|
1
|
Lapointe S, Perry A and Butowski NA:
Primary brain tumours in adults. Lancet. 392:432–446. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rominiyi O, Vanderlinden A, Clenton SJ,
Bridgewater C, Al-Tamimi Y and Collis SJ: Tumour treating fields
therapy for glioblastoma: Current advances and future directions.
Br J Cancer. 124:697–709. 2021. View Article : Google Scholar :
|
|
3
|
Tan AC, Ashley DM, López GY, Malinzak M,
Friedman HS and Khasraw M: Management of glioblastoma: State of the
art and future directions. CA Cancer J Clin. 70:299–312. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO classification of tumors of the
central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Klemm F, Maas RR, Bowman RL, Kornete M,
Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brennan C,
Tabar V, et al: Interrogation of the microenvironmental landscape
in brain tumors reveals disease-specific alterations of immune
cells. Cell. 181:1643–1660.e17. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Broekman ML, Maas SLN, Abels ER, Mempel
TR, Krichevsky AM and Breakefield XO: Multidimensional
communication in the microenvirons of glioblastoma. Nat Rev Neurol.
14:482–495. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mohme M and Neidert MC: Tumor-specific T
cell activation in malignant brain tumors. Front Immunol.
11:2052020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wei J, Chen P, Gupta P, Ott M, Zamler D,
Kassab C, Bhat KP, Curran MA, de Groot JF and Heimberger AB: Immune
biology of glioma-associated macrophages and microglia: Functional
and therapeutic implications. Neuro Oncol. 22:180–194. 2020.
|
|
9
|
Venkatesh HS: The neural regulation of
cancer. Science. 366:9652019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
De Luca C, Virtuoso A, Papa M, Certo F,
Barbagallo GMV and Altieri R: Regional development of glioblastoma:
The anatomical conundrum of cancer biology and its surgical
implication. Cells. 11:13492022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Parmigiani E, Scalera M, Mori E, Tantillo
E and Vannini E: Old stars and new players in the brain tumor
microenvironment. Front Cell Neurosci. 15:7099172021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Venkataramani V, Tanev DI, Strahle C,
Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M,
Ratliff M, Xie R, et al: Glutamatergic synaptic input to glioma
cells drives brain tumour progression. Nature. 573:532–538. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lim-Fat MJ and Wen PY: Glioma progression
through synaptic activity. Nat Rev Neurol. 16:6–7. 2020. View Article : Google Scholar
|
|
14
|
Kirmse K and Zhang C: Principles of
GABAergic signaling in developing cortical network dynamics. Cell
Rep. 38:1105682022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tantillo E, Vannini E, Cerri C, Spalletti
C, Colistra A, Mazzanti CM, Costa M and Caleo M: Differential roles
of pyramidal and fast-spiking, GABAergic neurons in the control of
glioma cell proliferation. Neurobiol Dis. 141:1049422020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Melgarejo da Rosa M: Communication of
glioma cells with neuronal plasticity: What is the underlying
mechanism? Neurochem Int. 141:1048792020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Radin DP and Tsirka SE: Interactions
between tumor cells, neurons, and microglia in the glioma
microenvironment. Int J Mol Sci. 21:84762020. View Article : Google Scholar :
|
|
18
|
Jung E, Alfonso J, Osswald M, Monyer H,
Wick W and Winkler F: Emerging intersections between neuroscience
and glioma biology. Nat Neurosci. 22:1951–1960. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hasselmo ME, Alexander AS, Hoyland A,
Robinson JC, Bezaire MJ, Chapman GW, Saudargiene A, Carstensen LC
and Dannenberg H: The unexplored territory of neural models:
Potential guides for exploring the function of metabotropic
neuromodulation. Neuroscience. 456:143–158. 2021. View Article : Google Scholar
|
|
20
|
Pei Z, Lee KC, Khan A, Erisnor G and Wang
HY: Pathway analysis of glutamate-mediated, calcium-related
signaling in glioma progression. Biochem Pharmacol. 176:1138142020.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Charsouei S, Jabalameli MR and
Karimi-Moghadam A: Molecular insights into the role of AMPA
receptors in the synaptic plasticity, pathogenesis and treatment of
epilepsy: Therapeutic potentials of perampanel and antisense
oligonucleotide (ASO) technology. Acta Neurol Belg. 120:531–544.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cull-Candy SG and Farrant M:
Ca2+ -permeable AMPA receptors and their auxiliary
subunits in synaptic plasticity and disease. J Physiol.
599:2655–2671. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dohrke JN, Watson JF, Birchall K and
Greger IH: Characterizing the binding and function of TARP
γ8-selective AMPA receptor modulators. J Biol Chem.
295:14565–14577. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Müller-Längle A, Lutz H, Hehlgans S, Rödel
F, Rau K and Laube B: NMDA receptor-mediated signaling pathways
enhance radiation resistance, survival and migration in
glioblastoma cells-A potential target for adjuvant radiotherapy.
Cancers (Basel). 11:5032019. View Article : Google Scholar
|
|
25
|
Nepali K, Hsu TI, Hsieh CM, Lo WL, Lai MJ,
Hsu KC, Lin TE, Chuang JY and Liou JP: Pragmatic recruitment of
memantine as the capping group for the design of HDAC inhibitors: A
preliminary attempt to unravel the enigma of glioblastoma. Eur J
Med Chem. 217:1133382021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wan Z, Sun R, Liu YW, Li S, Sun J, Li J,
Zhu J, Moharil P, Zhang B, Ren P, et al: Targeting metabotropic
glutamate receptor 4 for cancer immunotherapy. Sci Adv.
7:eabj42262021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Blyufer A, Lhamo S, Tam C, Tariq I,
Thavornwatanayong T and Mahajan SS: Riluzole: A neuroprotective
drug with potential as a novel anti-cancer agent (review). Int J
Oncol. 59:952021. View Article : Google Scholar :
|
|
28
|
Mugge L, Mansour TR, Crippen M, Alam Y and
Schroeder J: Depression and glioblastoma, complicated concomitant
diseases: A systemic review of published literature. Neurosurg Rev.
43:497–511. 2020. View Article : Google Scholar
|
|
29
|
Dolma S, Selvadurai HJ, Lan X, Lee L,
Kushida M, Voisin V, Whetstone H, So M, Aviv T, Park N, et al:
Inhibition of dopamine receptor D4 impedes autophagic flux,
proliferation, and survival of glioblastoma stem cells. Cancer
Cell. 29:859–873. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Caffino L, Mottarlini F, Targa G, Verheij
MMM, Fumagalli F and Homberg JR: Responsivity of serotonin
transporter knockout rats to short and long access to cocaine:
Modulation of the glutamate signalling in the nucleus accumbens
shell. Br J Pharmacol. 179:3727–3739. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bi J, Khan A, Tang J, Armando AM, Wu S,
Zhang W, Gimple RC, Reed A, Jing H, Koga T, et al: Targeting
glioblastoma signaling and metabolism with a re-purposed
brain-penetrant drug. Cell Rep. 37:1099572021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tao F, Zhu J, Duan L, Wu J, Zhang J, Yao
K, Bo J and Zu H: Anti-inflammatory effects of doxepin
hydrochloride against LPS-induced C6-glioma cell inflammatory
reaction by PI3K-mediated Akt signaling. J Biochem Mol Toxicol.
34:e224242020. View Article : Google Scholar
|
|
33
|
Otto-Meyer S, DeFaccio R, Dussold C,
Ladomersky E, Zhai L, Lauing KL, Bollu LR, Amidei C, Lukas RV,
Scholtens DM and Wainwright DA: A retrospective survival analysis
of glioblastoma patients treated with selective serotonin reuptake
inhibitors. Brain Behav Immun Health. 2:1000252020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Takayasu T, Kurisu K, Esquenazi Y and
Ballester LY: Ion channels and their role in the pathophysiology of
gliomas. Mol Cancer Ther. 19:1959–1969. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He L, Sun Z, Li J, Zhu R, Niu B, Tam KL,
Xiao Q, Li J, Wang W, Tsui CY, et al: Electrical stimulation at
nanoscale topography boosts neural stem cell neurogenesis through
the enhancement of autophagy signaling. Biomaterials.
268:1205852021. View Article : Google Scholar
|
|
36
|
Arvind R, Chandana SR, Borad MJ,
Pennington D, Mody K and Babiker H: Tumor-treating fields: A fourth
modality in cancer treatment, new practice updates. Crit Rev Oncol
Hematol. 168:1035352021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tsai HF, IJspeert C and Shen AQ:
Voltage-gated ion channels mediate the electrotaxis of glioblastoma
cells in a hybrid PMMA/PDMS microdevice. APL Bioeng. 4:0361022020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nicoletti NF, Erig TC, Zanin RF, Roxo MR,
Ferreira NP, Gomez MV, Morrone FB and Campos MM: Pre-clinical
evaluation of voltage-gated calcium channel blockers derived from
the spider P. nigriventer in glioma progression. Toxicon.
129:58–67. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Catacuzzeno L, Sforna L, Esposito V,
Limatola C and Franciolini F: Ion channels in glioma malignancy.
Rev Physiol Biochem Pharmacol. 181:223–267. 2021. View Article : Google Scholar
|
|
40
|
Vannini E, Mori E, Tantillo E, Schmidt G,
Caleo M and Costa M: CTX-CNF1 recombinant protein selectively
targets glioma cells in vivo. Toxins (Basel). 13:1942021.
View Article : Google Scholar
|
|
41
|
Catacuzzeno L and Franciolini F: Role of
KCa3.1 channels in modulating Ca2+ oscillations during
glioblastoma cell migration and invasion. Int J Mol Sci.
19:29702018. View Article : Google Scholar
|
|
42
|
Rosa P, Catacuzzeno L, Sforna L, Mangino
G, Carlomagno S, Mincione G, Petrozza V, Ragona G, Franciolini F
and Calogero A: BK channels blockage inhibits hypoxia-induced
migration and chemoresistance to cisplatin in human glioblastoma
cells. J Cell Physiol. 233:6866–6877. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ru Q, Li WL, Xiong Q, Chen L, Tian X and
Li CY: Voltage-gated potassium channel blocker 4-aminopyridine
induces glioma cell apoptosis by reducing expression of
microRNA-10b-5p. Mol Biol Cell. 29:1125–1136. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Aissaoui D, Mlayah-Bellalouna S, Jebali J,
Abdelkafi-Koubaa Z, Souid S, Moslah W, Othman H, Luis J, ElAyeb M,
Marrakchi N, et al: Functional role of Kv1.1 and Kv1.3 channels in
the neoplastic progression steps of three cancer cell lines,
elucidated by scorpion peptides. Int J Biol Macromol.
111:1146–1155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hu L, Li LL, Lin ZG, Jiang ZC, Li HX, Zhao
SG and Yang KB: Blockage of potassium channel inhibits
proliferation of glioma cells via increasing reactive oxygen
species. Oncol Res. 22:57–65. 2014. View Article : Google Scholar
|
|
46
|
Roehlecke C and Schmidt MHH: Tunneling
nanotubes and tumor microtubes in cancer. Cancers (Basel).
12:8572020. View Article : Google Scholar
|
|
47
|
Portela M, Venkataramani V, Fahey-Lozano
N, Seco E, Losada-Perez M, Winkler F and Casas-Tintó S:
Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP
signaling loop that enhances glioblastoma progression and
neurodegeneration. PLoS Biol. 17:e30005452019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Venkatesh HS, Morishita W, Geraghty AC,
Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami
A, Ni L, et al: Electrical and synaptic integration of glioma into
neural circuits. Nature. 573:539–545. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Epifantseva I and Shaw RM: Intracellular
trafficking pathways of Cx43 gap junction channels. Biochim Biophys
Acta Biomembr. 1860:40–47. 2018. View Article : Google Scholar
|
|
50
|
Pinto G, Brou C and Zurzolo C: Tunneling
nanotubes: The fuel of tumor progression? Trends Cancer. 6:874–888.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Osswald M, Jung E, Sahm F, Solecki G,
Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M,
et al: Brain tumour cells interconnect to a functional and
resistant network. Nature. 528:93–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jaraíz-Rodríguez M, Talaverón R,
García-Vicente L, Pelaz SG, Domínguez-Prieto M,
Aacute;lvarez-Vázquez A, Flores-Hernández R, Sin WC, Bechberger J,
Medina JM, et al: Connexin43 peptide, TAT-Cx43266-283, selectively
targets glioma cells, impairs malignant growth, and enhances
survival in mouse models in vivo. Neuro Oncol. 22:493–504. 2020.
View Article : Google Scholar
|
|
53
|
Pettee KM, Becker KN, Alberts AS, Reinard
KA, Schroeder JL and Eisenmann KM: Targeting the mDia
formin-assembled cytoskeleton is an effective anti-invasion
strategy in adult high-grade glioma patient-derived neurospheres.
Cancers (Basel). 11:3922019. View Article : Google Scholar
|
|
54
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O
and Lathia J: Cancer connectors: connexins, gap junctions, and
communication. Front Oncol. 8:6462018. View Article : Google Scholar
|
|
55
|
Zhang C, Liu CF, Chen AB, Yao Z, Li WG, Xu
SJ and Ma XY: Prognostic and clinic pathological value of Cx43
expression in glioma: A meta-analysis. Front Oncol. 9:12092019.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Filbin MG and Segal RA: How neuronal
activity regulates glioma cell proliferation. Neuro Oncol.
17:1543–1544. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yao M, Ventura PB, Jiang Y, Rodriguez FJ,
Wang L, Perry JSA, Yang Y, Wahl K, Crittenden RB, Bennett ML, et
al: Astrocytic trans-differentiation completes a multicellular
paracrine feedback loop required for medulloblastoma tumor growth.
Cell. 180:502–520.e19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Griffin N, Faulkner S, Jobling P and
Hondermarck H: Targeting neurotrophin signaling in cancer: The
renaissance. Pharmacol Res. 135:12–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rocco ML, Soligo M, Manni L and Aloe L:
Nerve growth factor: Early studies and recent clinical trials. Curr
Neuropharmacol. 16:1455–1465. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Franzese O, Di Francesco AM, Meco D,
Graziani G, Cusano G, Levati L, Riccardi R and Ruggiero A: hTERT
transduction extends the lifespan of primary pediatric low-grade
glioma cells while preserving the biological response to NGF.
Pathol Oncol Res. 27:6123752021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Meco D, Di Francesco AM, Melotti L,
Ruggiero A and Riccardi R: Ectopic nerve growth factor prevents
proliferation in glioma cells by senescence induction. J Cell
Physiol. 234:6820–6830. 2019. View Article : Google Scholar
|
|
62
|
Park JC, Chang IB, Ahn JH, Kim JH, Song
JH, Moon SM and Park YH: Nerve growth factor stimulates
glioblastoma proliferation through Notch1 receptor signaling. J
Korean Neurosurg Soc. 61:441–449. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Barreda Tomás FJ, Turko P, Heilmann H,
Trimbuch T, Yanagawa Y, Vida I and Münster-Wandowski A: BDNF
expression in cortical GABAergic interneurons. Int J Mol Sci.
21:15672020. View Article : Google Scholar
|
|
64
|
Li YF: A hypothesis of monoamine
(5-HT)-glutamate/GABA long neural circuit: Aiming for fast-onset
antidepressant discovery. Pharmacol Ther. 208:1074942020.
View Article : Google Scholar
|
|
65
|
Liu S, Jiang T, Zhong Y and Yu Y: miR-210
inhibits cell migration and invasion by targeting the brain-derived
neurotrophic factor in glioblastoma. J Cell Biochem. Feb
11–2019.Epub ahead of print.
|
|
66
|
Wang J, Gao F, Cui S, Yang S, Gao F, Wang
X and Zhu G: Utility of 7,8-dihydroxyflavone in preventing
astrocytic and synaptic deficits in the hippocampus elicited by
PTSD. Pharmacol Res. 176:1060792022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lange F, Hörnschemeyer J and Kirschstein
T: Glutamatergic mechanisms in glioblastoma and tumor-associated
epilepsy. Cells. 10:12262021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Keifer J: Regulation of AMPAR trafficking
in synaptic plasticity by BDNF and the impact of neurodegenerative
disease. J Neurosci Res. 100:979–991. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gorick CM, Saucerman JJ and Price RJ:
Computational model of brain endothelial cell signaling pathways
predicts therapeutic targets for cerebral pathologies. J Mol Cell
Cardiol. 164:17–28. 2022. View Article : Google Scholar
|
|
70
|
Jawhari S, Bessette B, Hombourger S,
Durand K, Lacroix A, Labrousse F, Jauberteau MO, Ratinaud MH and
Verdier M: Autophagy and TrkC/NT-3 signaling joined forces boost
the hypoxic glioblastoma cell survival. Carcinogenesis. 38:592–603.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Venkatesh HS, Johung TB, Caretti V, Noll
A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS,
et al: Neuronal activity promotes glioma growth through
neuroligin-3 secretion. Cell. 161:803–816. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bemben MA, Nguyen TA, Li Y, Wang T, Nicoll
RA and Roche KW: Isoform-specific cleavage of neuroligin-3 reduces
synapse strength. Mol Psychiatry. 24:145–160. 2019. View Article : Google Scholar
|
|
73
|
Liu R, Qin XP, Zhuang Y, Zhang Y, Liao HB,
Tang JC, Pan MX, Zeng FF, Lei Y, Lei RX, et al: Glioblastoma
recurrence correlates with NLGN3 levels. Cancer Med. May
18–2018.Epub ahead of print.
|
|
74
|
Dang NN, Li XB, Zhang M, Han C, Fan XY and
Huang SH: NLGN3 upregulates expression of ADAM10 to promote the
cleavage of NLGN3 via activating the LYN pathway in human gliomas.
Front Cell Dev Biol. 9:6627632021. View Article : Google Scholar :
|
|
75
|
Venkatesh HS, Tam LT, Woo PJ, Lennon J,
Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, et
al: Targeting neuronal activity-regulated neuroligin-3 dependency
in high-grade glioma. Nature. 549:533–537. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li Z, Gao W, Fei Y, Gao P, Xie Q, Xie J
and Xu Z: NLGN3 promotes neuroblastoma cell proliferation and
growth through activating PI3K/AKT pathway. Eur J Pharmacol.
857:1724232019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fumagalli A, Heuninck J, Pizzoccaro A,
Moutin E, Koenen J, Séveno M, Durroux T, Junier MP, Schlecht-Louf
G, Bachelerie F, et al: The atypical chemokine receptor 3 interacts
with Connexin 43 inhibiting astrocytic gap junctional intercellular
communication. Nat Commun. 11:48552020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Derks J, Wesseling P, Carbo EWS,
Hillebrand A, van Dellen E, de Witt Hamer PC, Klein M, Schenk GJ,
Geurts JJG, Reijneveld JC and Douw L: Oscillatory brain activity
associates with neuroligin-3 expression and predicts progression
free survival in patients with diffuse glioma. J Neurooncol.
140:403–412. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gu J, Jin T, Li Z, Chen H, Xia H, Xu X and
Gui Y: Exosomes expressing neuronal autoantigens induced immune
response in antibody-positive autoimmune encephalitis. Mol Immunol.
131:164–170. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kumari M and Anji A: Small but
mighty-exosomes, novel inter-cellular messengers in
neurodegeneration. Biology (Basel). 11:4132022.
|
|
81
|
Chivet M, Javalet C, Laulagnier K, Blot B,
Hemming FJ and Sadoul R: Exosomes secreted by cortical neurons upon
glutamatergic synapse activation specifically interact with
neurons. J Extracell Vesicles. 3:247222014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sharma P, Mesci P, Carromeu C, McClatchy
DR, Schiapparelli L, Yates JR III, Muotri AR and Cline HT: Exosomes
regulate neurogenesis and circuit assembly. Proc Natl Acad Sci USA.
116:16086–16094. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gao X, Zhang Z, Mashimo T, Shen B, Nyagilo
J, Wang H, Wang Y, Liu Z, Mulgaonkar A, Hu XL, et al: Gliomas
interact with non-glioma brain cells via extracellular vesicles.
Cell Rep. 30:2489–2500.e5. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K,
Huang-Hobbs E, Cheng YT, Beechar VB, Zhu W, Zhang Y, et al: PIK3CA
variants selectively initiate brain hyperactivity during
gliomagenesis. Nature. 578:166–171. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang J, Liu W, Xu W, Yang B, Cui M, Li Z,
Zhang H, Jin C, Xue H and Zhang J: Comprehensive analysis of the
oncogenic, genomic alteration, and immunological landscape of
cation-chloride cotransporters in pan-cancer. Front Oncol.
12:8196882022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Al Awabdh S, Donneger F, Goutierre M,
Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin
P and Poncer JC: Gephyrin interacts with the K-Cl cotransporter
KCC2 to regulate its surface expression and function in cortical
neurons. J Neurosci. 42:166–182. 2022. View Article : Google Scholar :
|
|
87
|
Moreira Franco YE, Alves MJ, Uno M,
Moretti IF, Trombetta-Lima M, de Siqueira Santos S, Dos Santos AF,
Arini GS, Baptista MS, Lerario AM, et al: Glutaminolysis dynamics
during astrocytoma progression correlates with tumor
aggressiveness. Cancer Metab. 9:182021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lisi L, Ciotti GMP, Chiavari M, Martire M
and Navarra P: The effects of CHF6467, a new mutated form of NGF,
on cell models of human glioblastoma. A comparison with wild-type
NGF. Growth Factors. 40:37–45. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rosso P, Fico E, Mesentier-Louro LA,
Triaca V, Lambiase A, Rama P and Tirassa P: NGF eye administration
recovers the TrkB and glutamate/GABA marker deficit in the adult
visual cortex following optic nerve crush. Int J Mol Sci.
22:100142021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Colucci-D'Amato L, Speranza L and
Volpicelli F: Neurotrophic factor BDNF, physiological functions and
therapeutic potential in depression, neurodegeneration and brain
cancer. Int J Mol Sci. 21:77772020. View Article : Google Scholar :
|
|
91
|
Carniel BP and da Rocha NS: Brain-derived
neurotrophic factor (BDNF) and inflammatory markers: Perspectives
for the management of depression. Prog Neuropsychopharmacol Biol
Psychiatry. 108:1101512021. View Article : Google Scholar
|
|
92
|
Caponegro MD, Oh K, Madeira MM, Radin D,
Sterge N, Tayyab M, Moffitt RA and Tsirka SE: A distinct microglial
subset at the tumor-stroma interface of glioma. Glia. 69:1767–1781.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wei J, Song R, Sabbagh A, Marisetty A,
Shukla N, Fang D, Najem H, Ott M, Long J, Zhai L, et al:
Cell-directed aptamer therapeutic targeting for cancers including
those within the central nervous system. Oncoimmunology.
11:20628272022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wegrzyn D, Freund N, Faissner A and Juckel
G: Poly I:C activated microglia disrupt perineuronal nets and
modulate synaptic balance in primary hippocampal neurons in vitro.
Front Synaptic Neurosci. 13:6375492021. View Article : Google Scholar :
|
|
95
|
Szepesi Z, Manouchehrian O, Bachiller S
and Deierborg T: Bidirectional microglia-neuron communication in
health and disease. Front Cell Neurosci. 12:3232018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Moraes CA, Zaverucha-do-Valle C, Fleurance
R, Sharshar T, Bozza FA and d'Avila JC: Neuroinflammation in
sepsis: Molecular pathways of microglia activation. Pharmaceuticals
(Basel). 14:4162021. View Article : Google Scholar
|
|
97
|
Raffaele S, Lombardi M, Verderio C and
Fumagalli M: TNF production and release from microglia via
extracellular vesicles: Impact on brain functions. Cells.
9:21452020. View Article : Google Scholar :
|
|
98
|
Milanese M, Bonifacino T, Torazza C,
Provenzano F, Kumar M, Ravera S, Zerbo AR, Frumento G, Balbi M,
Nguyen TPN, et al: Blocking glutamate mGlu5 receptors
with the negative allosteric modulator CTEP improves disease course
in SOD1G93A mouse model of amyotrophic lateral
sclerosis. Br J Pharmacol. 178:3747–3764. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Boakye PA, Tang SJ and Smith PA: Mediators
of neuropathic pain; focus on spinal microglia, CSF-1, BDNF, CCL21,
TNF-α, Wnt ligands, and interleukin 1β. Front Pain Res (Lausanne).
2:6981572021. View Article : Google Scholar
|
|
100
|
Anagnostakis F and Piperi C: Targeting
options of tumor-associated macrophages (TAM) activity in gliomas.
Curr Neuropharmacol. Jan 20–2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Barca C, Foray C, Hermann S, Herrlinger U,
Remory I, Laoui D, Schäfers M, Grauer OM, Zinnhardt B and Jacobs
AH: The colony stimulating factor-1 receptor (CSF-1R)-mediated
regulation of microglia/macrophages as a target for neurological
disorders (glioma, stroke). Front Immunol. 12:7873072021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Qian M, Wang S, Guo X, Wang J, Zhang Z,
Qiu W, Gao X, Chen Z, Xu J, Zhao R, et al: Hypoxic glioma-derived
exosomes deliver microRNA-1246 to induce M2 macrophage polarization
by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene.
39:428–442. 2020. View Article : Google Scholar
|
|
103
|
Counil H and Krantic S: Synaptic activity
and (neuro)inflammation in Alzheimer's disease: Could exosomes be
an additional link? J Alzheimers Dis. 74:1029–1043. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhu C, Bilousova T, Focht S, Jun M, Elias
CJ, Melnik M, Chandra S, Campagna J, Cohn W, Hatami A, et al:
Pharmacological inhibition of nSMase2 reduces brain exosome release
and α-synuclein pathology in a Parkinson's disease model. Mol
Brain. 14:702021. View Article : Google Scholar
|
|
105
|
Blitz SE, Kappel AD, Gessler FA, Klinger
NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK
and Bernstock JD: Tumor-associated macrophages/microglia in
glioblastoma oncolytic virotherapy: A double-edged sword. Int J Mol
Sci. 23:18082022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Adamus T, Hung CY, Yu C, Kang E, Hammad M,
Flores L, Nechaev S, Zhang Q, Gonzaga JM, Muthaiyah K, et al:
Glioma-targeted delivery of exosome-encapsulated antisense
oligonucleotides using neural stem cells. Mol Ther Nucleic Acids.
27:611–620. 2021. View Article : Google Scholar
|
|
107
|
Ehtesham M, Kabos P, Gutierrez MA, Chung
NH, Griffith TS, Black KL and Yu JS: Induction of glioblastoma
apoptosis using neural stem cell-mediated delivery of tumor
necrosis factor-related apoptosis-inducing ligand. Cancer Res.
62:7170–7174. 2002.PubMed/NCBI
|
|
108
|
Benmelouka AY, Munir M, Sayed A, Attia MS,
Ali MM, Negida A, Alghamdi BS, Kamal MA, Barreto GE, Ashraf GM, et
al: Neural stem cell-based therapies and glioblastoma management:
Current evidence and clinical challenges. Int J Mol Sci.
22:22582021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Batalla-Covello J, Ngai HW, Flores L,
McDonald M, Hyde C, Gonzaga J, Hammad M, Gutova M, Portnow J,
Synold T, et al: Multiple treatment cycles of neural stem cell
delivered oncolytic adenovirus for the treatment of glioblastoma.
Cancers (Basel). 13:63202021. View Article : Google Scholar
|
|
110
|
van Solinge TS, Nieland L, Chiocca EA and
Broekman MLD: Advances in local therapy for glioblastoma-taking the
fight to the tumour. Nat Rev Neurol. 18:221–236. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Luzzi S, Giotta Lucifero A, Brambilla I,
Trabatti C, Mosconi M, Savasta S and Foiadelli T: The impact of
stem cells in neuro-oncology: Applications, evidence, limitations
and challenges. Acta Biomed. 91(Suppl 7): S51–E60. 2020.
|
|
112
|
Leopold AV, Chernov KG, Shemetov AA and
Verkhusha VV: Neurotrophin receptor tyrosine kinases regulated with
near-infrared light. Nat Commun. 10:11292019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Hwang JW, Loisel-Duwattez J, Desterke C,
Latsis T, Pagliaro S, Griscelli F, Bennaceur-Griscelli A and Turhan
AG: A novel neuronal organoid model mimicking glioblastoma (GBM)
features from induced pluripotent stem cells (iPSC). Biochim
Biophys Acta Gen Subj. 1864:1295402020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Mariappan A, Goranci-Buzhala G,
Ricci-Vitiani L, Pallini R and Gopalakrishnan J: Trends and
challenges in modeling glioma using 3D human brain organoids. Cell
Death Differ. 28:15–23. 2021. View Article : Google Scholar
|
|
115
|
Goranci-Buzhala G, Mariappan A, Gabriel E,
Ramani A, Ricci-Vitiani L, Buccarelli M, D'Alessandris QG, Pallini
R and Gopalakrishnan J: Rapid and efficient invasion assay of
glioblastoma in human brain organoids. Cell Rep. 31:1077382020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Krieger TG, Tirier SM, Park J, Jechow K,
Eisemann T, Peterziel H, Angel P, Eils R and Conrad C: Modeling
glioblastoma invasion using human brain organoids and single-cell
transcriptomics. Neuro Oncol. 22:1138–1149. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Krishna S, Choudhury A, Seo K, Ni L,
Kakaizada F, Lee A, Aabedi A, Cao C, Sudharshan R, Egladyous A, et
al: Glioblastoma remodeling of neural circuits in the human brain
decreases survival. bioRxiv. Feb 19–2021.
|