN, Kurian AW, West DW, Ford JM and Ma ES: Identification of
BRCA1/2 founder mutations in Southern Chinese breast cancer
patients using gene sequencing and high resolution DNA melting
analysis. PLoS One. 7:e439942012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
De Leon Matsuda ML, Liede A, Kwan E, Mapua
CA, Cutiongco EM, Tan A, Borg A and Narod SA: BRCA1 and BRCA2
mutations among breast cancer patients from the Philippines. Int J
Cancer. 98:596–603. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Concolino P and Capoluongo E: Detection of
BRCA1/2 large genomic rearrangements in breast and ovarian cancer
patients: An overview of the current methods. Expert Rev Mol Diagn.
19:795–802. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Bhaskaran SP, Chandratre K, Gupta H, Zhang
L, Wang X, Cui J, Kim YC, Sinha S, Jiang L, Lu B, et al: Germline
variation in BRCA1/2 is highly ethnic-specific: Evidence from over
30,000 Chinese hereditary breast and ovarian cancer patients. Int J
Cancer. 145:962–973. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hoogerbrugge N and Jongmans MC: Finding
all BRCA pathogenic mutation carriers: Best practice models. Eur J
Hum Genet. 24(Suppl 1): S19–S26. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hawsawi YM, Al-Numair NS, Sobahy TM,
Al-Ajmi AM, Al-Harbi RM, Baghdadi MA, Oyouni AA and Alamer OM: The
role of BRCA1/2 in hereditary and familial breast and ovarian
cancers. Mol Genet Genomic Med. 7:e8792019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hodgson A and Turashvili G: Pathology of
hereditary breast and ovarian cancer. Front Oncol. 10:5317902020.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Venter JC, Adams MD, Sutton GG, Kerlavage
AR, Smith HO and Hunkapiller M: Shotgun sequencing of the human
genome. Science. 280:1540–1542. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sanger F and Coulson AR: A rapid method
for determining sequences in DNA by primed synthesis with DNA
polymerase. J Mol Biol. 94:441–448. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Wallace AJ: New challenges for BRCA
testing: A view from the diagnostic laboratory. Eur J Hum Genet.
24(Suppl 1): S10–S18. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Serratì S, De Summa S, Pilato B, Petriella
D, Lacalamita R, Tommasi S and Pinto R: Next-generation sequencing:
Advances and applications in cancer diagnosis. Onco Targets Ther.
9:7355–7365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Kumar KR, Cowley MJ and Davis RL:
Next-generation sequencing and emerging technologies. Semin Thromb
Hemost. 45:661–673. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Idris SF, Ahmad SS, Scott MA, Vassiliou GS
and Hadfield J: The role of high-throughput technologies in
clinical cancer genomics. Expert Rev Mol Diagn. 13:167–181. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Cheon JY, Mozersky J and Cook-Deegan R:
Variants of uncertain significance in BRCA: A harbinger of ethical
and policy issues to come? Genome Med. 6:1212014. View Article : Google Scholar
|
|
138
|
Wong RSJ and Lee SC: BRCA sequencing of
tumors: Understanding its implications in the oncology community.
Chin Clin Oncol. 9:662020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Pujol P, Barberis M, Beer P, Friedman E,
Piulats JM, Capoluongo ED, Foncillas JG, Ray-Coquard I,
Penault-Llorca F, Foulkes WD, et al: Clinical practice guidelines
for BRCA1 and BRCA2 genetic testing. Eur J Cancer. 146:30–47. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hindson BJ, Ness KD, Masquelier DA,
Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY,
Hiddessen AL, Legler TC, et al: High-throughput droplet digital PCR
system for absolute quantitation of DNA copy number. Anal Chem.
83:8604–8610. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Pinheiro LB, Coleman VA, Hindson CM,
Herrmann J, Hindson BJ, Bhat S and Emslie KR: Evaluation of a
droplet digital polymerase chain reaction format for DNA copy
number quantification. Anal Chem. 84:1003–1011. 2012. View Article : Google Scholar :
|
|
142
|
Olmedillas-López S, García-Arranz M and
García-Olmo D: Current and emerging applications of droplet digital
PCR in Oncology. Mol Diagn Ther. 21:493–510. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Postel M, Roosen A, Laurent-Puig P, Taly V
and Wang-Renault SF: Droplet-based digital PCR and next generation
sequencing for monitoring circulating tumor DNA: A cancer
diagnostic perspective. Expert Rev Mol Diagn. 18:7–17. 2018.
View Article : Google Scholar
|
|
144
|
Stella M, Falzone L, Caponnetto A, Gattuso
G, Barbagallo C, Battaglia R, Mirabella F, Broggi G, Altieri R,
Certo F, et al: Serum extracellular vesicle-derived circHIPK3 and
circS-MARCA5 are two novel diagnostic biomarkers for glioblastoma
multiforme. Pharmaceuticals (Basel). 14:6182021. View Article : Google Scholar
|
|
145
|
Crimi S, Falzone L, Gattuso G, Grillo CM,
Candido S, Bianchi A and Libra M: droplet digital PCR analysis of
liquid biopsy samples unveils the diagnostic role of
hsa-miR-133a-3p and hsa-miR-375-3p in oral cancer. Biology (Basel).
9:3792020.
|
|
146
|
Falzone L, Gattuso G, Tsatsakis A,
Spandidos D and Libra M: Current and innovative methods for the
diagnosis of COVID-19 infection (Review). Int J Mol Med.
47:1002021. View Article : Google Scholar :
|
|
147
|
Falzone L, Musso N, Gattuso G, Bongiorno
D, Palermo CI, Scalia G, Libra M and Stefani S: Sensitivity
assessment of droplet digital PCR for SARS-CoV-2 detection. Int J
Mol Med. 46:957–964. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Preobrazhenskaya EV, Bizin IV, Kuligina
ES, Shleykina AY, Suspitsin EN, Zaytseva OA, Anisimova EI, Laptiev
SA, Gorodnova TV, Belyaev AM, et al: Detection of BRCA1 gross
rearrangements by droplet digital PCR. Breast Cancer Res Treat.
165:765–770. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Oscorbin I, Kechin A, Boyarskikh U and
Filipenko M: Multiplex ddPCR assay for screening copy number
variations in BRCA1 gene. Breast Cancer Res Treat. 178:545–555.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Khalique S, Pettitt SJ, Kelly G, Tunariu
N, Natrajan R, Banerjee S and Lord CJ: Longitudinal analysis of a
secondary BRCA2 mutation using digital droplet PCR. J Pathol Clin
Res. 6:3–11. 2020. View Article : Google Scholar :
|
|
151
|
De Paolis E, De Bonis M, Concolino P,
Piermattei A, Fagotti A, Urbani A, Scambia G, Minucci A and
Capoluongo E: Droplet digital PCR for large genomic rearrangements
detection: A promising strategy in tissue BRCA1 testing. Clin Chim
Acta. 513:17–24. 2021. View Article : Google Scholar
|
|
152
|
Manchanda R, Sun L, Patel S, Evans O,
Wilschut J, De Freitas Lopes AC, Gaba F, Brentnall A, Duffy S, Cui
B, et al: Economic evaluation of population-based BRCA1/BRCA2
mutation testing across multiple countries and health systems.
Cancers (Basel). 12:19292020. View Article : Google Scholar
|
|
153
|
Garcia J, Forestier J, Dusserre E, Wozny
AS, Geiguer F, Merle P, Tissot C, Ferraro-Peyret C, Jones FS,
Edelstein DL, et al: Cross-platform comparison for the detection of
RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing
assay, and NGS strategy). Oncotarget. 9:21122–21131. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Ratajska M, Koczkowska M, Żuk M,
Gorczyński A, Kuźniacka A, Stukan M, Biernat W, Limon J and Wasąg
B: Detection of BRCA1/2 mutations in circulating tumor DNA from
patients with ovarian cancer. Oncotarget. 8:101325–101332. 2017.
View Article : Google Scholar : PubMed/NCBI
|