Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2022 Volume 61 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 61 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Targeting histone demethylases as a potential cancer therapy (Review)

  • Authors:
    • Wenfei Diao
    • Jiabin Zheng
    • Yong Li
    • Junjiang Wang
    • Songhui Xu
  • View Affiliations / Copyright

    Affiliations: Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
  • Article Number: 103
    |
    Published online on: July 7, 2022
       https://doi.org/10.3892/ijo.2022.5393
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
View Figures

Figure 1

Figure 2

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H, et al: Advances in cancer immunotherapy 2019-latest trends. J Exp Clin Cancer Res. 38:2682019. View Article : Google Scholar : PubMed/NCBI

3 

Thompson JA, Schneider BJ, Brahmer J, Achufusi A, Armand P, Berkenstock MK, Bhatia S, Budde LE, Chokshi S, Davies M, et al: Management of immunotherapy-related toxicities, version 1.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 20:387–405. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Michalak EM, Burr ML, Bannister AJ and Dawson MA: The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 20:573–589. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H and Shinkai Y: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16:1779–1791. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, et al: Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 107:323–337. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD and Roeder RG: Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol. 13:713–719. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Shi Y: Histone lysine demethylases: Emerging roles in development, physiology and disease. Nat Rev Genet. 8:829–833. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Soares LM, He PC, Chun Y, Suh H, Kim T and Buratowski S: Determinants of histone H3K4 methylation patterns. Mol Cell. 68:773–785.e6. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Fodor BD, Kubicek S, Yonezawa M, O'Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G and Jenuwein T: Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 20:1557–1562. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Chen Z and Zhang Y: Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet. 21:555–571. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH and Helin K: The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 442:307–311. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J and Zhang Y: The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 442:312–316. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Vallianatos CN and Iwase S: Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics. 7:503–519. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Clark EA, Wu F, Chen Y, Kang P, Kaiser UB, Fang R and Shi YG: GR and LSD1/KDM1A-targeted gene activation requires selective H3K4me2 demethylation at enhancers. Cell Rep. 27:3522–3532.e3. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811–816. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T and Reinberg D: Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J Biol Chem. 284:8395–8405. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Suzuki T, Ozasa H, Itoh Y, Zhan P, Sawada H, Mino K, Walport L, Ohkubo R, Kawamura A, Yonezawa M, et al: Identification of the KDM2/7 histone lysine demethylase subfamily inhibitor and its antiproliferative activity. J Med Chem. 56:7222–7231. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Berry WL and Janknecht R: KDM4/JMJD2 histone demethylases: Epigenetic regulators in cancer cells. Cancer Res. 73:2936–2942. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Turberfield AH, Kondo T, Nakayama M, Koseki Y, King HW, Koseki H and Klose RJ: KDM2 proteins constrain transcription from CpG island gene promoters independently of their histone demethylase activity. Nucleic Acids Res. 47:9005–9023. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Tian Z, Yao L, Shen Y, Guo X and Duan X: Histone H3K9 demethylase JMJD1A is a co-activator of erythropoietin expression under hypoxia. Int J Biochem Cell Biol. 109:33–39. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Sui Y, Gu R and Janknecht R: Crucial functions of the JMJD1/KDM3 epigenetic regulators in cancer. Mol Cancer Res. 19:3–13. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Wagner KW, Alam H, Dhar SS, Giri U, Li N, Wei Y, Giri D, Cascone T, Kim JH, Ye Y, et al: KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J Clin Invest. 123:5231–5246. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Hughes AL, Kelley JR and Klose RJ: Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim Biophys Acta Gene Regul Mech. 1863:1945672020. View Article : Google Scholar : PubMed/NCBI

27 

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I and Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 129:823–837. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Chen Y, Yang Y, Wang F, Wan K, Yamane K, Zhang Y and Lei M: Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc Natl Acad Sci USA. 103:13956–13961. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Arifuzzaman S, Khatun MR and Khatun R: Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother. 129:1103922020. View Article : Google Scholar : PubMed/NCBI

30 

Carnesecchi J, Forcet C, Zhang L, Tribollet V, Barenton B, Boudra R, Cerutti C, Billas IM, Sérandour AA, Carroll JS, et al: ERRα induces H3K9 demethylation by LSD1 to promote cell invasion. Proc Natl Acad Sci USA. 114:3909–3914. 2017. View Article : Google Scholar : PubMed/NCBI

31 

He Y, Zhao Y, Wang L, Bohrer LR, Pan Y, Wang L and Huang H: LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation. Oncogene. 37:534–543. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Wang Y and Cao K: KDM1A promotes immunosuppression in hepatocellular carcinoma by regulating PD-L1 through demethylating MEF2D. J Immunol Res. 2021:99650992021. View Article : Google Scholar : PubMed/NCBI

33 

Hou X, Li Q, Yang L, Yang Z, He J, Li Q and Li D: KDM1A and KDM3A promote tumor growth by upregulating cell cycle-associated genes in pancreatic cancer. Exp Biol Med (Maywood). 246:1869–1883. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Kim HS, Son BK, Kwon MJ, Kim DH and Min KW: High KDM1A expression associated with decreased CD8+ T cells reduces the breast cancer survival rate in patients with breast cancer. J Clin Med. 10:11122021. View Article : Google Scholar : PubMed/NCBI

35 

Majello B, Gorini F, Saccà CD and Amente S: Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers (Basel). 11:3242019. View Article : Google Scholar : PubMed/NCBI

36 

Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T and Berger SL: p53 is regulated by the lysine demethylase LSD1. Nature. 449:105–108. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Cho HS, Suzuki T, Dohmae N, Hayami S, Unoki M, Yoshimatsu M, Toyokawa G, Takawa M, Chen T, Kurash JK, et al: Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res. 71:655–660. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Saccà CD, Gorini F, Ambrosio S, Amente S, Faicchia D, Matarese G, Lania L and Majello B: Inhibition of lysine-specific demethylase LSD1 induces senescence in glioblastoma cells through a HIF-1α-dependent pathway. Biochim Biophys Acta Gene Regul Mech. 1862:535–546. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Qin Y, Vasilatos SN, Chen L, Wu H, Cao Z, Fu Y, Huang M, Vlad AM, Lu B, Oesterreich S, et al: Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene. 38:390–405. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Katz TA, Vasilatos SN, Harrington E, Oesterreich S, Davidson NE and Huang Y: Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res Treat. 146:99–108. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Cai S, Wang J, Zeng W, Cheng X, Liu L and Li W: Lysine-specific histone demethylase 1B (LSD2/KDM1B) represses p53 expression to promote proliferation and inhibit apoptosis in colorectal cancer through LSD2-mediated H3K4me2 demethylation. Aging (Albany NY). 12:14990–15001. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Cao Y, Guo C, Yin Y, Li X and Zhou L: Lysine-specific demethylase 2 contributes to the proliferation of small cell lung cancer by regulating the expression of TFPI-2. Mol Med Rep. 18:733–740. 2018.PubMed/NCBI

43 

Kumar A, Kumari N, Sharma U, Ram S, Singh SK, Kakkar N, Kaushal K and Prasad R: Reduction in H3K4me patterns due to aberrant expression of methyltransferases and demethylases in renal cell carcinoma: Prognostic and therapeutic implications. Sci Rep. 9:81892019. View Article : Google Scholar : PubMed/NCBI

44 

Wang Y, Sun L, Luo Y and He S: Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells. Pathol Res Pract. 215:1054–1060. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G and Pei D: The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell. 9:575–587. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Kong Y, Zou S, Yang F, Xu X, Bu W, Jia J and Liu Z: RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A. Cancer Lett. 381:138–148. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Wang F, Liang S, Liu X, Han L, Wang J and Du Q: LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. Onco Targets Ther. 11:6383–6394. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Ou R, Zhu L, Zhao L, Li W, Tao F, Lu Y, He Q, Li J, Ren Y and Xu Y: HPV16 E7-induced upregulation of KDM2A promotes cervical cancer progression by regulating miR-132-radixin pathway. J Cell Physiol. 234:2659–2671. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu M, Li Y, Li ST, Chen J and Hong L: Lysine demethylase 2A promotes the progression of ovarian cancer by regulating the PI3K pathway and reversing epithelial-mesenchymal transition. Oncol Rep. 41:917–927. 2019.PubMed/NCBI

50 

Zhao Y, Chen X, Jiang J, Wan X, Wang Y and Xu P: Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis. Biochim Biophys Acta Mol Basis Dis. 1866:1658562020. View Article : Google Scholar : PubMed/NCBI

51 

Xi C, Ye NY and Wang YB: LncRNA LINC01278 accelerates colorectal cancer progression via miR-134-5p/KDM2A axis. Eur Rev Med Pharmacol Sci. 24:10526–10534. 2020.PubMed/NCBI

52 

Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC and Tsichlis PN: FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell. 43:285–298. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Tzatsos A, Paskaleva P, Ferrari F, Deshpande V, Stoykova S, Contino G, Wong KK, Lan F, Trojer P, Park PJ and Bardeesy N: KDM2B promotes pancreatic cancer via polycomb-dependent and -independent transcriptional programs. J Clin Invest. 123:727–739. 2013.PubMed/NCBI

54 

Kuang Y, Lu F, Guo J, Xu H, Wang Q, Xu C, Zeng L and Yi S: Histone demethylase KDM2B upregulates histone methyltransferase EZH2 expression and contributes to the progression of ovarian cancer in vitro and in vivo. Onco Targets Ther. 10:3131–3144. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Sanches JGP, Song B, Zhang Q, Cui X, Yabasin IB, Ntim M, Li X, He J, Zhang Y, Mao J, et al: The role of KDM2B and EZH2 in regulating the stemness in colorectal cancer through the PI3K/AKT pathway. Front Oncol. 11:6372982021. View Article : Google Scholar : PubMed/NCBI

56 

Dhar SS, Alam H, Li N, Wagner KW, Chung J, Ahn YW and Lee MG: Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem. 289:7483–7496. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Chen JY, Li CF, Chu PY, Lai YS, Chen CH, Jiang SS, Hou MF and Hung WC: Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1. Oncotarget. 7:27689–27710. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Chen JY, Li CF, Lai YS and Hung WC: Lysine demethylase 2A expression in cancer-associated fibroblasts promotes breast tumour growth. Br J Cancer. 124:484–493. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Quan M, Chen Z, Jiao F, Xiao X, Xia Q, Chen J, Chao Q, Li Y, Gao Y, Yang H, et al: Lysine demethylase 2 (KDM2B) regulates hippo pathway via MOB1 to promote pancreatic ductal adenocarcinoma (PDAC) progression. J Exp Clin Cancer Res. 39:132020. View Article : Google Scholar : PubMed/NCBI

60 

Wanna-Udom S, Terashima M, Suphakhong K, Ishimura A, Takino T and Suzuki T: KDM2B is involved in the epigenetic regulation of TGF-β-induced epithelial-mesenchymal transition in lung and pancreatic cancer cell lines. J Biol Chem. 296:1002132021. View Article : Google Scholar : PubMed/NCBI

61 

van den Boom V, Maat H, Geugien M, Rodríguez López A, Sotoca AM, Jaques J, Brouwers-Vos AZ, Fusetti F, Groen RW, Yuan H, et al: Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 14:332–346. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Galbiati A, Penzo M, Bacalini MG, Onofrillo C, Guerrieri AN, Garagnani P, Franceschi C, Treré D and Montanaro L: Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells. Oncotarget. 8:37091–37103. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Yoo J, Jeon YH, Cho HY, Lee SW, Kim GW, Lee DH and Kwon SH: Advances in histone demethylase KDM3A as a cancer therapeutic target. Cancers (Basel). 12:10982020. View Article : Google Scholar : PubMed/NCBI

64 

Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J and Zhang Y: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 125:483–495. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, Shi Y, Armstrong SA and Roeder RG: JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev. 29:2123–2139. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Jiang Y, Li C, Wu Q, An P, Huang L, Wang J, Chen C, Chen X, Zhang F, Ma L, et al: Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 10:29352019. View Article : Google Scholar : PubMed/NCBI

67 

Brauchle M, Yao Z, Arora R, Thigale S, Clay I, Inverardi B, Fletcher J, Taslimi P, Acker MG, Gerrits B, et al: Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation. PLoS One. 8:e605492013. View Article : Google Scholar : PubMed/NCBI

68 

Liu J, Liang T and Zhangsun W: KDM3A is associated with tumor metastasis and modulates colorectal cancer cell migration and invasion. Int J Biol Macromol. 126:318–325. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Wang Z, Yang X, Liu C, Li X, Zhang B, Wang B, Zhang Y, Song C, Zhang T, Liu M, et al: Acetylation of PHF5A modulates stress responses and colorectal carcinogenesis through alternative splicing-mediated upregulation of KDM3A. Mol Cell. 74:1250–1263.e6. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Li J, Yu B, Deng P, Cheng Y, Yu Y, Kevork K, Ramadoss S, Ding X, Li X and Wang CY: KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling. Nat Commun. 8:151462017. View Article : Google Scholar : PubMed/NCBI

71 

Wang HY, Long QY, Tang SB, Xiao Q, Gao C, Zhao QY, Li QL, Ye M, Zhang L, Li LY and Wu M: Histone demethylase KDM3A is required for enhancer activation of hippo target genes in colorectal cancer. Nucleic Acids Res. 47:2349–2364. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Ramadoss S, Guo G and Wang CY: Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene. 36:47–59. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Wade MA, Jones D, Wilson L, Stockley J, Coffey K, Robson CN and Gaughan L: The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res. 43:196–207. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Lee HY, Yang EG and Park H: Hypoxia enhances the expression of prostate-specific antigen by modifying the quantity and catalytic activity of Jumonji C domain-containing histone demethylases. Carcinogenesis. 34:2706–2715. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, Hussain A and Qi J: Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 35:2441–2452. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Wilson S, Fan L, Sahgal N, Qi J and Filipp FV: The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget. 8:30328–30343. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Li Z, Xia J, Fang M and Xu Y: Epigenetic regulation of lung cancer cell proliferation and migration by the chromatin remodeling protein BRG1. Oncogenesis. 8:662019. View Article : Google Scholar : PubMed/NCBI

78 

Wang F and Quan Q: The long non-coding RNA SNHG4/microRNA-let-7e/KDM3A/p21 pathway is involved in the development of non-small cell lung cancer. Mol Ther Oncolytics. 20:634–645. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Dandawate P, Ghosh C, Palaniyandi K, Paul S, Rawal S, Pradhan R, Sayed AAA, Choudhury S, Standing D, Subramaniam D, et al: The histone demethylase KDM3A, increased in human pancreatic tumors, regulates expression of DCLK1 and promotes tumorigenesis in mice. Gastroenterology. 157:1646–1659.e11. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Nakatsuka T, Tateishi K, Kudo Y, Yamamoto K, Nakagawa H, Fujiwara H, Takahashi R, Miyabayashi K, Asaoka Y, Tanaka Y, et al: Impact of histone demethylase KDM3A-dependent AP-1 transactivity on hepatotumorigenesis induced by PI3K activation. Oncogene. 36:6262–6271. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Zhang Y, Pan Q and Shao Z: Tumor-suppressive role of microRNA-202-3p in hepatocellular carcinoma through the KDM3A/HOXA1/MEIS3 pathway. Front Cell Dev Biol. 8:5560042021. View Article : Google Scholar : PubMed/NCBI

82 

Parrish JK, Sechler M, Winn RA and Jedlicka P: The histone demethylase KDM3A is a microRNA-22-regulated tumor promoter in Ewing sarcoma. Oncogene. 34:257–262. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Sechler M, Parrish JK, Birks DK and Jedlicka P: The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing sarcoma cell migration and metastasis. Oncogene. 36:4150–4160. 2017. View Article : Google Scholar : PubMed/NCBI

84 

An MJ, Kim DH, Kim CH, Kim M, Rhee S, Seo SB and Kim JW: Histone demethylase KDM3B regulates the transcriptional network of cell-cycle genes in hepatocarcinoma HepG2 cells. Biochem Biophys Res Commun. 508:576–582. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Saraç H, Morova T, Pires E, McCullagh J, Kaplan A, Cingöz A, Bagci-Onder T, Önder T, Kawamura A and Lack NA: Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene. 39:2187–2201. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Hu A, Hong F, Li D, Xie Q, Chen K, Zhu L and He H: KDM3B-ETF1 fusion gene downregulates LMO2 via the WNT/β-catenin signaling pathway, promoting metastasis of invasive ductal carcinoma. Cancer Gene Ther. 29:215–224. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Kim JY, Kim KB, Eom GH, Choe N, Kee HJ, Son HJ, Oh ST, Kim DW, Pak JH, Baek HJ, et al: KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol Cell Biol. 32:2917–2933. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Wang X, Fan H, Xu C, Jiang G, Wang H and Zhang J: KDM3B suppresses APL progression by restricting chromatin accessibility and facilitating the ATRA-mediated degradation of PML/RARα. Cancer Cell Int. 19:2562019. View Article : Google Scholar : PubMed/NCBI

89 

Xu X, Wang L, Hu L, Dirks WG, Zhao Y, Wei Z, Chen D, Li Z, Wang Z, Han Y, et al: Small molecular modulators of JMJD1C preferentially inhibit growth of leukemia cells. Int J Cancer. 146:400–412. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Cai Y, Fu X and Deng Y: Histone demethylase JMJD1C regulates esophageal cancer proliferation Via YAP1 signaling. Am J Cancer Res. 7:115–124. 2017.PubMed/NCBI

91 

Chen C, Aihemaiti M, Zhang X, Qu H, Sun QL, He QS and Yu WB: Downregulation of histone demethylase JMJD1C inhibits colorectal cancer metastasis through targeting ATF2. Am J Cancer Res. 8:852–865. 2018.PubMed/NCBI

92 

Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW and Kwon SH: Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J. 34:3461–3484. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Berry WL, Shin S, Lightfoot SA and Janknecht R: Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol. 41:1701–1706. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Kim TD, Fuchs JR, Schwartz E, Abdelhamid D, Etter J, Berry WL, Li C, Ihnat MA, Li PK and Janknecht R: Pro-growth role of the JMJD2C histone demethylase in HCT-116 colon cancer cells and identification of curcuminoids as JMJD2 inhibitors. Am J Transl Res. 6:236–247. 2014.PubMed/NCBI

95 

Ye Q, Holowatyj A, Wu J, Liu H, Zhang L, Suzuki T and Yang ZQ: Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer. Am J Cancer Res. 5:1519–1530. 2015.PubMed/NCBI

96 

Li X and Dong S: Histone demethylase JMJD2B and JMJD2C induce fibroblast growth factor 2: Mediated tumorigenesis of osteosarcoma. Med Oncol. 32:532015. View Article : Google Scholar : PubMed/NCBI

97 

Kim TD, Jin F, Shin S, Oh S, Lightfoot SA, Grande JP, Johnson AJ, van Deursen JM, Wren JD and Janknecht R: Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 126:706–720. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Sun S, Yang F, Zhu Y and Zhang S: KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci. 262:1185082020. View Article : Google Scholar : PubMed/NCBI

99 

Hu CE, Liu YC, Zhang HD and Huang GJ: JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Commun. 449:1–7. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Yang J, Jubb AM, Pike L, Buffa FM, Turley H, Baban D, Leek R, Gatter KC, Ragoussis J and Harris AL: The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 70:6456–6466. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Fu L, Chen L, Yang J, Ye T, Chen Y and Fang J: HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis. 33:1664–1673. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Li H, Lan J, Wang G, Guo K, Han C, Li X, Hu J, Cao Z and Luo X: KDM4B facilitates colorectal cancer growth and glucose metabolism by stimulating TRAF6-mediated AKT activation. J Exp Clin Cancer Res. 39:122020. View Article : Google Scholar : PubMed/NCBI

103 

Tan J, Wang HL, Yang J, Liu QQ, Li CM, Wang YQ, Fu LN, Gao QY, Chen YX and Fang JY: JMJD2B-induced amino acid alterations enhance the survival of colorectal cancer cells under glucose-deprivation via autophagy. Theranostics. 10:5763–5777. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Fu LN, Wang YQ, Tan J, Xu J, Gao QY, Chen YX and Fang JY: Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms. Oncogene. 37:389–402. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, et al: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 9:347–353. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Lee DH, Kim GW, Yoo J, Lee SW, Jeon YH, Kim SY, Kang HG, Kim DH, Chun KH, Choi J and Kwon SH: Histone demethylase KDM4C controls tumorigenesis of glioblastoma by epigenetically regulating p53 and c-Myc. Cell Death Dis. 12:892021. View Article : Google Scholar : PubMed/NCBI

107 

Luo W, Chang R, Zhong J, Pandey A and Semenza GL: Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA. 109:E3367–E3376. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Yang D, Xu T, Fan L, Liu K and Li G: microRNA-216b enhances cisplatin-induced apoptosis in osteosarcoma MG63 and SaOS-2 cells by binding to JMJD2C and regulating the HIF1α/HES1 signaling axis. J Exp Clin Cancer Res. 39:2012020. View Article : Google Scholar : PubMed/NCBI

109 

Wu X, Deng Y, Zu Y and Yin J: Histone demethylase KDM4C activates HIF1α/VEGFA signaling through the costimulatory factor STAT3 in NSCLC. Am J Cancer Res. 10:491–506. 2020.PubMed/NCBI

110 

Hu F, Li H, Liu L, Xu F, Lai S, Luo X, Hu J and Yang X: Histone demethylase KDM4D promotes gastrointestinal stromal tumor progression through HIF1β/VEGFA signalling. Mol Cancer. 17:1072018. View Article : Google Scholar : PubMed/NCBI

111 

Peng K, Zhuo M, Li M, Chen Q, Mo P and Yu C: Histone demethylase JMJD2D activates HIF1 signaling pathway via multiple mechanisms to promote colorectal cancer glycolysis and progression. Oncogene. 39:7076–7091. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Zhuo M, Chen W, Shang S, Guo P, Peng K, Li M, Mo P, Zhang Y, Qiu X, Li W and Yu C: Inflammation-induced JMJD2D promotes colitis recovery and colon tumorigenesis by activating Hedgehog signaling. Oncogene. 39:3336–3353. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Peng K, Kou L, Yu L, Bai C, Li M, Mo P, Li W and Yu C: Histone demethylase JMJD2D interacts with β-catenin to induce transcription and activate colorectal cancer cell proliferation and tumor growth in mice. Gastroenterology. 156:1112–1126. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Li M, Deng Y, Zhuo M, Zhou H, Kong X, Xia X, Su Z, Chen Q, Guo P, Mo P, et al: Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote liver cancer initiation and progression. Theranostics. 10:8863–8879. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Pilka ES, James T and Lisztwan JH: Structural definitions of Jumonji family demethylase selectivity. Drug Discov Today. 20:743–749. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Horton JR, Engstrom A, Zoeller EL, Liu X, Shanks JR, Zhang X, Johns MA, Vertino PM, Fu H and Cheng X: Characterization of a linked Jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. J Biol Chem. 291:2631–2646. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Plch J, Hrabeta J and Eckschlager T: KDM5 demethylases and their role in cancer cell chemoresistance. Int J Cancer. 144:221–231. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Yang GJ, Zhu MH, Lu XJ, Liu YJ, Lu JF, Leung CH, Ma DL and Chen J: The emerging role of KDM5A in human cancer. J Hematol Oncol. 14:302021. View Article : Google Scholar : PubMed/NCBI

119 

Teng YC, Lee CF, Li YS, Chen YR, Hsiao PW, Chan MY, Lin FM, Huang HD, Chen YT, Jeng YM, et al: Histone demethylase RBP2 promotes lung tumorigenesis and cancer metastasis. Cancer Res. 73:4711–4721. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Liang X, Zeng J, Wang L, Fang M, Wang Q, Zhao M, Xu X, Liu Z, Li W, Liu S, et al: Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212. PLoS One. 8:e697842013. View Article : Google Scholar : PubMed/NCBI

121 

Yang GJ, Wang W, Mok SWF, Wu C, Law BYK, Miao XM, Wu KJ, Zhong HJ, Wong CY, Wong VKW, et al: Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(III) complex for triple-negative breast cancer therapy. Angew Chem Int Ed Engl. 57:13091–13095. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Yang GJ, Ko CN, Zhong HJ, Leung CH and Ma DL: Structure-Based discovery of a selective KDM5A inhibitor that exhibits anti-cancer activity via inducing cell cycle arrest and senescence in breast cancer cell lines. Cancers (Basel). 11:922019. View Article : Google Scholar : PubMed/NCBI

123 

Lin W, Watanabe H, Peng S, Francis JM, Kaplan N, Pedamallu CS, Ramachandran A, Agoston A, Bass AJ and Meyerson M: Dynamic epigenetic regulation by menin during pancreatic islet tumor formation. Mol Cancer Res. 13:689–698. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Oser MG, Sabet AH, Gao W, Chakraborty AA, Schinzel AC, Jennings RB, Fonseca R, Bonal DM, Booker MA, Flaifel A, et al: The KDM5A/RBP2 histone demethylase represses NOTCH signaling to sustain neuroendocrine differentiation and promote small cell lung cancer tumorigenesis. Genes Dev. 33:1718–1738. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Yamamoto S, Wu Z, Russnes HG, Takagi S, Peluffo G, Vaske C, Zhao X, Moen Vollan HK, Maruyama R, Ekram MB, et al: JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell. 25:762–777. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P and Zhang Y: PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell. 25:801–812. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Tortelli TC, Tamura RE, de Souza Junqueira M, da Silva Mororó J, Bustos SO, Natalino RJM, Russell S, Désaubry L, Strauss BE and Chammas R: Metformin-induced chemosensitization to cisplatin depends on P53 status and is inhibited by Jarid1b overexpression in non-small cell lung cancer cells. Aging (Albany NY). 13:21914–21940. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Kuo KT, Huang WC, Bamodu OA, Lee WH, Wang CH, Hsiao M, Wang LS and Yeh CT: Histone demethylase JARID1B/KDM5B promotes aggressiveness of non-small cell lung cancer and serves as a good prognostic predictor. Clin Epigenetics. 10:1072018. View Article : Google Scholar : PubMed/NCBI

129 

Wang D, Han S, Peng R, Jiao C, Wang X, Yang X, Yang R and Li X: Depletion of histone demethylase KDM5B inhibits cell proliferation of hepatocellular carcinoma by regulation of cell cycle checkpoint proteins p15 and p27. J Exp Clin Cancer Res. 35:372016. View Article : Google Scholar : PubMed/NCBI

130 

Hayami S, Yoshimatsu M, Veerakumarasivam A, Unoki M, Iwai Y, Tsunoda T, Field HI, Kelly JD, Neal DE, Yamaue H, et al: Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: Involvement in the proliferation of cancer cells through the E2F/RB pathway. Mol Cancer. 9:592010. View Article : Google Scholar : PubMed/NCBI

131 

Huang YQ, Zou Y, Zheng RJ and Ma XD: Down-regulation of JARID1B expression inhibits cell proliferation, induces apoptosis and blocks cell cycle in human acute lymphoblastic leukemia cells. Eur Rev Med Pharmacol Sci. 22:1366–1373. 2018.PubMed/NCBI

132 

Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z, Ma Y, Yu Y, Lin H, Chen AP and Chen CD: JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA. 104:19226–19231. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Yan G, Li S, Yue M, Li C and Kang Z: Lysine demethylase 5B suppresses CC chemokine ligand 14 to promote progression of colorectal cancer through the Wnt/β-catenin pathway. Life Sci. 264:1187262021. View Article : Google Scholar : PubMed/NCBI

134 

Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M, Rini B, Yan Q and Yang H: The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. 31:776–786. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Rondinelli B, Rosano D, Antonini E, Frenquelli M, Montanini L, Huang D, Segalla S, Yoshihara K, Amin SB, Lazarevic D, et al: Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J Clin Invest. 125:4625–4637. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Zheng Q, Li P, Zhou X, Qiang Y, Fan J, Lin Y, Chen Y, Guo J, Wang F, Xue H, et al: Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis. Theranostics. 11:8674–8691. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Zhang B, Zhou BH, Xiao M, Li H, Guo L, Wang MX, Yu SH and Ye QH: KDM5C represses FASN-mediated lipid metabolism to exert tumor suppressor activity in intrahepatic cholangiocarcinoma. Front Oncol. 10:10252020. View Article : Google Scholar : PubMed/NCBI

138 

Zhang Q, Xu L, Wang J, Zhu X, Ma Z, Yang J, Li J, Jia X and Wei L: KDM5C expedites lung cancer growth and metastasis through epigenetic regulation of MicroRNA-133a. Onco Targets Ther. 14:1187–1204. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Ji X, Jin S, Qu X, Li K, Wang H, He H, Guo F and Dong L: Lysine-specific demethylase 5C promotes hepatocellular carcinoma cell invasion through inhibition BMP7 expression. BMC Cancer. 15:8012015. View Article : Google Scholar : PubMed/NCBI

140 

Lin H, Ma N, Zhao L, Yang G and Cao B: KDM5c promotes colon cancer cell proliferation through the FBXW7-c-Jun regulatory axis. Front Oncol. 10:5354492020. View Article : Google Scholar : PubMed/NCBI

141 

Shen HF, Zhang WJ, Huang Y, He YH, Hu GS, Wang L, Peng BL, Yi J, Li TT, Rong R, et al: The dual function of KDM5C in both gene transcriptional activation and repression promotes breast cancer cell growth and tumorigenesis. Adv Sci (Weinh). 8:20046352021. View Article : Google Scholar : PubMed/NCBI

142 

Jangravi Z, Tabar MS, Mirzaei M, Parsamatin P, Vakilian H, Alikhani M, Shabani M, Haynes PA, Goodchild AK, Gourabi H, et al: Two splice variants of Y chromosome-located lysine-specific demethylase 5D have distinct function in prostate cancer cell line (DU-145). J Proteome Res. 14:3492–3502. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Li N, Dhar SS, Chen TY, Kan PY, Wei Y, Kim JH, Chan CH, Lin HK, Hung MC and Lee MG: JARID1D is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Res. 76:831–843. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Shen X, Hu K, Cheng G, Xu L, Chen Z, Du P and Zhuang Z: KDM5D inhibit epithelial-mesenchymal transition of gastric cancer through demethylation in the promoter of Cul4A in male. J Cell Biochem. 120:12247–12258. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Cai LS, Chen QX, Fang SY, Lian MQ, Lian MJ and Cai MZ: ETV4 promotes the progression of gastric cancer through regulating KDM5D. Eur Rev Med Pharmacol Sci. 24:2442–2451. 2020.PubMed/NCBI

146 

Willis-Owen SAG, Domingo-Sabugo C, Starren E, Liang L, Freidin MB, Arseneault M, Zhang Y, Lu SK, Popat S, Lim E, et al: Y disruption, autosomal hypomethylation and poor male lung cancer survival. Sci Rep. 11:124532021. View Article : Google Scholar : PubMed/NCBI

147 

Schulz WA, Lang A, Koch J and Greife A: The histone demethylase UTX/KDM6A in cancer: Progress and puzzles. Int J Cancer. 145:614–620. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Walport LJ, Hopkinson RJ, Vollmar M, Madden SK, Gileadi C, Oppermann U, Schofield CJ and Johansson C: Human UTY(KDM6C) is a male-specific N-methyl lysyl demethylase. J Biol Chem. 289:18302–18313. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Sengoku T and Yokoyama S: Structural basis for histone H3 Lys 27 demethylation by UTX/KDM6A. Genes Dev. 25:2266–2277. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Li Y, Yang J, Zhang X, Liu H and Guo J: KDM6A suppresses hepatocellular carcinoma cell proliferation by negatively regulating the TGF-β/SMAD signaling pathway. Exp Ther Med. 20:2774–2782. 2020.PubMed/NCBI

151 

Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, Dey S, Koh LK, Lim JQ, Lim WK, et al: Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 9:eaai83122017. View Article : Google Scholar : PubMed/NCBI

152 

Zhang J, Ying Y, Li M, Wang M, Huang X, Jia M, Zeng J, Ma C, Zhang Y, Li C, et al: Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Theranostics. 10:10016–10030. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Romero OA, Vilarrubi A, Alburquerque-Bejar JJ, Gomez A, Andrades A, Trastulli D, Pros E, Setien F, Verdura S, Farré L, et al: SMARCA4 deficient tumours are vulnerable to KDM6A/UTX and KDM6B/JMJD3 blockade. Nat Commun. 12:43192021. View Article : Google Scholar : PubMed/NCBI

154 

Chaturvedi SS, Ramanan R, Waheed SO, Karabencheva-Christova TG and Christov CZ: Structure-function relationships in KDM7 histone demethylases. Adv Protein Chem Struct Biol. 117:113–125. 2019. View Article : Google Scholar : PubMed/NCBI

155 

Park SY, Park JW and Chun YS: Jumonji histone demethylases as emerging therapeutic targets. Pharmacol Res. 105:146–151. 2016. View Article : Google Scholar : PubMed/NCBI

156 

Osawa T, Muramatsu M, Wang F, Tsuchida R, Kodama T, Minami T and Shibuya M: Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci USA. 108:20725–20729. 2011. View Article : Google Scholar : PubMed/NCBI

157 

Lee KH, Hong S, Kang M, Jeong CW, Ku JH, Kim HH and Kwak C: Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer. Int J Cancer. 143:2849–2861. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Zhang Z, Chen B, Zhu Y, Zhang T, Zhang X, Yuan Y and Xu Y: The Jumonji domain-containing histone demethylase homolog 1D/lysine demethylase 7A (JHDM1D/KDM7A) is an epigenetic activator of RHOJ transcription in breast cancer cells. Front Cell Dev Biol. 9:6643752021. View Article : Google Scholar : PubMed/NCBI

159 

Tong D, Liu Q, Liu G, Yuan W, Wang L, Guo Y, Lan W, Zhang D, Dong S, Wang Y, et al: The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis. 5:e2832016. View Article : Google Scholar : PubMed/NCBI

160 

Li S, Sun A, Liang X, Ma L, Shen L, Li T, Zheng L, Shang W, Zhao W and Jia J: Histone demethylase PHF8 promotes progression and metastasis of gastric cancer. Am J Cancer Res. 7:448–461. 2017. View Article : Google Scholar : PubMed/NCBI

161 

Zhou W, Gong L, Wu Q, Xing C, Wei B, Chen T, Zhou Y, Yin S, Jiang B, Xie H, et al: PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 37:2152018. View Article : Google Scholar : PubMed/NCBI

162 

Tseng LL, Cheng HH, Yeh TS, Huang SC, Syu YY, Chuu CP, Yuh CH, Kung HJ and Wang WC: Targeting the histone demethylase PHF8-mediated PKCα-Src-PTEN axis in HER2-negative gastric cancer. Proc Natl Acad Sci USA. 117:24859–24866. 2020. View Article : Google Scholar : PubMed/NCBI

163 

Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, Umesalma S, Zhang W and Qi HH: Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 45:1687–1702. 2017. View Article : Google Scholar : PubMed/NCBI

164 

Liu Q, Pang J, Wang LA, Huang Z, Xu J, Yang X, Xie Q, Huang Y, Tang T, Tong D, et al: Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J Pathol. 253:106–118. 2021. View Article : Google Scholar : PubMed/NCBI

165 

Fu Y, Liu M, Li F, Qian L, Zhang P, Lv F, Cheng W and Hou R: miR-221 promotes hepatocellular carcinoma cells migration via targeting PHF2. Biomed Res Int. 2019:43714052019. View Article : Google Scholar : PubMed/NCBI

166 

Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, et al: PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene. 34:2897–2909. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Del Rizzo PA, Krishnan S and Trievel RC: Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol Cell Biol. 32:4044–4052. 2012. View Article : Google Scholar : PubMed/NCBI

168 

Hsia DA, Tepper CG, Pochampalli MR, Hsia EY, Izumiya C, Huerta SB, Wright ME, Chen HW, Kung HJ and Izumiya Y: KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc Natl Acad Sci USA. 107:9671–9676. 2010. View Article : Google Scholar : PubMed/NCBI

169 

Yao Y, Zhou WY and He RX: Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-κB pathway. Biomed Pharmacother. 109:1994–2004. 2019. View Article : Google Scholar : PubMed/NCBI

170 

Chang WH, Forde D and Lai AG: Dual prognostic role of 2-oxoglutarate-dependent oxygenases in ten cancer types: Implications for cell cycle regulation and cell adhesion maintenance. Cancer Commun (Lond). 39:232019. View Article : Google Scholar : PubMed/NCBI

171 

Wu LW, Zhou DM, Zhang ZY, Zhang JK, Zhu HJ, Lin NM and Zhang C: Suppression of LSD1 enhances the cytotoxic and apoptotic effects of regorafenib in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 512:852–858. 2019. View Article : Google Scholar : PubMed/NCBI

172 

Verigos J, Karakaidos P, Kordias D, Papoudou-Bai A, Evangelou Z, Harissis HV, Klinakis A and Magklara A: The histone demethylase LSD1/ΚDM1A mediates chemoresistance in breast cancer via regulation of a stem cell program. Cancers (Basel). 11:15852019. View Article : Google Scholar : PubMed/NCBI

173 

Lee YK, Lim J, Yoon SY, Joo JC, Park SJ and Park YJ: Promotion of cell death in cisplatin-resistant ovarian cancer cells through KDM1B-DCLRE1B modulation. Int J Mol Sci. 20:24432019. View Article : Google Scholar : PubMed/NCBI

174 

Tang D, He J, Dai Y, Geng X, Leng Q, Jiang H, Sun R and Xu S: Targeting KDM1B-dependent miR-215-AR-AGR2-axis promotes sensitivity to enzalutamide-resistant prostate cancer. Cancer Gene Ther. 29:543–557. 2022. View Article : Google Scholar : PubMed/NCBI

175 

Tang DE, Dai Y, He JX, Lin LW, Leng QX, Geng XY, Fu DX, Jiang HW and Xu SH: Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer. J Pathol. 252:101–113. 2020. View Article : Google Scholar : PubMed/NCBI

176 

Hou J, Wu J, Dombkowski A, Zhang K, Holowatyj A, Boerner JL and Yang ZQ: Genomic amplification and a role in drug-resistance for the KDM5A histone demethylase in breast cancer. Am J Transl Res. 4:247–256. 2012.PubMed/NCBI

177 

Banelli B, Carra E, Barbieri F, Würth R, Parodi F, Pattarozzi A, Carosio R, Forlani A, Allemanni G, Marubbi D, et al: The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle. 14:3418–3429. 2015. View Article : Google Scholar : PubMed/NCBI

178 

Xu W, Zhou B, Zhao X, Zhu L, Xu J, Jiang Z, Chen D, Wei Q, Han M, Feng L, et al: KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci. 14:1122–1132. 2018. View Article : Google Scholar : PubMed/NCBI

179 

Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, Körbel C, Laschke MW, Gimotty PA, Philipp SE, et al: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 23:811–825. 2013. View Article : Google Scholar : PubMed/NCBI

180 

Liu X, Zhang SM, McGeary MK, Krykbaeva I, Lai L, Jansen DJ, Kales SC, Simeonov A, Hall MD, Kelly DP, et al: KDM5B promotes drug resistance by regulating melanoma-propagating cell subpopulations. Mol Cancer Ther. 18:706–717. 2019. View Article : Google Scholar : PubMed/NCBI

181 

Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN, Madsen T, Fassl A, Egri SB, Papanastasiou M, et al: KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell. 34:939–953.e9. 2018. View Article : Google Scholar : PubMed/NCBI

182 

Pippa S, Mannironi C, Licursi V, Bombardi L, Colotti G, Cundari E, Mollica A, Coluccia A, Naccarato V, La Regina G, et al: Small molecule inhibitors of KDM5 histone demethylases increase the radiosensitivity of breast cancer cells overexpressing JARID1B. Molecules. 24:17392019. View Article : Google Scholar : PubMed/NCBI

183 

Lin H, Yang G, Yu J, Wang J, Li Q, Guo S and Cao B: KDM5c inhibits multidrug resistance of colon cancer cell line by down-regulating ABCC1. Biomed Pharmacother. 107:1205–1209. 2018. View Article : Google Scholar : PubMed/NCBI

184 

Komura K, Jeong SH, Hinohara K, Qu F, Wang X, Hiraki M, Azuma H, Lee GS, Kantoff PW and Sweeney CJ: Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proc Natl Acad Sci USA. 113:6259–6264. 2016. View Article : Google Scholar : PubMed/NCBI

185 

He C, Sun J, Liu C, Jiang Y and Hao Y: Elevated H3K27me3 levels sensitize osteosarcoma to cisplatin. Clin Epigenetics. 11:82019. View Article : Google Scholar : PubMed/NCBI

186 

Wang Q, Chen X, Jiang Y, Liu S, Liu H, Sun X, Zhang H, Liu Z, Tao Y, Li C, et al: Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin. J Mol Cell Biol. 12:125–137. 2020. View Article : Google Scholar : PubMed/NCBI

187 

Mathur R, Sehgal L, Havranek O, Köhrer S, Khashab T, Jain N, Burger JA, Neelapu SS, Davis RE and Samaniego F: Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs. Haematologica. 102:373–380. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Zhang C, Shen L, Zhu Y, Xu R, Deng Z, Liu X, Ding Y, Wang C, Shi Y, Bei L, et al: KDM6A promotes imatinib resistance through YY1-mediated transcriptional upregulation of TRKA independently of its demethylase activity in chronic myelogenous leukemia. Theranostics. 11:2691–2705. 2021. View Article : Google Scholar : PubMed/NCBI

189 

Macedo-Silva C, Miranda-Goncalves V, Lameirinhas A, Lencart J, Pereira A, Lobo J, Guimarães R, Martins AT, Henrique R, Bravo I and Jerónimo C: JmjC-KDMs KDM3A and KDM6B modulate radioresistance under hypoxic conditions in esophageal squamous cell carcinoma. Cell Death Dis. 11:10682020. View Article : Google Scholar : PubMed/NCBI

190 

Xu S, Fan L, Jeon HY, Zhang F, Cui X, Mickle MB, Peng G, Hussain A, Fazli L, Gleave ME, et al: p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Res. 80:3074–3087. 2020. View Article : Google Scholar : PubMed/NCBI

191 

McAllister TE, England KS, Hopkinson RJ, Brennan PE, Kawamura A and Schofield CJ: Recent progress in histone demethylase inhibitors. J Med Chem. 59:1308–1329. 2016. View Article : Google Scholar : PubMed/NCBI

192 

Fang Y, Liao G and Yu B: LSD1/KDM1A inhibitors in clinical trials: Advances and prospects. J Hematol Oncol. 12:1292019. View Article : Google Scholar : PubMed/NCBI

193 

Fu DJ, Li J and Yu B: Annual review of LSD1/KDM1A inhibitors in 2020. Eur J Med Chem. 214:1132542021. View Article : Google Scholar : PubMed/NCBI

194 

Kleszcz R, Skalski M, Krajka-Kuźniak V and Paluszczak J: The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. Eur J Pharm Sci. 166:1059612021. View Article : Google Scholar : PubMed/NCBI

195 

Illiano M, Conte M, Salzillo A, Ragone A, Spina A, Nebbioso A, Altucci L, Sapio L and Naviglio S: The KDM inhibitor GSKJ4 triggers CREB downregulation via a protein kinase A and proteasome-dependent mechanism in human acute myeloid leukemia cells. Front Oncol. 10:7992020. View Article : Google Scholar : PubMed/NCBI

196 

Yang GJ, Wu J, Miao L, Zhu MH, Zhou QJ, Lu XJ, Lu JF, Leung CH, Ma DL and Chen J: Pharmacological inhibition of KDM5A for cancer treatment. Eur J Med Chem. 226:1138552021. View Article : Google Scholar : PubMed/NCBI

197 

Baby S, Gurukkala Valapil D and Shankaraiah N: Unravelling KDM4 histone demethylase inhibitors for cancer therapy. Drug Discov Today. 26:1841–1856. 2021. View Article : Google Scholar : PubMed/NCBI

198 

Varghese B, Del Gaudio N, Cobellis G, Altucci L and Nebbioso A: KDM4 involvement in breast cancer and possible therapeutic approaches. Front Oncol. 11:7503152021. View Article : Google Scholar : PubMed/NCBI

199 

Carter DM, Specker E, Małecki PH, Przygodda J, Dudaniec K, Weiss MS, Heinemann U, Nazaré M and Gohlke U: Enhanced properties of a benzimidazole benzylpyrazole lysine demethylase inhibitor: Mechanism-of-action, binding site analysis, and activity in cellular models of prostate cancer. J Med Chem. 64:14266–14282. 2021. View Article : Google Scholar : PubMed/NCBI

200 

Souto JA, Sarno F, Nebbioso A, Papulino C, Álvarez R, Lombino J, Perricone U, Padova A, Altucci L and de Lera ÁR: A new family of Jumonji C domain-containing KDM inhibitors inspired by natural product purpurogallin. Front Chem. 8:3122020. View Article : Google Scholar : PubMed/NCBI

201 

Tayari MM, Santos HGD, Kwon D, Bradley TJ, Thomassen A, Chen C, Dinh Y, Perez A, Zelent A, Morey L, et al: Clinical responsiveness to all-trans retinoic acid is potentiated by LSD1 inhibition and associated with a quiescent transcriptome in myeloid malignancies. Clin Cancer Res. 27:1893–1903. 2021. View Article : Google Scholar : PubMed/NCBI

202 

Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG and Menendez JA: The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: A potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY). 12:4794–4814. 2020. View Article : Google Scholar : PubMed/NCBI

203 

Wang T, Zhang F and Sun F: ORY-1001, a KDM1A inhibitor, inhibits proliferation, and promotes apoptosis of triple negative breast cancer cells by inactivating androgen receptor. Drug Dev Res. 83:208–216. 2022. View Article : Google Scholar : PubMed/NCBI

204 

Maes T, Mascaró C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP, Somervaille TCP, et al: ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell. 33:495–511.e12. 2018. View Article : Google Scholar : PubMed/NCBI

205 

Salamero O, Montesinos P, Willekens C, Pérez-Simón JA, Pigneux A, Récher C, Popat R, Carpio C, Molinero C, Mascaró C, et al: First-in-human phase I study of iadademstat (ORY-1001): A first-in-class lysine-specific histone demethylase 1A inhibitor, in relapsed or refractory acute myeloid leukemia. J Clin Oncol. 38:4260–4273. 2020. View Article : Google Scholar : PubMed/NCBI

206 

Huang M, Chen C, Geng J, Han D, Wang T, Xie T, Wang L, Wang Y, Wang C, Lei Z and Chu X: Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett. 398:12–21. 2017. View Article : Google Scholar : PubMed/NCBI

207 

Lillico R, Lawrence CK and Lakowski TM: Selective DOT1L, LSD1, and HDAC class I inhibitors reduce HOXA9 expression in MLL-AF9 rearranged leukemia cells, but dysregulate the expression of many histone-modifying enzymes. J Proteome Res. 17:2657–2667. 2018. View Article : Google Scholar : PubMed/NCBI

208 

Bauer TM, Besse B, Martinez-Marti A, Trigo JM, Moreno V, Garrido P, Ferron-Brady G, Wu Y, Park J, Collingwood T, et al: Phase I, open-label, dose-escalation study of the safety, pharmacokinetics, pharmacodynamics, and efficacy of GSK2879552 in relapsed/refractory SCLC. J Thorac Oncol. 14:1828–1838. 2019. View Article : Google Scholar : PubMed/NCBI

209 

Kanouni T, Severin C, Cho RW, Yuen NY, Xu J, Shi L, Lai C, Del Rosario JR, Stansfield RK, Lawton LN, et al: Discovery of CC-90011: A potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1). J Med Chem. 63:14522–14529. 2020. View Article : Google Scholar : PubMed/NCBI

210 

Hollebecque A, Salvagni S, Plummer R, Isambert N, Niccoli P, Capdevila J, Curigliano G, Moreno V, Martin-Romano P, Baudin E, et al: Phase I study of lysine-specific demethylase 1 inhibitor, CC-90011, in patients with advanced solid tumors and relapsed/refractory non-Hodgkin lymphoma. Clin Cancer Res. 27:438–446. 2021. View Article : Google Scholar : PubMed/NCBI

211 

Sterling J, Menezes SV, Abbassi RH and Munoz L: Histone lysine demethylases and their functions in cancer. Int J Cancer. Oct 31–2020.(Epub ahead of print). doi: 10.1002/ijc.33375. PubMed/NCBI

212 

Oner E, Kotmakci M, Baird AM, Gray SG, Debelec Butuner B, Bozkurt E, Kantarci AG and Finn SP: Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J Nanobiotechnology. 19:712021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Diao W, Zheng J, Li Y, Wang J and Xu S: Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 61: 103, 2022.
APA
Diao, W., Zheng, J., Li, Y., Wang, J., & Xu, S. (2022). Targeting histone demethylases as a potential cancer therapy (Review). International Journal of Oncology, 61, 103. https://doi.org/10.3892/ijo.2022.5393
MLA
Diao, W., Zheng, J., Li, Y., Wang, J., Xu, S."Targeting histone demethylases as a potential cancer therapy (Review)". International Journal of Oncology 61.3 (2022): 103.
Chicago
Diao, W., Zheng, J., Li, Y., Wang, J., Xu, S."Targeting histone demethylases as a potential cancer therapy (Review)". International Journal of Oncology 61, no. 3 (2022): 103. https://doi.org/10.3892/ijo.2022.5393
Copy and paste a formatted citation
x
Spandidos Publications style
Diao W, Zheng J, Li Y, Wang J and Xu S: Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 61: 103, 2022.
APA
Diao, W., Zheng, J., Li, Y., Wang, J., & Xu, S. (2022). Targeting histone demethylases as a potential cancer therapy (Review). International Journal of Oncology, 61, 103. https://doi.org/10.3892/ijo.2022.5393
MLA
Diao, W., Zheng, J., Li, Y., Wang, J., Xu, S."Targeting histone demethylases as a potential cancer therapy (Review)". International Journal of Oncology 61.3 (2022): 103.
Chicago
Diao, W., Zheng, J., Li, Y., Wang, J., Xu, S."Targeting histone demethylases as a potential cancer therapy (Review)". International Journal of Oncology 61, no. 3 (2022): 103. https://doi.org/10.3892/ijo.2022.5393
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team