Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2022 Volume 61 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 61 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review)

  • Authors:
    • Sui Li
    • Xiaofang Xie
    • Fu Peng
    • Junrong Du
    • Cheng Peng
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Key Laboratory of Drug‑Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‑Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 101
    |
    Published online on: July 5, 2022
       https://doi.org/10.3892/ijo.2022.5391
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gliomas are a primary types of intracranial malignancies and are characterized by a poor prognosis due to aggressive recurrence profiles. Temozolomide (TMZ) is an auxiliary alkylating agent that is extensively used in conjunction with surgical resection and forms the mainstay of clinical treatment strategies for gliomas. However, the frequent occurrence of TMZ resistance in clinical practice limits its therapeutic efficacy. Accumulating evidence has demonstrated that long non‑coding RNAs (lncRNAs) can play key and varied roles in glioma progression. lncRNAs have been reported to inhibit glioma progression by targeting various signaling pathways. In addition, the differential expression of lncRNAs has also been found to mediate the resistance of glioma to several chemotherapeutic agents, particularly to TMZ. The present review article therefore summarizes the findings of previous studies in an aim to report the significance and function of lncRNAs in regulating the chemoresistance of gliomas. The present review may provide further insight into the clinical treatment of gliomas.
View Figures

Figure 1

Figure 2

View References

1 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J and Suziedelis K: Non-coding RNAs in glioma. Cancers (Basel). 11:172018. View Article : Google Scholar

3 

De Sanctis V, Mazzarella G, Osti MF, Valeriani M, Alfó M, Salvati M, Banelli E, Tombolini V and Enrici RM: Radiotherapy and sequential temozolomide compared with radiotherapy with concomitant and sequential temozolomide in the treatment of newly diagnosed glioblastoma multiforme. Anticancer Drugs. 17:969–975. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, et al: Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA. 318:2306–2316. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Strobel H, Baisch T, Fitzel R, Schilberg K, Siegelin MD, Karpel-Massler G, Debatin KM and Westhoff MA: Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines. 7:692019. View Article : Google Scholar :

7 

Zhang J, Stevens MF and Bradshaw TD: Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol. 5:102–114. 2012. View Article : Google Scholar

8 

Stupp R, Brada M, van den Bent MJ and Tonn JC: High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25(Suppl 3): iii93–iii101. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Lee SY: Temozolomide resistance in glioblastoma multiforme. Genes Dis. 3:198–210. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Kanzawa T, Bedwell J, Kondo Y, Kondo S and Germano IM: Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg. 99:1047–1052. 2003. View Article : Google Scholar

11 

Jiang G, Li LT, Xin Y, Zhang L, Liu YQ and Zheng JN: Strategies to improve the killing of tumors using temozolomide: Targeting the DNA repair protein MGMT. Curr Med Chem. 19:3886–3892. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Perazzoli G, Prados J, Ortiz R, Caba O, Cabeza L, Berdasco M, Gónzalez B and Melguizo C: Temozolomide resistance in glioblastoma cell lines: Implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS One. 10:e01401312015. View Article : Google Scholar : PubMed/NCBI

13 

Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B, Hamilton RL, Banze LA, Brown AR and Sobol RW: N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro Oncol. 13:471–486. 2011. View Article : Google Scholar : PubMed/NCBI

14 

ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature. 489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Comings DE: The structure and function of chromatin. Adv Hum Genet. 3:237–431. 1972. View Article : Google Scholar : PubMed/NCBI

16 

Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Non-coding RNAs in Colorectal Cancer. Slaby O and Calin GA: Springer International Publishing; Cham: pp. 3–17. 2016, View Article : Google Scholar

17 

Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ and Calin GA: Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 34:5003–5011. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Schmitz SU, Grote P and Herrmann BG: Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 73:2491–2509. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Yu B and Wang S: Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics. 8:3654–3675. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Yoon JH, Abdelmohsen K and Gorospe M: Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 34:9–14. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, et al: LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol. 40:2004–2012. 2012.PubMed/NCBI

24 

Zhang J, Zhang Z, Chen Z and Deng L: Integrating multiple heterogeneous networks for novel LncRNA-disease association inference. IEEE/ACM Trans Comput Biol Bioinform. 16:396–406. 2019. View Article : Google Scholar

25 

Bolha L, Ravnik-Glavač M and Glavač D: Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017:72439682017. View Article : Google Scholar : PubMed/NCBI

26 

Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WC and Mansoori B: Long Non-coding RNAs in multidrug resistance of glioblastoma. Genes (Basel). 12:4552021. View Article : Google Scholar

27 

Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, Chen W and Zhang J: lncRNA lnc-POP11 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther. 30:448–467. 2022. View Article : Google Scholar

28 

Chen KY, Zhu SG, He JW and Duan XP: LncRNA CRNDE is involved in radiation resistance in hepatocellular carcinoma via modulating the SP1/PDK1 axis. Neoplasma. 211230N18532022.Epub ahead of print. PubMed/NCBI

29 

Wu J, Xu S, Li W, Lu Y, Zhou Y, Xie M, Luo Y, Cao Y, He Y, Zeng T and Ling H: lncRNAs as hallmarks for individualized treatment of gastric cancer. Anticancer Agents Med Chem. 22:1440–1457. 2022. View Article : Google Scholar

30 

Ye X, Wang LP, Han C, Hu H, Ni CM, Qiao GL, Ouyang L and Ni JS: Increased m6A modification of lncRNA DBH-AS1 suppresses pancreatic cancer growth and gemcitabine resistance via the miR-3163/USP44 axis. Ann Transl Med. 10:3042022. View Article : Google Scholar

31 

Jiang X, Li H, Fang Y and Xu C: LncRNA PVT1 contributes to invasion and doxorubicin resistance of bladder cancer cells through promoting MDM2 expression and AURKB-mediated p53 ubiquitination. Environ Toxicol. 37:1495–1508. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Cheng M, Wang Q, Chen L, Zhao D, Tang J, Xu J and He Z: LncRNA UCA1/miR-182-5p/MGMT axis modulates glioma cell sensitivity to temozolomide through MGMT-related DNA damage pathways. Hum Pathol. 123:59–73. 2022. View Article : Google Scholar : PubMed/NCBI

33 

Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST and Leung GK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis. 48:1–8. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, et al: lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 30:688–702. 2022. View Article : Google Scholar

35 

Li DQ, Ding YR, Che JH, Su Z, Yang WZ, Xu L, Li YJ, Wang HH and Zhou WY: Tumor suppressive lncRNA MEG3 binds to EZH2 and enhances CXCL3 methylation in gallbladder cancer. Neoplasma. 69:538–549. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Yuan D, Guo T, Zhu D, Ge H, Zhao Y, Huang A, Wang X, Cao X, He C, Qian H and Yu H: Exosomal lncRNA ATB derived from ovarian cancer cells promotes angiogenesis via regulating miR-204-3p/TGFβR2 axis. Cancer Manag Res. 14:327–337. 2022. View Article : Google Scholar :

37 

Yan Y, Xu Z, Li Z, Sun L and Gong Z: An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front Mol Neurosci. 10:532017. View Article : Google Scholar : PubMed/NCBI

38 

Peng Z, Liu C and Wu M: New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 17:612018. View Article : Google Scholar : PubMed/NCBI

39 

Li J, Bian EB, He XJ, Ma CC, Zong G, Wang HL and Zhao B: Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol. 48:723–733. 2016. View Article : Google Scholar

40 

Zeng H, Xu N, Liu Y, Liu B, Yang Z, Fu Z, Lian C and Guo H: Genomic profiling of long non-coding RNA and mRNA expression associated with acquired temozolomide resistance in glioblastoma cells. Int J Oncol. 51:445–455. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Wang X, Li XD, Fu Z, Zhou Y, Huang X and Jiang X: Long non-coding RNA LINC00473/miR-195-5p promotes glioma progression via YAP1-TEAD1-Hippo signaling. Int J Oncol. 56:508–521. 2020.PubMed/NCBI

42 

Lei W, Wang ZL, Feng HJ, Lin XD, Li CZ and Fan D: Long non-coding RNA SNHG12promotes the proliferation and migration of glioma cells by binding to HuR. Int J Oncol. 53:1374–1384. 2018.PubMed/NCBI

43 

Fang K, Liu P, Dong S, Guo Y, Cui X, Zhu X, Li X, Jiang L, Liu T and Wu Y: Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol. 49:509–518. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Liu ZZ, Tian YF, Wu H, Ouyang SY and Kuang WL: LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis. Neoplasma. 67:111–118. 2020. View Article : Google Scholar

45 

Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Wang Y, Wang Y, Li J, Zhang Y, Yin H and Han B: CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 367:122–128. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C and Liu Y: CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther. 24:1199–1215. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Shree B, Tripathi S and Sharma V: Transforming growth factor-beta-regulated LncRNA-MUF promotes invasion by modulating the miR-34a snail1 axis in glioblastoma multiforme. Front Oncol. 11:7887552022. View Article : Google Scholar : PubMed/NCBI

49 

Li J, Zhang M, An G and Ma Q: LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood). 241:644–649. 2016. View Article : Google Scholar

50 

Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ and Camphausen KA: Ionizing radiation and glioblastoma exosomes: Implications in tumor biology and cell migration. Transl Oncol. 6:638–648. 2013. View Article : Google Scholar

51 

Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM and Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL and Zhao B: Exosomal lncRNA-ATB activates astrocytes that promote glioma cell invasion. Int J Oncol. 54:713–721. 2019.

53 

Lang HL, Hu GW, Chen Y, Liu Y, Tu W, Lu YM, Wu L and Xu GH: Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci. 21:959–972. 2017.PubMed/NCBI

54 

Li MY, Yang P, Liu YW, Zhang CB, Wang KY, Wang YY, Yao K, Zhang W, Qiu XG, Li WB, et al: Low c-Met expression levels are prognostic for and predict the benefits of temozolomide chemotherapy in malignant gliomas. Sci Rep. 6:211412016. View Article : Google Scholar : PubMed/NCBI

55 

Wu P, Cai J, Chen Q, Han B, Meng X, Li Y, Li Z, Wang R, Lin L, Duan C, et al: Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 10:20452019. View Article : Google Scholar :

56 

Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S and Kaminska B: Microglia-derived TGF-beta as an important regulator of glioblastoma invasion-an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene. 27:918–930. 2008. View Article : Google Scholar

57 

Han J, Alvarez-Breckenridge CA, Wang QE and Yu J: TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res. 5:945–955. 2015.

58 

Miyazawa K and Miyazono K: Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 9:a0220952017. View Article : Google Scholar

59 

Brunen D, Willems SM, Kellner U, Midgley R, Simon I and Bernards R: TGF-β: An emerging player in drug resistance. Cell Cycle. 12:2960–2968. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Oshimori N, Oristian D and Fuchs E: TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 160:963–976. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Nie E, Jin X, Miao F, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Xie M and You Y: TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol. 23:435–446. 2021. View Article : Google Scholar

62 

Fu T, Yang Y, Mu Z, Sun R, Li X and Dong J: Silencing lncRNA LINC01410 suppresses cell viability yet promotes apoptosis and sensitivity to temozolomide in glioblastoma cells by inactivating PTEN/AKT pathway via targeting miR-370-3p. Immunopharmacol Immunotoxicol. 43:680–692. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Peng L, Chen Z, Chen Y, Wang X and Tang N: MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med. 8:7161–7173. 2019. View Article : Google Scholar : PubMed/NCBI

64 

He X, Sheng J, Yu W, Wang K, Zhu S and Liu Q: LncRNA MIR155HG promotes temozolomide resistance by activating the Wnt/β-catenin pathway via binding to PTBP1 in glioma. Cell Mol Neurobiol. 41:1271–1284. 2021. View Article : Google Scholar

65 

Li C, Feng S and Chen L: MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway. Mol Cell Biochem. 476:699–713. 2021. View Article : Google Scholar :

66 

Boustani MR, Mehrabi F, Yahaghi E, Khoshnood RJ, Shahmohammadi M, Darian EK and Goudarzi PK: Somatic CPEB4 and CPEB1 genes mutations spectrum on the prognostic predictive accuracy in patients with high-grade glioma and their clinical significance. J Neurol Sci. 363:80–83. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Gu N, Wang X, Di Z, Xiong J, Ma Y, Yan Y, Qian Y, Zhang Q and Yu J: Silencing lncRNA FOXD2-AS1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microRNA-98-5p/CPEB4 axis. Aging (Albany NY). 11:10266–10283. 2019. View Article : Google Scholar

68 

Su YK, Lin JW, Shih JW, Chuang HY, Fong IH, Yeh CT and Lin CM: Targeting BC200/miR218-5p signaling axis for overcoming temozolomide resistance and suppressing glioma stemness. Cells. 9:18592020. View Article : Google Scholar :

69 

Ding J, Zhang L, Chen S, Cao H, Xu C and Wang X: lncRNA CCAT2 enhanced resistance of glioma cells against chemodrugs by disturbing the normal function of miR-424. Onco Targets Ther. 13:1431–1445. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Li Z, Meng X, Wu P, Zha C, Han B, Li L, Sun N, Qi T, Qin J, Zhang Y, et al: Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to produce complement C5, promoting chemotherapy resistance. Cancer Immunol Res. 9:1383–1399. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Li B, Zhao H, Song J, Wang F and Chen M: LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis. Hum Cell. 33:159–174. 2020. View Article : Google Scholar

72 

Jia L, Tian Y, Chen Y and Zhang G: The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Onco Targets Ther. 11:313–321. 2018. View Article : Google Scholar :

73 

Jiang P, Wang P, Sun X, Yuan Z, Zhan R, Ma X and Li W: Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. Onco Targets Ther. 9:3501–3509. 2016.PubMed/NCBI

74 

Zhou L, Huang X, Zhang Y, Wang L, Li H and Huang H: PSMG3-AS1 enhances glioma resistance to temozolomide via stabilizing c-Myc in the nucleus. Brain Behav. 12:e25312022. View Article : Google Scholar : PubMed/NCBI

75 

Zhang S, Guo S, Liang C and Lian M: Long intergenic noncoding RNA 00021 promotes glioblastoma temozolomide resistance by epigenetically silencing p21 through Notch pathway. IUBMB Life. 72:1747–1756. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Cui B, Li B, Liu Q and Cui Y: lncRNA CCAT1 promotes glioma tumorigenesis by sponging miR-181b. J Cell Biochem. 118:4548–4557. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Wang Y, Yi K, Liu X, Tan Y, Jin W, Li Y, Zhou J, Wang F and Kang C: HOTAIR up-regulation activates NF-κB to induce immunoescape in gliomas. Front Immunol. 12:7854632021. View Article : Google Scholar

78 

Wang W, Han S, Gao W, Feng Y, Li K and Wu D: Long noncoding RNA KCNQ1OT1 confers gliomas resistance to temozolomide and enhances cell growth by retrieving PIM1 from miR-761. Cell Mol Neurobiol. 42:695–708. 2022. View Article : Google Scholar

79 

Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B and Lei B: LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. Ann Transl Med. 9:10232021. View Article : Google Scholar : PubMed/NCBI

80 

Dong ZQ, Guo ZY and Xie J: The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed Pharmacother. 118:1092922019. View Article : Google Scholar : PubMed/NCBI

81 

Chen M, Cheng Y, Yuan Z, Wang F, Yang L and Zhao H: NCK1-AS1 increases drug resistance of glioma cells to temozolomide by modulating miR-137/TRIM24. Cancer Biother Radiopharm. 35:101–108. 2020. View Article : Google Scholar

82 

Lu Y, Tian M, Liu J and Wang K: LINC00511 facilitates temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling. J Biochem Mol Toxicol. 35:e228482021. View Article : Google Scholar

83 

Tomar VS, Patil V and Somasundaram K: Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: Implications in glioma therapy. Cell Biol Toxicol. 36:273–278. 2020. View Article : Google Scholar

84 

Liu H, Liu Z, Jiang B, Peng R, Ma Z and Lu J: SOX9 overexpression promotes glioma metastasis via Wnt/β-catenin signaling. Cell Biochem Biophys. 73:205–212. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M and Jiang C: Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res. 24:684–695. 2018. View Article : Google Scholar

87 

Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski KH, Christmann M and Kaina B: Survival and death strategies in glioma cells: Autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One. 8:e556652013. View Article : Google Scholar : PubMed/NCBI

88 

Linder S, Wiesner C and Himmel M: Degrading devices: Invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol. 27:185–211. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Ulasov IV, Mijanovic O, Savchuk S, Gonzalez-Buendia E, Sonabend A, Xiao T, Timashev P and Lesniak MS: TMZ regulates GBM stemness via MMP14-DLL4-Notch3 pathway. Int J Cancer. 146:2218–2228. 2020. View Article : Google Scholar

90 

Wen Q, Chen Z, Chen Z, Chen J, Wang R, Huang C and Yuan W: EphA2 affects the sensitivity of oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells. Oncotarget. 8:47998–48011. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Gaianigo N, Melisi D and Carbone C: EMT and treatment resistance in pancreatic cancer. Cancers (Basel). 9:1222017. View Article : Google Scholar

92 

Peng F, Fan H, Li S, Peng C and Pan X: MicroRNAs in epithelial-mesenchymal transition process of cancer: potential targets for chemotherapy. Int J Mol Sci. 22:75262021. View Article : Google Scholar : PubMed/NCBI

93 

Li Z, Li M, Xia P and Lu Z: HOTTIP mediated therapy resistance in glioma cells involves regulation of EMT-related miR-10b. Front Oncol. 12:8735612022. View Article : Google Scholar : PubMed/NCBI

94 

Loilome W, Joshi AD, ap Rhys CM, Piccirillo S, Vescovi AL, Gallia GL and Riggins GJ: Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol. 94:359–366. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD, Betensky RA, et al: Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 20:810–817. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Raoof S, Ruddy D, Timonia D, Damon L, Engelman J and Hata A: Abstract A142: Targeting FGFR to overcome EMT-related resistance in EGFR-mutated non-small cell lung cancer. Mol Cancer Ther. 17(1 Suppl): A1422018. View Article : Google Scholar

97 

Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, Song L, Lv D, Nakano I, Hu B, et al: SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene. 35:5641–5652. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Brichkina A, Nguyen NT, Baskar R, Wee S, Gunaratne J, Robinson RC and Bulavin DV: Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ. 23:1592–1601. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Park CM, Park MJ, Kwak HJ, Lee HC, Kim MS, Lee SH, Park IC, Rhee CH and Hong SI: Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res. 66:8511–8519. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Cong ZX, Wang HD, Zhou Y, Wang JW, Pan H, Zhang DD, Zhang L and Zhu L: Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol. 116:41–48. 2014. View Article : Google Scholar

101 

Ma L, Liu J, Zhang X, Qi J, Yu W and Gu Y: p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma cells against TMZ. Med Oncol. 32:692015. View Article : Google Scholar : PubMed/NCBI

102 

Carnero A, Blanco-Aparicio C, Renner O, Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 8:187–198. 2008. View Article : Google Scholar : PubMed/NCBI

103 

Harder BG, Peng S, Sereduk CP, Sodoma AM, Kitange GJ, Loftus JC, Sarkaria JN and Tran NL: Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med. 25:492019. View Article : Google Scholar : PubMed/NCBI

104 

Pridham KJ, Shah F, Hutchings KR, Sheng KL, Guo S, Liu M, Kanabur P, Lamouille S, Lewis G, Morales M, et al: Connexin 43 confers chemoresistance through activating PI3K. Oncogenesis. 11:22022. View Article : Google Scholar : PubMed/NCBI

105 

Zając A, Sumorek-Wiadro J, Langner E, Wertel I, Maciejczyk A, Pawlikowska-Pawlęga B, Pawelec J, Wasiak M, Hułas-Stasiak M, Bądziul D, et al: Involvement of PI3K pathway in glioma cell resistance to temozolomide treatment. Int J Mol Sci. 22:51552021. View Article : Google Scholar

106 

Zhang LH, Yin AA, Cheng JX, Huang HY, Li XM, Zhang YQ, Han N and Zhang X: TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 34:600–610. 2015. View Article : Google Scholar

107 

Cao X, Hou J, An Q, Assaraf YG and Wang X: Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat. 49:1006712020. View Article : Google Scholar

108 

Hientz K, Mohr A, Bhakta-Guha D and Efferth T: The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 8:8921–8946. 2017. View Article : Google Scholar :

109 

Hirose Y, Berger MS and Pieper RO: Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. 61:5843–5849. 2001.PubMed/NCBI

110 

Holder SL and Abdulkadir SA: PIM1 kinase as a target in prostate cancer: Roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets. 14:105–114. 2014. View Article : Google Scholar

111 

Wang BW, Huang CH, Liu LC, Cheng FJ, Wei YL, Lin YM, Wang YF, Wei CT, Chen Y, Chen YJ and Huang WC: Pim1 kinase inhibitors exert anti-cancer activity against HER2-positive breast cancer cells through downregulation of HER2. Front Pharmacol. 12:6146732021. View Article : Google Scholar : PubMed/NCBI

112 

Trigg RM, Lee LC, Prokoph N, Jahangiri L, Reynolds CP, Amos Burke GA, Probst NA, Han M, Matthews JD, Lim HK, et al: The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat Commun. 10:54282019. View Article : Google Scholar : PubMed/NCBI

113 

Wein L and Loi S: Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast. 34(Suppl 1): S27–S30. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Bobustuc GC, Kassam AB, Rovin RA, Jeudy S, Smith JS, Isley B, Singh M, Paranjpe A, Srivenugopal KS and Konduri SD: MGMT inhibition in ER positive breast cancer leads to CDC2, TOP2A, AURKB, CDC20, KIF20A, Cyclin A2, cyclin B2, cyclin D1, ERα and survivin inhibition and enhances response to temozolomide. Oncotarget. 9:29727–29742. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Song Z, Pan Y, Ling G, Wang S, Huang M, Jiang X and Ke Y: Escape of U251 glioma cells from temozolomide-induced senescence was modulated by CDK1/survivin signaling. Am J Transl Res. 9:2163–2180. 2017.PubMed/NCBI

116 

Reich TR, Schwarzenbach C, Vilar JB, Unger S, Mühlhäusler F, Nikolova T, Poplawski A, Baymaz HI, Beli P, Christmann M and Tomicic MT: Localization matters: Nuclear-trapped survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci. 78:5587–5604. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Li Z, Wu X, Zhao Y, Xiao Y, Zhao Y, Zhang T, Li H, Sha F, Wang Y, Deng L and Ma X: Clinical benefit of neoadjuvant anti-PD-1/PD-L1 utilization among different tumors. MedComm (2020). 2:60–68. 2021.

118 

Zhou Y, Miao J, Wu H, Tang H, Kuang J, Zhou X, Peng Y, Hu D, Shi D, Deng W, et al: PD-1 and PD-L1 expression in 132 recurrent nasopharyngeal carcinoma: The correlation with anemia and outcomes. Oncotarget. 8:51210–51223. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Qin T, Zeng YD, Qin G, Xu F, Lu JB, Fang WF, Xue C, Zhan JH, Zhang XK, Zheng QF, et al: High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget. 6:33972–33981. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, et al: Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 18:102019. View Article : Google Scholar : PubMed/NCBI

121 

Kathuria H, Millien G, McNally L, Gower AC, Tagne JB, Cao Y and Ramirez MI: NKX21-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration. Sci Rep. 8:144182018. View Article : Google Scholar

122 

Tian Y, Li L, Lin G, Wang Y, Wang L, Zhao Q, Hu Y, Yong H, Wan Y and Zhang Y: lncRNA SNHG14 promotes oncogenesis and immune evasion in diffuse large-B-cell lymphoma by sequestering miR-152-3p. Leuk Lymphoma. 62:1574–1584. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Dang S, Malik A, Chen J, Qu J, Yin K, Cui L and Gu M: LncRNA SNHG15 contributes to immuno-escape of gastric cancer through targeting miR141/PD-L1. Onco Targets Ther. 13:8547–8556. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO and Yang XH: Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J Cell Physiol. 234:23176–23189. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Fan F, Chen K, Lu X, Li A, Liu C and Wu B: Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 15:444–458. 2021. View Article : Google Scholar

126 

Peng L, Chen Y, Ou Q, Wang X and Tang N: LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma. Int Immunopharmacol. 89:1070712020. View Article : Google Scholar : PubMed/NCBI

127 

Mineo M, Lyons SM, Zdioruk M, von Spreckelsen N, Ferrer-Luna R, Ito H, Alayo QA, Kharel P, Giantini Larsen A, Fan WY, et al: Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 locus. Mol Cell. 78:1207–1223.e8. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Wagle N, Nguyen M, Carrillo J, Truong J, Dobrawa L and Kesari S: Characterization of molecular pathways for targeting therapy in glioblastoma. Chin Clin Oncol. 9:772020. View Article : Google Scholar : PubMed/NCBI

129 

Miyazaki T, Ishikawa E, Matsuda M, Sugii N, Kohzuki H, Akutsu H, Sakamoto N, Takano S and Matsumura A: Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kγ inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol. 37:41–49. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Roth P, Valavanis A and Weller M: Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab. Neuro Oncol. 19:454–456. 2017.PubMed/NCBI

131 

Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, et al: Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 86:343–349. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Jan CI, Tsai WC, Harn HJ, Shyu WC, Liu MC, Lu HM, Chiu SC and Cho DY: Predictors of response to autologous dendritic cell therapy in glioblastoma multiforme. Front Immunol. 9:7272018. View Article : Google Scholar : PubMed/NCBI

133 

Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI

134 

Vargas-Toscano A, Nickel AC, Li G, Kamp MA, Muhammad S, Leprivier G, Fritsche E, Barker RA, Sabel M, Steiger HJ, et al: Rapalink-1 targets glioblastoma stem cells and acts synergistically with tumor treating fields to reduce resistance against temozolomide. Cancers (Basel). 12:38592020. View Article : Google Scholar

135 

Zou Y, Chen M, Zhang S, Miao Z, Wang J, Lu X and Zhao X: TRPC5-induced autophagy promotes the TMZ-resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway. Oncol Rep. 41:3413–3423. 2019.PubMed/NCBI

136 

Jiang C, Shen F, Du J, Fang X, Li X, Su J, Wang X, Huang X and Liu Z: Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother. 97:844–850. 2018. View Article : Google Scholar

137 

Liu Q, Yu W, Zhu S, Cheng K, Xu H, Lv Y, Long X, Ma L, Huang J, Sun S and Wang K: Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p. J Cell Physiol. 234:757–768. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Zhao X, Liu Y, Zheng J, Liu X, Chen J, Liu L, Wang P and Xue Y: GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochim Biophys Acta Mol Cell Res. 1864:1605–1617. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Huo JF and Chen XB: Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem. 120:6127–6136. 2019. View Article : Google Scholar

140 

Li G, Cai Y, Wang C, Huang M and Chen J: LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J Neurooncol. 143:525–536. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Yan Y, Xu Z, Dai S, Qian L, Sun L and Gong Z: Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res. 35:232016. View Article : Google Scholar : PubMed/NCBI

142 

Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo Y, Peng R and Cheng L: LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar : PubMed/NCBI

143 

Jing H and Lee S: NF-κB in cellular senescence and cancer treatment. Mol Cells. 37:189–195. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Sánchez Y, Segura V, Marín-Béjar O, Athie A, Marchese FP, González J, Bujanda L, Guo S, Matheu A and Huarte M: Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat Commun. 5:58122014. View Article : Google Scholar : PubMed/NCBI

145 

Torres-Bayona S, Aldaz P, Auzmendi-Iriarte J, Saenz-Antoñanzas A, Garcia I, Arrazola M, Gerovska D, Undabeitia J, Querejeta A, Egaña L, et al: PR-LncRNA signature regulates glioma cell activity through expression of SOX factors. Sci Rep. 8:127462018. View Article : Google Scholar : PubMed/NCBI

146 

Ding H, Cui L and Wang C: Long noncoding RNA LIFR-AS1 suppresses proliferation, migration and invasion and promotes apoptosis through modulating miR-4262/NF-κB pathway in glioma. Neurol Res. 43:210–219. 2021. View Article : Google Scholar

147 

Li XT, Li JC, Feng M, Zhou YX and Du ZW: Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells. Neoplasma. 66:118–127. 2019. View Article : Google Scholar

148 

Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R and Reifenberger G: Glioma. Nat Rev Dis Primers. 1:150172015. View Article : Google Scholar : PubMed/NCBI

149 

Yang W and Gao Y: Translesion and repair DNA polymerases: Diverse structure and mechanism. Annu Rev Biochem. 87:239–261. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Bailly V, Lamb J, Sung P, Prakash S and Prakash L: Specific complex formation between yeast RAD6 and RAD18 proteins: A potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 8:811–820. 1994. View Article : Google Scholar : PubMed/NCBI

151 

Wojtaszek JL, Chatterjee N, Najeeb J, Ramos A, Lee M, Bian K, Xue JY, Fenton BA, Park H, Li D, et al: A small molecule targeting mutagenic translesion synthesis improves chemotherapy. Cell. 178:152–159.e11. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Peng C, Chen Z, Wang S, Wang HW, Qiu W, Zhao L, Xu R, Luo H, Chen Y, Chen D, et al: The error-prone DNA polymerase κ promotes temozolomide resistance in glioblastoma through Rad17-dependent activation of ATR-Chk1 signaling. Cancer Res. 76:2340–2353. 2016. View Article : Google Scholar : PubMed/NCBI

153 

Vassel FM, Bian K, Walker GC and Hemann MT: Rev7 loss alters cisplatin response and increases drug efficacy in chemotherapy-resistant lung cancer. Proc Natl Acad Sci USA. 117:28922–28924. 2020. View Article : Google Scholar : PubMed/NCBI

154 

Wu B, Wang H, Zhang L, Sun C, Li H, Jiang C and Liu X: High expression of RAD18 in glioma induces radiotherapy resistance via down-regulating P53 expression. Biomed Pharmacother. 112:1085552019. View Article : Google Scholar : PubMed/NCBI

155 

Rezaei O, Tamizkar KH, Sharifi G, Taheri M and Ghafouri-Fard S: Emerging role of long non-coding RNAs in the pathobiology of glioblastoma. Front Oncol. 10:6258842021. View Article : Google Scholar : PubMed/NCBI

156 

Luo J, Bai R, Liu Y, Bi H, Shi X and Qu C: Long non-coding RNA ATXN8OS promotes ferroptosis and inhibits the temozolomide-resistance of gliomas through the ADAR/GLS2 pathway. Brain Res Bull. 186:27–37. 2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

157 

Gao XY, Zang J, Zheng MH, Zhang YF, Yue KY, Cao XL, Cao Y, Li XX, Han H, Jiang XF and Liang L: Temozolomide treatment induces HMGB1 to promote the formation of glioma stem cells via the TLR2/NEAT1/Wnt pathway in glioblastoma. Front Cell Dev Biol. 9:6208832021. View Article : Google Scholar : PubMed/NCBI

158 

Wang C, Chen Y, Wang Y, Liu X, Liu Y, Li Y, Chen H, Fan C, Wu D and Yang J: Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res. 38:3712019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li S, Xie X, Peng F, Du J and Peng C: Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). Int J Oncol 61: 101, 2022.
APA
Li, S., Xie, X., Peng, F., Du, J., & Peng, C. (2022). Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). International Journal of Oncology, 61, 101. https://doi.org/10.3892/ijo.2022.5391
MLA
Li, S., Xie, X., Peng, F., Du, J., Peng, C."Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review)". International Journal of Oncology 61.3 (2022): 101.
Chicago
Li, S., Xie, X., Peng, F., Du, J., Peng, C."Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review)". International Journal of Oncology 61, no. 3 (2022): 101. https://doi.org/10.3892/ijo.2022.5391
Copy and paste a formatted citation
x
Spandidos Publications style
Li S, Xie X, Peng F, Du J and Peng C: Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). Int J Oncol 61: 101, 2022.
APA
Li, S., Xie, X., Peng, F., Du, J., & Peng, C. (2022). Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). International Journal of Oncology, 61, 101. https://doi.org/10.3892/ijo.2022.5391
MLA
Li, S., Xie, X., Peng, F., Du, J., Peng, C."Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review)". International Journal of Oncology 61.3 (2022): 101.
Chicago
Li, S., Xie, X., Peng, F., Du, J., Peng, C."Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review)". International Journal of Oncology 61, no. 3 (2022): 101. https://doi.org/10.3892/ijo.2022.5391
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team