Open Access

Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma

  • Authors:
    • Xing Huang
    • Yan Huang
    • Zheng Lv
    • Tao Wang
    • Huayi Feng
    • Hanfeng Wang
    • Songliang Du
    • Shengpan Wu
    • Donglai Shen
    • Chenfeng Wang
    • Hongzhao Li
    • Baojun Wang
    • Xin Ma
    • Xu Zhang
  • View Affiliations

  • Published online on: May 31, 2022     https://doi.org/10.3892/ijo.2022.5377
  • Article Number: 87
  • Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cell division cycle‑associated 5 (CDCA5) protein, which is involved in cohesion, contributes to cell cycle regulation and chromosome segregation by maintaining genomic stability. Accumulating evidence indicates that CDCA5 expression is upregulated in a number of types of cancer associated with a poor prognosis. However, the biological function of CDCA5 in clear cell renal cell carcinoma (ccRCC) remains largely unknown. In the present study, The Cancer Genome Atlas data mining revealed that CDCA5 was more highly expressed in ccRCC than in adjacent normal tissues. Importantly, such a high expression was associated with a higher risk of distant metastasis and poorer clinical outcomes. Moreover, the clinical and prognostic value of CDCA5 expression was further investigated using immunohistochemistry on tissue microarrays containing paired tumor tissues and adjacent normal tissues from 137 patients with ccRCC. Functional analyses revealed that CDCA5 knockdown significantly inhibited the proliferation and migration of ccRCC cells, and suppressed the growth of xenografts in nude mice. Mechanistically, CDCA5 knockdown induced severe DNA damage with the persistent accumulation of γ‑H2A histone family member X foci, resulting in G2/M cell cycle arrest and finally, in chromosomal instability and apoptosis. CDCA5 knockdown significantly decreased the phosphorylation levels of Stat3 and NF‑κB, suggesting that CDCA5 plays a role in regulating the inflammatory response. Collectively, the findings of the present study indicate that ccRCC cells require CDCA5 for malignant progression, and that CDCA5 inhibition may enhance the outcomes of patients with high‑risk ccRCC.
View Figures
View References

Related Articles

Journal Cover

July-2022
Volume 61 Issue 1

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Huang X, Huang Y, Lv Z, Wang T, Feng H, Wang H, Du S, Wu S, Shen D, Wang C, Wang C, et al: Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma. Int J Oncol 61: 87, 2022
APA
Huang, X., Huang, Y., Lv, Z., Wang, T., Feng, H., Wang, H. ... Zhang, X. (2022). Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma. International Journal of Oncology, 61, 87. https://doi.org/10.3892/ijo.2022.5377
MLA
Huang, X., Huang, Y., Lv, Z., Wang, T., Feng, H., Wang, H., Du, S., Wu, S., Shen, D., Wang, C., Li, H., Wang, B., Ma, X., Zhang, X."Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma". International Journal of Oncology 61.1 (2022): 87.
Chicago
Huang, X., Huang, Y., Lv, Z., Wang, T., Feng, H., Wang, H., Du, S., Wu, S., Shen, D., Wang, C., Li, H., Wang, B., Ma, X., Zhang, X."Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma". International Journal of Oncology 61, no. 1 (2022): 87. https://doi.org/10.3892/ijo.2022.5377