Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2022 Volume 61 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 61 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α

Corrigendum in: /10.3892/ijo.2022.5449
  • Authors:
    • Hua Zhou
    • Mingyu Gan
    • Xin Jin
    • Meng Dai
    • Yuanyuan Wang
    • Youyang Lei
    • Zijing Lin
    • Jia Ming
  • View Affiliations / Copyright

    Affiliations: Department of Breast and Thyroid Surgery, The Affiliated Shapingba Hospital of Chongqing University, Chongqing 400030, P.R. China, Shanxi Medical University, Taiyuan, Shanxi 030607, P.R. China, Department of Critical Care Medicine, The Affiliated Fuling Hospital of Chongqing University, Chongqing 408099, P.R. China, Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 126
    |
    Published online on: September 6, 2022
       https://doi.org/10.3892/ijo.2022.5416
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Macrophages are principal immune cells with a high plasticity in the human body that can differentiate under different conditions in the tumor microenvironment to adopt two polarized phenotypes with opposite functions. Therefore, converting macrophages from the immunosuppressive phenotype (M2) to the inflammatory phenotype (M1) is considered a promising therapeutic strategy for cancer. However, the molecular mechanisms underlying this conversion process have not yet been completely elucidated. In recent years, microRNAs (miRNAs or miRs) have been shown to play key roles in regulating macrophage polarization through their ability to modulate gene expression. In the present study, it was found that miR‑382 expression was significantly downregulated in tumor‑associated macrophages (TAMs) and M2‑polarized macrophages in breast cancer. In vitro, macrophage polarization toward the M2 phenotype and M2‑type cytokine release were inhibited by transfection with miR‑382‑overexpressing lentivirus. Similarly, the overexpression of miR‑382 inhibited the ability of TAMs to promote the malignant behaviors of breast cancer cells. In addition, peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α) was identified as the downstream target of miR‑382 and it was found that PGC‑1α affected macrophage polarization by altering the metabolic status. The ectopic expression of PGC‑1α restored the phenotype and cytokine secretion of miR‑382‑overexpressing macrophages. Furthermore, PGC‑1α expression reversed the miR‑382‑induced changes in the metabolic state of TAMs and the effects of TAMs on breast cancer cells. Of note, the in vivo growth and metastasis of 4T1 cells were inhibited by miR‑382‑overexpressing TAMs. Taken together, the results of the present study suggest that miR‑382 may alter the metabolic status of macrophages by targeting PGC‑1α, thereby decreasing the proportion of TAMs with the M2 phenotype, and inhibiting the progression and metastasis of breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Martin JD, Fukumura D, Duda DG, Boucher Y and Jain RK: Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. 6:a0270942016. View Article : Google Scholar : PubMed/NCBI

2 

Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J and Guo W: The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications. Cell Oncol (Dordr). 44:525–539. 2021. View Article : Google Scholar

3 

Lao L, Fan S and Song E: Tumor associated macrophages as therapeutic targets for breast cancer. Adv Exp Med Biol. 1026:331–370. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z and Gao M: PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol. 11:5885522020. View Article : Google Scholar : PubMed/NCBI

5 

Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W and Giurisato E: Tumor-associated macrophages in osteosarcoma: From mechanisms to therapy. Int J Mol Sci. 21:52072020. View Article : Google Scholar :

6 

Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L and Madeddu C: Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep. 10:60962020PubMed/NCBI

7 

Wang X, Li X and Wang X: Identification of immune microenvironment subtypes that predicted the prognosis of patients with ovarian cancer = Identification of immune microenvironment subtypes that predicted the prognosis of patients with ovarian cancer. J Cell Mol Med. 25:4053–4061. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Honkanen TJ, Tikkanen A, Karihtala P, Mäkinen M, Väyrynen JP and Koivunen JP: Prognostic and predictive role of tumour-associated macrophages in HER2 positive breast cancer. Sci Rep. 9:109612019. View Article : Google Scholar : PubMed/NCBI

9 

Mills CD, Kincaid K, Alt JM, Heilman MJ and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Lewis CE and Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66:605–612. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 99:180–185. 2016. View Article : Google Scholar

13 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Shu Y and Cheng P: Targeting tumor-associated macrophages for cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 1874:1884342020. View Article : Google Scholar : PubMed/NCBI

15 

Davis BN and Hata A: Regulation of MicroRNA biogenesis: A miRiad of mechanisms. Cell Commun Signal. 7:182009. View Article : Google Scholar : PubMed/NCBI

16 

Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A and Salehi M: Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. 23:327–332. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Keshavarzi M, Sorayayi S, Jafar Rezaei M, Mohammadi M, Ghaderi A, Rostamzadeh A, Masoudifar A and Mirzaei H: MicroRNAs-based imaging techniques in cancer diagnosis and therapy. J Cell Biochem. 118:4121–4128. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Khalife H, Skafi N, Fayyad-Kazan M and Badran B: MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genet. 246-247:18–40. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Liu G and Abraham E: MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol. 33:170–177. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Essandoh K, Li Y, Huo J and Fan GC: MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 46:122–131. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Graff JW, Dickson AM, Clay G, McCaffrey AP and Wilson ME: Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem. 287:21816–21825. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Zhang S, Ge W, Zou G, Yu L, Zhu Y, Li Q, Zhang Y, Wang Z and Xu T: MiR-382 targets GOLM1 to inhibit metastasis of hepatocellular carcinoma and its down-regulation predicts a poor survival. Am J Cancer Res. 8:120–131. 2018.PubMed/NCBI

23 

Xu M, Jin H, Xu CX, Sun B, Song ZG, Bi WZ and Wang Y: miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 23:89–98. 2015. View Article : Google Scholar :

24 

Yao H, Xia D, Li ZL, Ren L, Wang MM, Chen WS, Hu ZC, Yi GP and Xu L: MiR-382 functions as tumor suppressor and chemosensitizer in colorectal cancer. Biosci Rep. 39:BSR201804412019. View Article : Google Scholar :

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

26 

Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N and Mandai M: Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res. 27:4669–4679. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B, Yi L, Wang QL, et al: Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol. 189:444–453. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL and Howe PH: TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol. 12:286–293. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Cai J, Xia L, Li J, Ni S, Song H and Wu X: Tumor-associated macrophages derived TGF-β-induced epithelial to mesenchymal transition in colorectal cancer cells through Smad2,3-4/Snail signaling pathway. Cancer Res Treat. 51:252–266. 2019. View Article : Google Scholar

30 

Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P and Ding JL: M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest. 93:844–854. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Lei Y, Zhou H, Dai M, Jin X and Ming J: Effects of Mir-382 on biological characteristics of triple negative breast cancer cell line 4T1 through PGC-1α. J Third Mil Med Univ. 41:1415–1422. 2019.

32 

Jin X, Ni TG, Wang N, Luo H, Lei Y and Ming J: Mechanism of mitochondria-mediated PGC-1α in macrophage polarization. J Third Mil Med Univ. 41:56–62. 2019.

33 

Dai M, Jin X, Lei YY and Ming: Effect of miR-382 overexpressing tumor-associated macrophages on biological properties of triple-negative breast cancer 4T1 cells. J Third Mil Med Univ. 40:1375–1382. 2018.

34 

Hobson-Gutierrez SA and Carmona-Fontaine C: The metabolic axis of macrophage and immune cell polarization. Dis Model Mech. 11:dmm0344622018. View Article : Google Scholar : PubMed/NCBI

35 

Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG and Pearce EJ: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 115:4742–4749. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y and Liu J: Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 11:1845–1863. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Campbell CT, Kolesar JE and Kaufman BA: Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta. 1819:921–929. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Klinge CM: Estrogenic control of mitochondrial function. Redox Biol. 31:1014352020. View Article : Google Scholar : PubMed/NCBI

39 

Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez C, et al: Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar

40 

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A and Bray F: Cancer statistics for the year 2020: An overview. Int J Cancer. Apr 5–2021.Epub ahead of print. View Article : Google Scholar

41 

Butowski N, Colman H and De Groot JF: Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18:557–564. 2016. View Article : Google Scholar :

42 

Edelman MJ, Wang X, Hodgson L, Cheney RT, Baggstrom MQ, Thomas SP, Gajra A, Bertino E, Reckamp KL, Molina J, et al: Phase III randomized, placebo-controlled, double-blind trial of celecoxib in addition to standard chemotherapy for advanced non-small-cell lung cancer with cyclooxygenase-2 overexpression: CALGB 30801 (Alliance). J Clin Oncol. 35:2184–2192. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Reid T, Oronsky B, Scicinski J, Scribner CL, Knox SJ, Ning S, Peehl DM, Korn R, Stirn M, Carter CA, et al: Safety and activity of RRx-001 in patients with advanced cancer: A first-in-human, open-label, dose-escalation phase 1 study. Lancet Oncol. 16:1133–1142. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Chatterjee B, Saha P, Bose S, Shukla D, Chatterjee N, Kumar S, Tripathi PP and Srivastava AK: MicroRNAs: As critical regulators of tumor-associated macrophages. Int J Mol Sci. 21:71172020. View Article : Google Scholar

45 

Gholamin S, Mirzaei H, Razavi SM, Hassanian SM, Saadatpour L, Masoudifar A, ShahidSales S and Avan A: GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol. 233:866–879. 2018. View Article : Google Scholar

46 

Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, Li N, Gomez-Cabrero A, Reisfeld RA, Xiang R and Luo Y: MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene. 33:3014–3023. 2014. View Article : Google Scholar

47 

Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, Abraham E and Liu G: MicroRNA let-7c regulates macrophage polarization. J Immunol. 190:6542–6549. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Huang C, Liu XJ, Qun Zhou, Xie J, Ma TT, Meng XM and Li J: MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol. 32:46–54. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Lei J, Fu Y, Zhuang Y, Zhang K and Lu D: miR-382-3p suppressed IL-1β induced inflammatory response of chondrocytes via the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43. J Cell Physiol. 234:23160–23168. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G and Zhang H: Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 13:1241–1247. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Wang X, Xue N, Zhao S, Shi Y, Ding X and Fang Y: Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis. 11:6202020. View Article : Google Scholar : PubMed/NCBI

52 

Zhou H, Wang Y, Lin Z and Ming J: Mir-382-5p affects the polarization of breast cancer tumor-associated macrophages through the Akt/mTOR signaling pathway. J Third Mil Med Univ. 43:1358–1365. 2021.

53 

Chawla A: Control of macrophage activation and function by PPARs. Circ Res. 106:1559–1569. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen B, Wang Q, Zhao X, Chen J, Cheng N, et al: Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat Commun. 8:7662017. View Article : Google Scholar

55 

Liu Y, Xu R, Gu H, Zhang E, Qu J, Cao W, Huang X, Yan H, He J and Cai Z: Metabolic reprogramming in macrophage responses. Biomark Res. 9:12021. View Article : Google Scholar : PubMed/NCBI

56 

Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, Clish CB, Granter SR, Widlund HR, Spiegelman BM and Puigserver P: PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 23:287–301. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Bost F and Kaminski L: The metabolic modulator PGC-1α in cancer. Am J Cancer Res. 9:198–211. 2019.

58 

Abdalla HB, Napimoga MH, Lopes AH, de Macedo Maganin AG, Cunha TM, Van Dyke TE and Clemente Napimoga JT: Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1. Int Immunopharmacol. 84:1065652020. View Article : Google Scholar

59 

Zhang X, Zhang Y, Meng Q, Sun H, Wu S, Xu J, Yun J, Yang X, Li B, Zhu H, et al: MicroRNA-382-5p is involved in pulmonary inflammation induced by fine particulate matter exposure. Environ Pollut. 262:1142782020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou H, Gan M, Jin X, Dai M, Wang Y, Lei Y, Lin Z and Ming J: miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449. Int J Oncol 61: 126, 2022.
APA
Zhou, H., Gan, M., Jin, X., Dai, M., Wang, Y., Lei, Y. ... Ming, J. (2022). miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449. International Journal of Oncology, 61, 126. https://doi.org/10.3892/ijo.2022.5416
MLA
Zhou, H., Gan, M., Jin, X., Dai, M., Wang, Y., Lei, Y., Lin, Z., Ming, J."miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449". International Journal of Oncology 61.4 (2022): 126.
Chicago
Zhou, H., Gan, M., Jin, X., Dai, M., Wang, Y., Lei, Y., Lin, Z., Ming, J."miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449". International Journal of Oncology 61, no. 4 (2022): 126. https://doi.org/10.3892/ijo.2022.5416
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou H, Gan M, Jin X, Dai M, Wang Y, Lei Y, Lin Z and Ming J: miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449. Int J Oncol 61: 126, 2022.
APA
Zhou, H., Gan, M., Jin, X., Dai, M., Wang, Y., Lei, Y. ... Ming, J. (2022). miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449. International Journal of Oncology, 61, 126. https://doi.org/10.3892/ijo.2022.5416
MLA
Zhou, H., Gan, M., Jin, X., Dai, M., Wang, Y., Lei, Y., Lin, Z., Ming, J."miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449". International Journal of Oncology 61.4 (2022): 126.
Chicago
Zhou, H., Gan, M., Jin, X., Dai, M., Wang, Y., Lei, Y., Lin, Z., Ming, J."miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α Corrigendum in /10.3892/ijo.2022.5449". International Journal of Oncology 61, no. 4 (2022): 126. https://doi.org/10.3892/ijo.2022.5416
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team