|
1
|
Slominski AT, Zmijewski MA, Plonka PM,
Szaflarski JP and Paus R: How UV light touches the brain and
endocrine system through skin, and why. Endocrinology.
159:1992–2007. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Brash DE: UV signature mutations.
Photochem Photobiol. 91:15–26. 2015. View Article : Google Scholar :
|
|
3
|
Wondrak GT: Let the sun shine in:
Mechanisms and potential for therapeutics in skin photodamage. Curr
Opin Investig Drugs. 8:390–400. 2007.PubMed/NCBI
|
|
4
|
D'Orazio J, Jarrett S, Amaro-Ortiz A and
Scott T: UV radiation and the skin. Int J Mol Sci. 14:12222–12248.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bickers DR and Athar M: Oxidative stress
in the pathogenesis of skin disease. J Invest Dermatol.
126:2565–2575. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Slominski AT, Zmijewski MA, Semak I,
Zbytek B, Pisarchik A, Li W, Zjawiony J and Tuckey RC: Cytochromes
p450 and skin cancer: Role of local endocrine pathways. Anticancer
Agents Med Chem. 14:77–96. 2014. View Article : Google Scholar
|
|
7
|
Athar M, Walsh SB, Kopelovich L and Elmets
CA: Pathogenesis of nonmelanoma skin cancers in organ transplant
recipients. Arch Biochem Biophys. 508:159–163. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lo HL, Nakajima S, Ma L, Walter B, Yasui
A, Ethell DW and Owen LB: Differential biologic effects of CPD and
6-4PP UV-induced DNA damage on the induction of apoptosis and
cell-cycle arrest. BMC Cancer. 5:1352005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wondrak GT, Roberts MJ, Jacobson MK and
Jacobson EL: 3-hydroxypyridine chromophores are endogenous
sensitizers of photooxidative stress in human skin cells. J Biol
Chem. 279:30009–30020. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Slominski AT, Zmijewski MA, Skobowiat C,
Zbytek B, Slominski RM and Steketee JD: Sensing the environment:
Regulation of local and global homeostasis by the skin's
neuroendocrine system. Adv Anat Embryol Cell Biol. 212:v–vii.
1–115. 2012.PubMed/NCBI
|
|
11
|
Lim HW, Collins SAB, Resneck JS Jr,
Bolognia JL, Hodge JA, Rohrer TA, Van Beek MJ, Margolis DJ, Sober
AJ, Weinstock MA, et al: The burden of skin disease in the United
States. J Am Acad Dermatol. 76:958–972.e2. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Carlson JA, Slominski A, Murphy MJ and
Wilson V: Evidence of skin field cancerization. Field
Cancerization: Basic Science and Clical Applications. Dakubo G:
Nova Science Publishers Inc; pp. 317–369. 2011
|
|
13
|
Holick MF: Vitamin D: A millenium
perspective. J Cell Biochem. 88:296–307. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Holick MF, Tian XQ and Allen M:
Evolutionary importance for the membrane enhancement of the
production of vitamin D3 in the skin of poikilothermic animals.
Proc Natl Acad Sci USA. 92:3124–3126. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bikle DD: Vitamin D and the skin. J Bone
Miner Metab. 28:117–130. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Holick MF: Vitamin D deficiency. N Engl J
Med. 357:266–281. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bikle DD: Vitamin D metabolism and
function in the skin. Mol Cell Endocrinol. 347:80–89. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Plum LA and DeLuca HF: Vitamin D, disease
and therapeutic opportunities. Nat Rev Drug Discov. 9:941–955.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bikle DD: Vitamin D receptor, UVR, and
skin cancer: A potential protective mechanism. J Invest Dermatol.
128:2357–2361. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Elias PM: Structure and function of the
stratum corneum extracellular matrix. J Invest Dermatol.
132:2131–2133. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bikle DD: Vitamin D: Newly discovered
actions require reconsideration of physiologic requirements. Trends
Endocrinol Metab. 21:375–384. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Indra AK, Castaneda E, Antal MC, Jiang M,
Messaddeq N, Meng X, Loehr CV, Gariglio P, Kato S, Wahli W, et al:
Malignant transformation of DMBA/TPA-induced papillomas and nevi in
the skin of mice selectively lacking retinoid-X-receptor alpha in
epidermal keratinocytes. J Invest Dermatol. 127:1250–1260. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dixon KM, Tongkao-On W, Sequeira VB,
Carter SE, Song EJ, Rybchyn MS, Gordon-Thomson C and Mason RS:
Vitamin D and death by sunshine. Int J Mol Sci. 14:1964–1977. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Song EJ, Gordon-Thomson C, Cole L, Stern
H, Halliday GM, Damian DL, Reeve VE and Mason RS:
1α,25-Dihydroxyvitamin D3 reduces several types of UV-induced DNA
damage and contributes to photoprotection. J Steroid Biochem Mol
Biol. 136:131–138. 2013. View Article : Google Scholar
|
|
25
|
Bikle DD, Elalieh H, Welsh J, Oh D,
Cleaver J and Teichert A: Protective role of vitamin D signaling in
skin cancer formation. J Steroid Biochem Mol Biol. 136:271–279.
2013. View Article : Google Scholar :
|
|
26
|
Demetriou SK, Ona-Vu K, Teichert AE,
Cleaver JE, Bikle DD and Oh DH: Vitamin D receptor mediates DNA
repair and is UV inducible in intact epidermis but not in cultured
keratinocytes. J Invest Dermatol. 132:2097–2100. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Makarova A, Wang G, Dolorito JA, Kc S,
Libove E and Epstein EH Jr: Vitamin D3 produced by skin
exposure to UVR inhibits murine basal cell carcinoma
carcinogenesis. J Invest Dermatol. 137:2613–2619. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Slominski AT, Li W, Kim TK, Semak I, Wang
J, Zjawiony JK and Tuckey RC: Novel activities of CYP11A1 and their
potential physiological significance. J Steroid Biochem Mol Biol.
151:25–37. 2015. View Article : Google Scholar
|
|
29
|
Slominski AT, Kim TK, Li W, Postlethwaite
A, Tieu EW, Tang EKY and Tuckey RC: Detection of novel
CYP11A1-derived secosteroids in the human epidermis and serum and
pig adrenal gland. Sci Rep. 5:148752015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tuckey RC, Li W, Shehabi HZ, Janjetovic Z,
Nguyen MN, Kim TK, Chen J, Howell DE, Benson HA, Sweatman T, et al:
Production of 22-hydroxy metabolites of vitamin d3 by cytochrome
p450scc (CYP11A1) and analysis of their biological activities on
skin cells. Drug Metab Dispos. 39:1577–1588. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Slominski AT, Kim TK, Shehabi HZ, Semak I,
Tang EK, Nguyen MN, Benson HA, Korik E, Janjetovic Z, Chen J, et
al: In vivo evidence for a novel pathway of vitamin D3
metabolism initiated by P450scc and modified by CYP27B1. FASEB J.
26:3901–3915. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tang EK, Chen J, Janjetovic Z, Tieu EW,
Slominski AT, Li W and Tuckey RC: Hydroxylation of CYP11A1-derived
products of vitamin D3 metabolism by human and mouse CYP27B1. Drug
Metab Dispos. 41:1112–1124. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Slominski AT, Kim TK, Shehabi HZ, Tang EK,
Benson HA, Semak I, Lin Z, Yates CR, Wang J, Li W and Tuckey RC: In
vivo production of novel vitamin D2 hydroxy-derivatives by human
placentas, epidermal keratinocytes, Caco-2 colon cells and the
adrenal gland. Mol Cell Endocrinol. 383:181–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Slominski AT, Kim TK, Li W and Tuckey RC:
Classical and non-classical metabolic transformation of vitamin D
in dermal fibroblasts. Exp Dermatol. 25:231–232. 2016. View Article : Google Scholar :
|
|
35
|
Kim TK, Atigadda V, Brzeminski P, Fabisiak
A, Tang EKY, Tuckey RC and Slominski AT: Detection of
7-dehydrocholesterol and vitamin D3 derivatives in honey.
Molecules. 25:25832020. View Article : Google Scholar :
|
|
36
|
Slominski AT, Janjetovic Z, Kim TK, Wright
AC, Grese LN, Riney SJ, Nguyen MN and Tuckey RC: Novel vitamin D
hydroxyderivatives inhibit melanoma growth and show differential
effects on normal melanocytes. Anticancer Res. 32:3733–3742.
2012.PubMed/NCBI
|
|
37
|
Wang J, Slominski A, Tuckey RC, Janjetovic
Z, Kulkarni A, Chen J, Postlethwaite AE, Miller D and Li W:
20-Hydroxyvitamin D3 inhibits proliferation of cancer
cells with high efficacy while being non-toxic. Anticancer Res.
32:739–746. 2012.PubMed/NCBI
|
|
38
|
Janjetovic Z, Brozyna AA, Tuckey RC, Kim
TK, Nguyen MN, Jozwicki W, Pfeffer SR, Pfeffer LM and Slominski AT:
High basal NF-κB activity in nonpigmented melanoma cells is
associated with an enhanced sensitivity to vitamin D3 derivatives.
Br J Cancer. 105:1874–1884. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Slominski AT, Janjetovic Z, Fuller BE,
Zmijewski MA, Tuckey RC, Nguyen MN, Sweatman T, Li W, Zjawiony J,
Miller D, et al: Products of vitamin D3 or 7-dehydrocholesterol
metabolism by cytochrome P450scc show anti-leukemia effects, having
low or absent calcemic activity. PLoS One. 5:e99072010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Slominski A, Kim TK, Zmijewski MA,
Janjetovic Z, Li W, Chen J, Kusniatsova EI, Semak I, Postlethwaite
A, Miller DD, et al: Novel vitamin D photoproducts and their
precursors in the skin. Dermatoendocrinol. 5:7–19. 2013. View Article : Google Scholar
|
|
41
|
Wasiewicz T, Szyszka P, Cichorek M,
Janjetovic Z, Tuckey RC, Slominski AT and Zmijewski MA: Antitumor
effects of vitamin D analogs on hamster and mouse melanoma cell
lines in relation to melanin pigmentation. Int J Mol Sci.
16:6645–6667. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Slominski AT, Chaiprasongsuk A, Janjetovic
Z, Kim TK, Stefan J, Slominski RM, Hanumanthu VS, Raman C, Qayyum
S, Song Y, et al: Photoprotective properties of vitamin D and
lumisterol hydroxyderivatives. Cell Biochem Biophys. 78:165–180.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chaiprasongsuk A, Janjetovic Z, Kim TK,
Tuckey RC, Li W, Raman C, Panich U and Slominski AT:
CYP11A1-derived vitamin D3 products protect against
UVB-induced inflammation and promote keratinocytes differentiation.
Free Radic Biol Med. 155:87–98. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chaiprasongsuk A, Janjetovic Z, Kim TK,
Jarrett SG, D'Orazio JA, Holick MF, Tang EKY, Tuckey RC, Panich U,
Li W and Slominski AT: Protective effects of novel derivatives of
vitamin D3 and lumisterol against UVB-induced damage in
human keratinocytes involve activation of Nrf2 and p53 defense
mechanisms. Redox Biol. 24:1012062019. View Article : Google Scholar
|
|
45
|
Slominski AT, Janjetovic Z, Kim TK,
Wasilewski P, Rosas S, Hanna S, Sayre RM, Dowdy JC, Li W and Tuckey
RC: Novel non-calcemic secosteroids that are produced by human
epidermal keratinocytes protect against solar radiation. J Steroid
Biochem Mol Biol. 148:52–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tongkao-on W, Carter S, Reeve VE, Dixon
KM, Gordon-Thomson C, Halliday GM, Tuckey RC and Mason RS: CYP11A1
in skin: An alternative route to photoprotection by vitamin D
compounds. J Steroid Biochem Mol Biol. 148:72–78. 2015. View Article : Google Scholar
|
|
47
|
Bikle D and Christakos S: New aspects of
vitamin D metabolism and action-addressing the skin as source and
target. Nat Rev Endocrinol. 16:234–252. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bikle DD: Vitamin D: Newer concepts of its
metabolism and function at the basic and clinical level. J Endocr
Soc. 4:bvz0382020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Reichrath J, Zouboulis CC, Vogt T and
Holick MF: Targeting the vitamin D endocrine system (VDES) for the
management of inflammatory and malignant skin diseases: An
historical view and outlook. Rev Endocr Metab Disord. 17:405–417.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Carlberg C: Vitamin D genomics: From in
vitro to in vivo. Front Endocrinol (Lausanne). 9:2502018.
View Article : Google Scholar
|
|
51
|
Slominski AT, Kim TK, Janjetovic Z, Tuckey
RC, Bieniek R, Yue J, Li W, Chen J, Nguyen MN, Tang EK, et al:
20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with
potent antiproliferative and prodifferentiation activities in
normal and malignant cells. Am J Physiol Cell Physiol.
300:C526–C541. 2011. View Article : Google Scholar :
|
|
52
|
Kim TK, Wang J, Janjetovic Z, Chen J,
Tuckey RC, Nguyen MN, Tang EK, Miller D, Li W and Slominski AT:
Correlation between secosteroid-induced vitamin D receptor activity
in melanoma cells and computer-modeled receptor binding strength.
Mol Cell Endocrinol. 361:143–152. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin Z, Marepally SR, Goh ESY, Cheng CYS,
Janjetovic Z, Kim TK, Miller DD, Postlethwaite AE, Slominski AT,
Tuckey RC, et al: Investigation of 20S-hydroxyvitamin D analogs and
their 1α-OH derivatives as potent vitamin D3 receptor
agonists with anti-inflammatory activities. Sci Rep. 8:14782018.
View Article : Google Scholar
|
|
54
|
Slominski AT, Kim TK, Takeda Y, Janjetovic
Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey
RC and Jetten AM: RORα and ROR γ are expressed in human skin and
serve as receptors for endogenously produced noncalcemic
20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J. 28:2775–2789.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Slominski AT, Kim TK, Hobrath JV, Oak ASW,
Tang EKY, Tieu EW, Li W, Tuckey RC and Jetten AM: Endogenously
produced nonclassical vitamin D hydroxy-metabolites act as 'biased'
agonists on VDR and inverse agonists on RORα and RORγ. J Steroid
Biochem Mol Biol. 173:42–56. 2017. View Article : Google Scholar
|
|
56
|
Janjetovic Z, Postlethwaite A, Kang HS,
Kim TK, Tuckey RC, Crossman DK, Qayyum S, Jetten AM and Slominski
AT: Antifibrogenic activities of CYP11A1-derived vitamin
D3-hydroxyderivatives are dependent on RORγ. Endocrinology.
162:bqaa1982021. View Article : Google Scholar
|
|
57
|
Slominski AT, Kim TK, Janjetovic Z,
Brożyna AA, Żmijewski MA, Xu H, Sutter TR, Tuckey RC, Jetten AM and
Crossman DK: Differential and overlapping effects of
20,23(OH)2 D3 and 1,25(OH)2 D3 on gene
expression in human epidermal keratinocytes: Identification of AhR
as an alternative receptor for 20,23(OH)2 D3. Int J Mol
Sci. 19:30722018. View Article : Google Scholar
|
|
58
|
Markiewicz A, Brożyna AA, Podgórska E,
Elas M, Urbańska K, Jetten AM, Slominski AT, Jóźwicki W,
Orłowska-Heitzman J, Dyduch G and Romanowska-Dixon B: Vitamin D
receptors (VDR), hydroxylases CYP27B1 and CYP24A1 and
retinoid-related orphan receptors (ROR) level in human uveal tract
and ocular melanoma with different melanization levels. Sci Rep.
9:91422019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Brożyna AA, Jóźwicki W, Skobowiat C,
Jetten A and Slominski AT: RORα and RORγ expression inversely
correlates with human melanoma progression. Oncotarget.
7:63261–63282. 2016. View Article : Google Scholar
|
|
60
|
Brożyna AA, Jóźwicki W, Jetten AM and
Slominski AT: On the relationship between VDR, RORα and RORγ
receptors expression and HIF1-α levels in human melanomas. Exp
Dermatol. 28:1036–1043. 2019. View Article : Google Scholar
|
|
61
|
Brożyna AA, Hoffman RM and Slominski AT:
Relevance of vitamin D in melanoma development, progression and
therapy. Anticancer Res. 40:473–489. 2020. View Article : Google Scholar
|
|
62
|
Slominski AT, Brożyna AA, Zmijewski MA,
Jóźwicki W, Jetten AM, Mason RS, Tuckey RC and Elmets CA: Vitamin D
signaling and melanoma: Role of vitamin D and its receptors in
melanoma progression and management. Lab Invest. 97:706–724. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen J, Wang J, Kim TK, Tieu EW, Tang EK,
Lin Z, Kovacic D, Miller DD, Postlethwaite A, Tuckey RC, et al:
Novel vitamin D analogs as potential therapeutics: Metabolism,
toxicity profiling, and antiproliferative activity. Anticancer Res.
34:2153–2163. 2014.PubMed/NCBI
|
|
64
|
Slominski A, Janjetovic Z, Tuckey RC,
Nguyen MN, Bhattacharya KG, Wang J, Li W, Jiao Y, Gu W, Brown M and
Postlethwaite AE: 20S-Hydroxyvitamin D3, noncalcemic product of
CYP11A1 action on vitamin D3, exhibits potent antifibrogenic
activity in vivo. J Clin Endocrinol Metab. 98:E298–E303. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Carlberg C and Molnar F: Current status of
vitamin D signaling and its therapeutic applications. Curr Top Med
Chem. 12:528–547. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gao Y, Zhou S, Luu S and Glowacki J:
Megalin mediates 25-hydroxyvitamin D3 actions in human
mesenchymal stem cells. FASEB J. 33:7684–7693. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nykjaer A, Dragun D, Walther D, Vorum H,
Jacobsen C, Herz J, Melsen F, Christensen EI and Willnow TE: An
endocytic pathway essential for renal uptake and activation of the
steroid 25-(OH) vitamin D3. Cell. 96:507–515. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kaseda R, Hosojima M, Sato H and Saito A:
Role of megalin and cubilin in the metabolism of vitamin D(3). Ther
Apher Dial. 15(Suppl 1): S14–S17. 2011. View Article : Google Scholar
|
|
69
|
Slominski A, Semak I, Zjawiony J, Wortsman
J, Li W, Szczesniewski A and Tuckey RC: The cytochrome P450scc
system opens an alternate pathway of vitamin D3 metabolism. FEBS J.
272:4080–4090. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tieu EW, Tang EK, Chen J, Li W, Nguyen MN,
Janjetovic Z, Slominski A and Tuckey RC: Rat CYP24A1 acts on
20-hydroxyvitamin D(3) producing hydroxylated products with
increased biological activity. Biochem Pharmacol. 84:1696–1704.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tang EK, Li W, Janjetovic Z, Nguyen MN,
Wang Z, Slominski A and Tuckey RC: Purified mouse CYP27B1 can
hydroxylate 20,23-dihydroxyvitamin D3, producing
1alpha,20,23-trihydroxyvitamin D3, which has altered biological
activity. Drug Metab Dispos. 38:1553–1559. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tuckey RC, Li W, Zjawiony JK, Zmijewski
MA, Nguyen MN, Sweatman T, Miller D and Slominski A: Pathways and
products for the metabolism of vitamin D3 by cytochrome P450scc.
FEBS J. 275:2585–2596. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tieu EW, Li W, Chen J, Baldisseri DM,
Slominski AT and Tuckey RC: Metabolism of cholesterol, vitamin D3
and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by
human CYP27A1. J Steroid Biochem Mol Biol. 129:163–171. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li W, Chen J, Janjetovic Z, Kim TK,
Sweatman T, Lu Y, Zjawiony J, Tuckey RC, Miller D and Slominski A:
Chemical synthesis of 20S-hydroxyvitamin D3, which shows
antiproliferative activity. Steroids. 75:926–935. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lin Z, Marepally SR, Ma D, Kim TK, Oak AS,
Myers LK, Tuckey RC, Slominski AT, Miller DD and Li W: Synthesis
and biological evaluation of vitamin D3 metabolite
20S,23S-dihydroxyvitamin D3 and Its 23R epimer. J Med Chem.
59:5102–5108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Slominski A, Semak I, Wortsman J, Zjawiony
J, Li W, Zbytek B and Tuckey RC: An alternative pathway of vitamin
D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to
20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2. FEBS J.
273:2891–2901. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tang JY, Xiao TZ, Oda Y, Chang KS, Shpall
E, Wu A, So PL, Hebert J, Bikle D and Epstein EH Jr: Vitamin D3
inhibits hedgehog signaling and proliferation in murine basal cell
carcinomas. Cancer Prev Res (Phila). 4:744–751. 2011. View Article : Google Scholar
|
|
78
|
So PL, Langston AW, Daniallinia N, Hebert
JL, Fujimoto MA, Khaimskiy Y, Aszterbaum M and Epstein EH Jr:
Long-term establishment, characterization and manipulation of cell
lines from mouse basal cell carcinoma tumors. Exp Dermatol.
15:742–750. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chaudhary SC, Singh T, Talwelkar SS,
Srivastava RK, Arumugam A, Weng Z, Elmets CA, Afaq F, Kopelovich L
and Athar M: Erb-041, an estrogen receptor-β agonist, inhibits skin
photocarcinogenesis in SKH-1 hairless mice by downregulating the
WNT signaling pathway. Cancer Prev Res (Phila). 7:186–198. 2014.
View Article : Google Scholar
|
|
80
|
Oak ASW, Bocheva G, Kim TK, Brożyna AA,
Janjetovic Z, Athar M, Tuckey RC and Slominski AT: Noncalcemic
vitamin D hydroxyderivatives inhibit human oral squamous cell
carcinoma and down-regulate hedgehog and WNT/β-catenin pathways.
Anticancer Res. 40:2467–2474. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Brożyna AA, Kim TK, Zabłocka M, Jóźwicki
W, Yue J, Tuckey RC, Jetten AM and Slominski AT: Association among
vitamin D, retinoic acid-related orphan receptors, and vitamin D
hydroxyderivatives in ovarian cancer. Nutrients. 12:35412020.
View Article : Google Scholar
|
|
82
|
Brozyna AA, VanMiddlesworth L and
Slominski AT: Inhibition of melanogenesis as a radiation sensitizer
for melanoma therapy. Int J Cancer. 123:1448–1456. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Slominski AT, Brożyna AA, Zmijewski MA,
Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM,
Guroji P, et al: The role of classical and novel forms of vitamin D
in the pathogenesis and progression of nonmelanoma skin cancers.
Adv Exp Med Biol. 1268:257–283. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Brożyna AA, Żmijewski MA, Linowiecka K,
Kim TK, Slominski RM and Slominski AT: Disturbed expression of
vitamin D and retinoic acid-related orphan receptors α and γ and of
megalin in inflammatory skin diseases. Exp Dermatol. 31:781–788.
2022. View Article : Google Scholar
|
|
85
|
Riker AI, Enkemann SA, Fodstad O, Liu S,
Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The
gene expression profiles of primary and metastatic melanoma yields
a transition point of tumor progression and metastasis. BMC Med
Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Cunningham TJ, Tabacchi M, Eliane JP,
Tuchayi SM, Manivasagam S, Mirzaalian H, Turkoz A, Kopan R,
Schaffer A, Saavedra AP, et al: Randomized trial of calcipotriol
combined with 5-fluorouracil for skin cancer precursor
immunotherapy. J Clin Invest. 127:106–116. 2017. View Article : Google Scholar :
|
|
87
|
Hadden MK: Hedgehog and vitamin D
signaling pathways in development and disease. Vitam Horm.
100:231–253. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Uhmann A, Niemann H, Lammering B, Henkel
C, Hess I, Nitzki F, Fritsch A, Prüfer N, Rosenberger A, Dullin C,
et al: Antitumoral effects of calcitriol in basal cell carcinomas
involve inhibition of hedgehog signaling and induction of vitamin D
receptor signaling and differentiation. Mol Cancer Ther.
10:2179–2188. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Dixon KM, Norman AW, Sequeira VB, Mohan R,
Rybchyn MS, Reeve VE, Halliday GM and Mason RS:
1α,25(OH)2-vitamin D and a nongenomic vitamin D analogue
inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer
Prev Res (Phila). 4:1485–1494. 2011. View Article : Google Scholar
|
|
90
|
Reichrath J, Rafi L, Rech M, Mitschele T,
Meineke V, Gartner BC, Tilgen W and Holick MF: Analysis of the
vitamin D system in cutaneous squamous cell carcinomas. J Cutan
Pathol. 31:224–231. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bikle DD: Vitamin D and the skin:
Physiology and pathophysiology. Rev Endocr Metab Disord. 13:3–19.
2012. View Article : Google Scholar
|
|
92
|
Dixon KM, Sequeira VB, Deo SS, Mohan R,
Posner GH and Mason RS: Differential photoprotective effects of
1,25-dihydroxyvitamin D3 and a low calcaemic deltanoid. Photochem
Photobiol Sci. 11:1825–1830. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zbytek B, Janjetovic Z, Tuckey RC,
Zmijewski MA, Sweatman TW, Jones E, Nguyen MN and Slominski AT:
20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by
cytochrome P450scc, stimulates keratinocyte differentiation. J
Invest Dermatol. 128:2271–2280. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Podgorska E, Kim TK, Janjetovic Z,
Urbanska K, Tuckey RC, Bae S and Slominski AT: Knocking out the
vitamin D receptor enhances malignancy and decreases responsiveness
to vitamin D3 hydroxyderivatives in human melanoma cells. Cancers
(Basel). 13:31112021. View Article : Google Scholar
|
|
95
|
Slominski AT, Brożyna AA, Skobowiat C,
Zmijewski MA, Kim TK, Janjetovic Z, Oak AS, Jozwicki W, Jetten AM,
Mason RS, et al: On the role of classical and novel forms of
vitamin D in melanoma progression and management. J Steroid Biochem
Mol Biol. 177:159–170. 2018. View Article : Google Scholar :
|
|
96
|
Skobowiat C, Oak AS, Kim TK, Yang CH,
Pfeffer LM, Tuckey RC and Slominski AT: Noncalcemic
20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and
in vivo models. Oncotarget. 8:9823–9834. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jenkinson C: The vitamin D metabolome: An
update on analysis and function. Cell Biochem Funct. 37:408–423.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jenkinson C, Desai R, Slominski AT, Tuckey
RC, Hewison M and Handelsman DJ: Simultaneous measurement of 13
circulating vitamin D3 and D2 mono and dihydroxy metabolites using
liquid chromatography mass spectrometry. Clin Chem Lab Med.
59:1642–1652. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Carlberg C and Muñoz A: An update on
vitamin D signaling and cancer. Semin Cancer Biol. 79:217–230.
2022. View Article : Google Scholar
|
|
100
|
Zmijewski MA and Carlberg C: Vitamin D
receptor(s): In the nucleus but also at membranes? Exp Dermatol.
29:876–884. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tuckey RC, Cheng CYS and Slominski AT: The
serum vitamin D metabolome: What we know and what is still to
discover. J Steroid Biochem Mol Biol. 186:4–21. 2019. View Article : Google Scholar :
|
|
102
|
Christakos S, Li S, De La Cruz J and Bikle
DD: New developments in our understanding of vitamin metabolism,
action and treatment. Metabolism. 98:112–120. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Christakos S, Dhawan P, Verstuyf A,
Verlinden L and Carmeliet G: Vitamin D: Metabolism, molecular
mechanism of action, and pleiotropic effects. Physiol Rev.
96:365–408. 2016. View Article : Google Scholar :
|
|
104
|
Medeiros JFP, de Oliveira Borges MV,
Soares AA, dos Santos JC, de Oliveira ABB, da Costa CHB, Cruz MS,
Bortolin RH, de Freitas RCC, Dantas PMS, et al: The impact of
vitamin D supplementation on VDR gene expression and body
composition in monozygotic twins: Randomized controlled trial. Sci
Rep. 10:119432020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hu L, Bikle DD and Oda Y: Reciprocal role
of vitamin D receptor on β-catenin regulated keratinocyte
proliferation and differentiation. J Steroid Biochem Mol Biol.
144(Pt A): 237–241. 2014. View Article : Google Scholar
|
|
106
|
Reichrath J, Kamradt J, Zhu XH, Kong XF,
Tilgen W and Holick MF: Analysis of 1,25-dihydroxyvitamin D(3)
receptors (VDR) in basal cell carcinomas. Am J Pathol. 155:583–589.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bikle DD, Ng D, Oda Y, Hanley K, Feingold
K and Xie Z: The vitamin D response element of the involucrin gene
mediates its regulation by 1,25-dihydroxyvitamin D3. J Invest
Dermatol. 119:1109–1113. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Janjetovic Z, Tuckey RC, Nguyen MN, Thorpe
EM Jr and Slominski AT: 20,23-dihydroxyvitamin D3, novel P450scc
product, stimulates differentiation and inhibits proliferation and
NF-kappaB activity in human keratinocytes. J Cell Physiol.
223:36–48. 2010.
|
|
109
|
Grund-Gröschke S, Stockmaier G and Aberger
F: Hedgehog/GLI signaling in tumor immunity-new therapeutic
opportunities and clinical implications. Cell Commun Signal.
17:1722019. View Article : Google Scholar
|
|
110
|
Shang S, Hua F and Hu ZW: The regulation
of β-catenin activity and function in cancer: Therapeutic
opportunities. Oncotarget. 8:33972–33989. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Torezan L, Grinblat B, Haedersdal M,
Valente N, Festa-Neto C and Szeimies RM: A randomized split-scalp
study comparing calcipotriol-assisted methyl aminolaevulinate
photodynamic therapy (MAL-PDT) with conventional MAL-PDT for the
treatment of actinic keratosis. Br J Dermatol. 179:829–835. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Slominski AT, Kim TK, Qayyum S, Song Y,
Janjetovic Z, Oak ASW, Slominski R M, Raman C, Stefan J,
Mier-Aguilar CA, et al: Vitamin D and lumisterol derivatives can
act on liver X receptors (LXRs). Sci Rep. 11:80022021. View Article : Google Scholar : PubMed/NCBI
|