Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2022 Volume 61 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 61 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Circadian clock as a possible control point in colorectal cancer progression (Review)

  • Authors:
    • Xiwu Rao
    • Lizhu Lin
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
    Copyright: © Rao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 149
    |
    Published online on: October 17, 2022
       https://doi.org/10.3892/ijo.2022.5439
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The circadian rhythm is generated at the cellular level by a molecular clock system that involves specific genes. Studies have revealed that circadian clock disruption is a control point in cancer progression. Colorectal cancer (CRC) is one of the cancers closely associated with circadian disruption. In the present review, the involvement of the circadian clock in CRC development was summarized. Abnormal expression of certain clock genes has been found in patients with CRC and their correlation with clinicopathological features has also been explored. The period and cryptochrome 2 (Cry2), Sirtuin1 (SIRT1) and neuronal PAS domain protein 2 (NPAS2) genes were reported to have tumour suppressor properties. Conversely, Cry1, brain and muscle ARNT‑like‑1, circadian locomotor output cycles kaput (CLOCK) and timeless may aggravate CRC progression, but these findings are not consistent and require to be confirmed by further research. Circadian scheduling also indicated advantages in chemotherapy treatments for patients with CRC by increasing the maximum tolerated doses and decreasing toxicities. Dysfunction of the molecular CLOCK system disrupted cellular processes to accelerate colon tumorigenesis, such as metabolism, cell cycle, DNA damage repair, proliferation and apoptosis, epithelial‑mesenchymal transition and stemness. The clock gene network and how the dynamics of the system influence CRC were discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Shafer OT, Levine JD, Truman JW and Hall JC: Flies by night: Effects of changing day length on Drosophila's circadian clock. Curr Biol. 14:424–432. 2004.PubMed/NCBI

2 

Rusak B and Zucker I: Neural regulation of circadian rhythms. Physiol Rev. 59:449–526. 1979. View Article : Google Scholar : PubMed/NCBI

3 

Dibner C, Schibler U and Albrecht U: The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu Rev Physiol. 72:517–549. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS and Weitz CJ: Role of the CLOCK protein in the mammalian circadian mechanism. Science. 280:1564–1569. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH and Takahashi JS: Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell. 89:655–667. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U and Schibler U: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 110:251–260. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, et al: Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature. 485:123–127. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 389:349–352. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Doi M, Hirayama J and Sassone-Corsi P: Circadian regulator CLOCK is a histone acetyltransferase. Cell. 125:497–508. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y and Sassone-Corsi P: CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 450:1086–1090. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP and Sassone-Corsi P: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329–340. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW and Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317–328. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Erren TC, Morfeld P, Foster RG, Reiter RJ, Groß JV and Westermann IK: Sleep and cancer: Synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int. 33:325–350. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, Shi Y, Giovannucci E, Speizer F and Schernhammer ES: Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer. 143:2709–2717. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Shi Y, Liu L, Hamada T, Nowak JA, Giannakis M, Ma Y, Song M, Nevo D, Kosumi K, Gu M, et al: Night-shift work duration and risk of colorectal cancer according to IRS1 and IRS2 expression. Cancer Epidemiol Biomarkers Prev. 29:133–140. 2020. View Article : Google Scholar :

18 

Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, et al: Abnormal eating patterns cause circadian disruption and promote alcohol-associated colon carcinogenesis. Cell Mol Gastroenterol Hepatol. 9:219–237. 2020. View Article : Google Scholar :

19 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Pelullo M, Nardozza F, Zema S, Quaranta R, Nicoletti C, Besharat ZM, Felli MP, Cerbelli B, d'Amati G, Palermo R, et al: Kras/ADAM17-dependent Jag1-ICD reverse signaling sustains colorectal cancer progression and chemoresistance. Cancer Res. 79:5575–5586. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Afrăsânie VA, Marinca MV, Alexa-Stratulat T, Gafton B, Păduraru M, Adavidoaiei AM, Miron L and Rusu C: KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer-practical implications for the clinician. Radiol Oncol. 53:265–274. 2019. View Article : Google Scholar

22 

Slik K, Turkki R, Carpén O, Kurki S, Korkeila E, Sundström J and Pellinen T: CDX2 loss with microsatellite stable phenotype predicts poor clinical outcome in stage II colorectal carcinoma. Am J Surg Pathol. 43:1473–1482. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Wolpin BM and Mayer RJ: Systemic treatment of colorectal cancer. Gastroenterology. 134:1296–1310. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Narducci F, Bassotti G, Gaburri M and Morelli A: Twenty four hour manometric recording of colonic motor activity in healthy man. Gut. 28:17–25. 1987. View Article : Google Scholar : PubMed/NCBI

25 

Rao SS, Sadeghi P, Beaty J, Kavlock R and Ackerson K: Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 280:G629–G639. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Clench J, Reinberg A, Dziewanowska Z, Ghata J and Smolensky M: Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur J Clin Pharmacol. 20:359–369. 1981. View Article : Google Scholar : PubMed/NCBI

27 

Markiewicz A, Kamiński M, Chocilowski W, Gomoluch T, Bołdys H and Skrzypek B: Circadian rhythms of four marker enzymes activity of the jejunal villi in man. Acta Histochem. 72:91–99. 1983. View Article : Google Scholar : PubMed/NCBI

28 

Hoogerwerf WA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Bartell PA and Cassone VM: Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol. 298:G143–G150. 2010. View Article : Google Scholar :

29 

Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, et al: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159:514–529. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L, Mrnka L, O'Neill J, Pácha J and Sumová A: Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology. 133:1240–1249. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC and Cassone VM: Clock gene expression in the murine gastrointestinal tract: Endogenous rhythmicity and effects of a feeding regimen. Gastroenterology. 133:1250–1260. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Brandi G, Calabrese C, Pantaleo MA, Morselli Labate A, Di Febo G, Hakim R, De Vivo A, Di Marco MC and Biasco G: Circadian variations of rectal cell proliferation in patients affected by advanced colorectal cancer. Cancer Lett. 208:193–196. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Yu F, Zhang T, Zhou C, Xu H, Guo L, Chen M and Wu B: The circadian clock gene Bmal1 controls intestinal exporter MRP2 and drug disposition. Theranostics. 9:2754–2767. 2019. View Article : Google Scholar :

34 

Lévi F, Dugué PA, Innominato P, Karaboué A, Dispersyn G, Parganiha A, Giacchetti S, Moreau T, Focan C, Waterhouse J, et al: Wrist actimetry circadian rhythm as a robust predictor of colorectal cancer patients survival. Chronobiol Int. 31:891–900. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Innominato PF, Focan C, Gorlia T, Moreau T, Garufi C, Waterhouse J, Giacchetti S, Coudert B, Iacobelli S, Genet D, et al: Circadian rhythm in rest and activity: A biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res. 69:4700–4707. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Stokes K, Nunes M, Trombley C, Flôres DEFL, Wu G, Taleb Z, Alkhateeb A, Banskota S, Harris C, Love OP, et al: The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation. Cell Mol Gastroenterol Hepatol. 12:1847–1872.e0. 2021. View Article : Google Scholar : PubMed/NCBI

37 

He A, Huang Z, Zhang R, Lu H, Wang J, Cao J and Feng Q: Circadian clock genes are correlated with prognosis and immune cell infiltration in colon adenocarcinoma. Comput Math Methods Med. 2022:17099182022. View Article : Google Scholar : PubMed/NCBI

38 

Karantanos T, Theodoropoulos G, Gazouli M, Vaiopoulou A, Karantanou C, Lymberi M and Pektasides D: Expression of clock genes in patients with colorectal cancer. Int J Biol Markers. 28:280–285. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A and Piepoli A: Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 28:841–851. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Mostafaie N, Kállay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS, Huber KR and Krugluger W: Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog. 48:642–647. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Orhan T, Nielsen PB, Hviid TVF, Rosen AW and Gögenür I: Expression of circadian clock genes in human colorectal cancer tissues using droplet digital PCR. Cancer Invest. 37:90–98. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Oshima T, Takenoshita S, Akaike M, Kunisaki C, Fujii S, Nozaki A, Numata K, Shiozawa M, Rino Y, Tanaka K, et al: Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol Rep. 25:1439–1446. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Wu S, Fesler A and Ju J: Implications of circadian rhythm regulation by microRNAs in colorectal cancer. Cancer Transl Med. 2:1–6. 2016. View Article : Google Scholar : PubMed/NCBI

44 

No authors listed. Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients [Retraction]. Onco Targets Ther. 9:56992016. View Article : Google Scholar

45 

Krugluger W, Brandstaetter A, Kállay E, Schueller J, Krexner E, Kriwanek S, Bonner E and Cross HS: Regulation of genes of the circadian clock in human colon cancer: Reduced period-1 and dihydropyrimidine dehydrogenase transcription correlates in high-grade tumors. Cancer Res. 67:7917–7922. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Lu H, Chu Q, Xie G, Han H, Chen Z, Xu B and Yue Z: Circadian gene expression predicts patient response to neoadjuvant chemo-radiation therapy for rectal cancer. Int J Clin Exp Pathol. 8:10985–10994. 2015.

47 

Nemeth C, Humpeler S, Kallay E, Mesteri I, Svoboda M, Rögelsperger O, Klammer N, Thalhammer T and Ekmekcioglu C: Decreased expression of the melatonin receptor 1 in human colorectal adenocarcinomas. J Biol Regul Homeost Agents. 25:531–542. 2011.

48 

Wang Y, Hua L, Lu C and Chen Z: Expression of circadian clock gene human Period2 (hPer2) in human colorectal carcinoma. World J Surg Oncol. 9:1662011. View Article : Google Scholar : PubMed/NCBI

49 

Aroca-Siendones MI, Moreno-SanJuan S, Puentes-Pardo JD, Verbeni M, Arnedo J, Escudero-Feliu J, García-Costela M, García-Robles A, Carazo Á and León J: Core circadian clock proteins as biomarkers of progression in colorectal cancer. Biomedicines. 9:9672021. View Article : Google Scholar : PubMed/NCBI

50 

Hasakova K, Vician M, Reis R, Zeman M and Herichova I: Sex-dependent correlation between survival and expression of genes related to the circadian oscillator in patients with colorectal cancer. Chronobiol Int. 35:1423–1434. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Wang Y, Cheng Y, Yu G, Jia B, Hu Z and Zhang L: Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients. Onco Targets Ther. 9:1997–2005. 2016.PubMed/NCBI

52 

Xiong Y, Zhuang Y, Zhong M, Qin W, Huang B, Zhao J, Gao Z, Ma J, Wu Z, Hong X, et al: Period 2 suppresses the malignant cellular behaviors of colorectal cancer through the epithelial-mesenchymal transformation process. Cancer Control. 29:107327482210813692022. View Article : Google Scholar : PubMed/NCBI

53 

Hasakova K, Reis R, Vician M, Zeman M and Herichova I: Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS One. 14:e02243962019. View Article : Google Scholar : PubMed/NCBI

54 

Wang X, Yan D, Teng M, Fan J, Zhou C, Li D, Qiu G, Sun X, Li T, Xing T, et al: Reduced expression of PER3 is associated with incidence and development of colon cancer. Ann Surg Oncol. 19:3081–3088. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Ray M, Shivappa N, Guess J, Zhang H, et al: Case-control study of the PERIOD3 clock gene length polymorphism and colorectal adenoma formation. Oncol Rep. 33:935–941. 2015. View Article : Google Scholar :

56 

Momma T, Okayama H, Saitou M, Sugeno H, Yoshimoto N, Takebayashi Y, Ohki S and Takenoshita S: Expression of circadian clock genes in human colorectal adenoma and carcinoma. Oncol Lett. 14:5319–5325. 2017.PubMed/NCBI

57 

Štorcelová M, Vicián M, Reis R, Zeman M and Herichová I: Expression of cell cycle regulatory factors hus1, gadd45a, rb1, cdkn2a and mre11a correlates with expression of clock gene per2 in human colorectal carcinoma tissue. Mol Biol Rep. 40:6351–6361. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Soták M, Polidarová L, Ergang P, Sumová A and Pácha J: An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors. Int J Cancer. 132:1032–1041. 2013. View Article : Google Scholar

59 

Bednarski JJ and Sleckman BP: At the intersection of DNA damage and immune responses. Nat Rev Immunol. 19:231–242. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Gery S, Komatsu N, Baldjyan L, Yu A, Koo D and Koeffler HP: The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 22:375–382. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Arango D, Mariadason JM, Wilson AJ, Yang W, Corner GA, Nicholas C, Aranes MJ and Augenlicht LH: c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis. Br J Cancer. 89:1757–1765. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L and Malgrange B: Cell 'circadian' cycle: New role for mammalian core clock genes. Cell Cycle. 8:832–837. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Wood PA, Yang X, Taber A, Oh EY, Ansell C, Ayers SE, Al-Assaad Z, Carnevale K, Berger FG, Peña MM and Hrushesky WJ: Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res. 6:1786–1793. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Fu L, Pelicano H, Liu J, Huang P and Lee C: The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 111:41–50. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Shen P, Pichler M, Chen M, Calin GA and Ling H: To Wnt or lose: The missing non-coding linc in colorectal cancer. Int J Mol Sci. 18:20032017. View Article : Google Scholar :

67 

Filipovich A, Gehrke I, Poll-Wolbeck SJ and Kreuzer KA: Physiological inhibitors of Wnt signaling. Eur J Haematol. 86:453–465. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY, Xiong Y, Berger FG, Peña MM and Hrushesky WJ: Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J Biochem. 145:289–297. 2009. View Article : Google Scholar

69 

Schroll MM, LaBonia GJ, Ludwig KR and Hummon AB: Glucose restriction combined with autophagy inhibition and chemotherapy in HCT 116 spheroids decreases cell clonogenicity and viability regulated by tumor suppressor genes. J Proteome Res. 16:3009–3018. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Zhang F, Sun H, Zhang S, Yang X, Zhang G and Su T: Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and β-catenin signaling. Oncol Res. 25:709–719. 2017. View Article : Google Scholar

71 

Wang JL, Lin YW, Chen HM, Kong X, Xiong H, Shen N, Hong J and Fang JY: Calcium prevents tumorigenesis in a mouse model of colorectal cancer. PLoS One. 6:e225662011. View Article : Google Scholar : PubMed/NCBI

72 

Hasakova K, Vician M, Reis R, Zeman M and Herichova I: The expression of clock genes cry1 and cry2 in human colorectal cancer and tumor adjacent tissues correlates differently dependent on tumor location. Neoplasma. 65:986–992. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y, Liu R and Huang W: Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One. 8:e616792013. View Article : Google Scholar : PubMed/NCBI

74 

Mazzoccoli G, Colangelo T, Panza A, Rubino R, De Cata A, Tiberio C, Valvano MR, Pazienza V, Merla G, Augello B, et al: Deregulated expression of cryptochrome genes in human colorectal cancer. Mol Cancer. 15:62016. View Article : Google Scholar : PubMed/NCBI

75 

Heald R, McLoughlin M and McKeon F: Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell. 74:463–474. 1993. View Article : Google Scholar : PubMed/NCBI

76 

Backert S, Gelos M, Kobalz U, Hanski ML, Böhm C, Mann B, Lövin N, Gratchev A, Mansmann U, Moyer MP, et al: Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer. 82:868–874. 1999. View Article : Google Scholar : PubMed/NCBI

77 

van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, et al: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 398:627–630. 1999. View Article : Google Scholar : PubMed/NCBI

78 

Burgermeister E, Battaglin F, Eladly F, Wu W, Herweck F, Schulte N, Betge J, Härtel N, Kather JN, Weis CA, et al: Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine. 45:139–154. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Zhang Y, Devocelle A, Desterke C, de Souza LEB, Hadadi É, Acloque H, Foudi A, Xiang Y, Ballesta A, Chang Y and Giron-Michel J: BMAL1 knockdown leans epithelial-mesenchymal balance toward epithelial properties and decreases the chemoresistance of colon carcinoma cells. Int J Mol Sci. 22:52472021. View Article : Google Scholar : PubMed/NCBI

80 

Wang L, Chen B, Wang Y, Sun N, Lu C, Qian R and Hua L: hClock gene expression in human colorectal carcinoma. Mol Med Rep. 8:1017–1022. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Wang Y, Sun N, Lu C, Bei Y, Qian R and Hua L: Upregulation of circadian gene 'hClock' contribution to metastasis of colorectal cancer. Int J Oncol. 50:2191–2199. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Karantanos T, Theodoropoulos G, Gazouli M, Vaiopoulou A, Karantanou C, Stravopodis DJ, Bramis K, Lymperi M and Pektasidis D: Association of the clock genes polymorphisms with colorectal cancer susceptibility. J Surg Oncol. 108:563–567. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Kurzawski G, Suchy J, Debniak T, Kładny J and Lubiński J: Importance of microsatellite instability (MSI) in colorectal cancer: MSI as a diagnostic tool. Ann Oncol. 15(Suppl 4): iv283–iv284. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Alhopuro P, Björklund M, Sammalkorpi H, Turunen M, Tuupanen S, Biström M, Niittymäki I, Lehtonen HJ, Kivioja T, Launonen V, et al: Mutations in the circadian gene CLOCK in colorectal cancer. Mol Cancer Res. 8:952–960. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Fuhr L, El-Athman R, Scrima R, Cela O, Carbone A, Knoop H, Li Y, Hoffmann K, Laukkanen MO, Corcione F, et al: The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMedicine. 33:105–121. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Nelson RL: Iron and colorectal cancer risk: Human studies. Nutr Rev. 59:140–148. 2001. View Article : Google Scholar : PubMed/NCBI

87 

Osborne NJ, Gurrin LC, Allen KJ, Constantine CC, Delatycki MB, McLaren CE, Gertig DM, Anderson GJ, Southey MC, Olynyk JK, et al: HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology. 51:1311–1318. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Okazaki F, Matsunaga N, Okazaki H, Azuma H, Hamamura K, Tsuruta A, Tsurudome Y, Ogino T, Hara Y, Suzuki T, et al: Circadian clock in a mouse colon tumor regulates intracellular iron levels to promote tumor progression. J Biol Chem. 291:7017–7028. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Sakamoto W and Takenoshita S: Overexpression of both clock and BMAL1 inhibits entry to S phase in human colon cancer cells. Fukushima J Med Sci. 61:111–124. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Zeng ZL, Wu MW, Sun J, Sun YL, Cai YC, Huang YJ and Xian LJ: Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J Biochem. 148:319–326. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Zhang Y, Devocelle A, Souza L, Foudi A, Tenreira Bento S, Desterke C, Sherrard R, Ballesta A, Adam R, Giron-Michel J and Chang Y: BMAL1 knockdown triggers different colon carcinoma cell fates by altering the delicate equilibrium between AKT/mTOR and P53/P21 pathways. Aging (Albany NY). 12:8067–8083. 2020. View Article : Google Scholar

92 

Dong P, Wang Y, Liu Y, Zhu C, Lin J, Qian R, Hua L and Lu C: BMAL1 induces colorectal cancer metastasis by stimulating exosome secretion. Mol Biol Rep. 49:373–384. 2022. View Article : Google Scholar

93 

Gu D, Li S, Ben S, Du M, Chu H, Zhang Z, Wang M, Zhang ZF and Chen J: Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch Toxicol. 92:2681–2689. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Pazienza V, Piepoli A, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A and Mazzoccoli G: SIRT1 and the clock gene machinery in colorectal cancer. Cancer Invest. 30:98–105. 2012. View Article : Google Scholar

95 

Colangelo T, Carbone A, Mazzarelli F, Cuttano R, Dama E, Nittoli T, Albanesi J, Barisciano G, Forte N, Palumbo O, et al: Loss of circadian gene timeless induces EMT and tumor progression in colorectal cancer via Zeb1-dependent mechanism. Cell Death Differ. 29:1552–1568. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Xue X, Liu F, Han Y, Li P, Yuan B, Wang X, Chen Y, Kuang Y, Zhi Q and Zhao H: Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer. Biochem Biophys Res Commun. 450:1058–1062. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Yang X, Wood PA and Hrushesky WJ: Mammalian TIMELESS is required for ATM-dependent CHK2 activation and G2/M checkpoint control. J Biol Chem. 285:3030–3034. 2010. View Article : Google Scholar :

98 

Neilsen BK, Frodyma DE, McCall JL, Fisher KW and Lewis RE: ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells. PLoS One. 14. pp. e2092242019, View Article : Google Scholar

99 

Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG and Baylin SB: Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2:e402006. View Article : Google Scholar : PubMed/NCBI

100 

Levi F, Perpoint B, Garufi C, Focan C, Chollet P, Depres-Brummer P, Zidani R, ienza S, Itzhaki M, Iacobelli S, et al: Oxaliplatin activity against metastatic colorectal cancer. A phase II study of 5-day continuous venous infusion at circadian rhythm modulated rate. Eur J Cancer. 29A:1280–1284. 1993. View Article : Google Scholar : PubMed/NCBI

101 

Lévi FA, Zidani R, Vannetzel JM, Perpoint B, Focan C, Faggiuolo R, Chollet P, Garufi C, Itzhaki M, Dogliotti L, et al: Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: A randomized multi-institutional trial. J Natl Cancer Inst. 86:1608–1617. 1994. View Article : Google Scholar : PubMed/NCBI

102 

Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauteville D, Guettier C, Adam R and Bouchahda M: Cetuximab and circadian chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol. 67:339–348. 2011. View Article : Google Scholar

103 

Innominato PF, Giacchetti S, Moreau T, Smaaland R, Focan C, Bjarnason GA, Garufi C, Iacobelli S, Tampellini M, Tumolo S, et al: Prediction of survival by neutropenia according to delivery schedule of oxaliplatin-5-fluorouracil-leucovorin for metastatic colorectal cancer in a randomized international trial (EORTC 05963). Chronobiol Int. 28:586–600. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Innominato PF, Karaboué A, Focan C, Chollet P, Giacchetti S, Bouchahda M, Ulusakarya A, Torsello A, Adam R, Lévi FA and Garufi C: Efficacy and safety of chronomodulated irinotecan, oxaliplatin, 5-fluorouracil and leucovorin combination as first- or second-line treatment against metastatic colorectal cancer: Results from the international EORTC 05011 trial. Int J Cancer. 148:2512–2521. 2020.Epub ahead of print. View Article : Google Scholar

105 

Innominato PF, Ballesta A, Huang Q, Focan C, Chollet P, Karaboué A, Giacchetti S, Bouchahda M, Adam R, Garufi C and Lévi FA: Sex-dependent least toxic timing of irinotecan combined with chronomodulated chemotherapy for metastatic colorectal cancer: Randomized multicenter EORTC 05011 trial. Cancer Med. 9:4148–4159. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Henricks LM, Opdam FL, Beijnen JH, Cats A and Schellens JHM: DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: Call for a drug label update. Ann Oncol. 28:2915–2922. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Fang L, Yang Z, Zhou J, Tung JY, Hsiao CD, Wang L, Deng Y, Wang P, Wang J and Lee MH: Circadian clock gene CRY2 degradation is involved in chemoresistance of colorectal cancer. Mol Cancer Ther. 14:1476–1487. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J and Levi F: A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol. 7:e10021432011. View Article : Google Scholar : PubMed/NCBI

109 

Hesse J, Martinelli J, Aboumanify O, Ballesta A and Relógio A: A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer. Comput Struct Biotechnol J. 19:5170–5183. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Rao X and Lin L: Circadian clock as a possible control point in colorectal cancer progression (Review). Int J Oncol 61: 149, 2022.
APA
Rao, X., & Lin, L. (2022). Circadian clock as a possible control point in colorectal cancer progression (Review). International Journal of Oncology, 61, 149. https://doi.org/10.3892/ijo.2022.5439
MLA
Rao, X., Lin, L."Circadian clock as a possible control point in colorectal cancer progression (Review)". International Journal of Oncology 61.6 (2022): 149.
Chicago
Rao, X., Lin, L."Circadian clock as a possible control point in colorectal cancer progression (Review)". International Journal of Oncology 61, no. 6 (2022): 149. https://doi.org/10.3892/ijo.2022.5439
Copy and paste a formatted citation
x
Spandidos Publications style
Rao X and Lin L: Circadian clock as a possible control point in colorectal cancer progression (Review). Int J Oncol 61: 149, 2022.
APA
Rao, X., & Lin, L. (2022). Circadian clock as a possible control point in colorectal cancer progression (Review). International Journal of Oncology, 61, 149. https://doi.org/10.3892/ijo.2022.5439
MLA
Rao, X., Lin, L."Circadian clock as a possible control point in colorectal cancer progression (Review)". International Journal of Oncology 61.6 (2022): 149.
Chicago
Rao, X., Lin, L."Circadian clock as a possible control point in colorectal cancer progression (Review)". International Journal of Oncology 61, no. 6 (2022): 149. https://doi.org/10.3892/ijo.2022.5439
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team