Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2023 Volume 62 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 62 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of N6‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review)

  • Authors:
    • Tong Ye
    • Jiaxin Wang
    • Haiying Zhao
    • Guiping Zhao
    • Peng Li
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
    Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 4
    |
    Published online on: November 10, 2022
       https://doi.org/10.3892/ijo.2022.5452
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pancreatic cancer (PC) ranks as the seventh leading cause of cancer‑associated mortality, and is predicted to become the third leading cause of cancer‑associated mortality by the year 2025. Although advanced modalities of diagnosis and treatment have been continuously emerging, the mortality rate (466,003) approximated to that of the morbidity rate (495,773) in 2020. N6‑methyladenosine (m6A) has been shown to be methylated on the sixth N atom of adenine in RNA, which occurs co‑transcriptionally and serves to regulate gene expression post‑transcriptionally. The discovery of m6A has heralded a new era in the scientific investigation of PC. In the present review article, the classical conception of m6A and emerging hypotheses regarding its role are summarized, and the function of m6A in carcinogenesis and progression of PC is then discussed, followed by the potential roles of m6A in the diagnosis of PC and in therapeutic applications. However, this new era is only at the initial stages, and the extent to which m6A influences PC is still poorly understood. In view of this, the present review article also summarizes the developments at the frontier of the interaction between m6A and PC, and discusses strategies through which m6A may provide a promising avenue for anticancer therapy.
View Figures

Figure 1

Figure 2

View References

1 

Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Martin-Perez E, Domínguez-Muñoz JE, Botella-Romero F, Cerezo L, Matute Teresa F, Serrano T and Vera R: Multidisciplinary consensus statement on the clinical management of patients with pancreatic cancer. Clin Transl Oncol. 22:1963–1975. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Zhou Z, Lv J, Yu H, Han J, Yang X, Feng D, Wu Q, Yuan B, Lu Q and Yang H: Mechanism of RNA modification N6-methyladenosine in human cancer. Mol Cancer. 19:1042020. View Article : Google Scholar : PubMed/NCBI

6 

He L, Li H, Wu A, Peng Y, Shu G and Yin G: Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 18:1762019. View Article : Google Scholar : PubMed/NCBI

7 

Frye M, Harada BT, Behm M and He C: RNA modifications modulate gene expression during development. Science. 361:1346–1349. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112:1086132019. View Article : Google Scholar : PubMed/NCBI

9 

Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar

10 

Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S and Liu T: The critical role of RNA m6A methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Wei CM, Gershowitz A and Moss B: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI

12 

Rottman F, Shatkin AJ and Perry RP: Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: Possible implications for processing. Cell. 3:197–199. 1974. View Article : Google Scholar : PubMed/NCBI

13 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

14 

Adams JM and Cory S: Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 255:28–33. 1975. View Article : Google Scholar : PubMed/NCBI

15 

Schäfer KP: RNA synthesis and processing reactions in a subcellular system from mouse L cells. Hoppe Seylers Z Physiol Chem. 363:33–43. 1982. View Article : Google Scholar : PubMed/NCBI

16 

Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI

17 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Schibler U, Kelley DE and Perry RP: Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol. 115:695–714. 1977. View Article : Google Scholar : PubMed/NCBI

20 

Rottman FM, Desrosiers RC and Friderici K: Nucleotide methylation patterns in eukaryotic mRNA. Prog Nucleic Acid Res Mol Biol. 19:21–38. 1976. View Article : Google Scholar : PubMed/NCBI

21 

Wei CM and Moss B: Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry. 16:1672–1676. 1977. View Article : Google Scholar : PubMed/NCBI

22 

Krug RM: Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methyl-guanosine in cap structures. J Virol. 20:45–53. 1976. View Article : Google Scholar : PubMed/NCBI

23 

Beemon K and Keith J: Localization of N6-methyladenosine in the rous sarcoma viru genome. J Mol Bid. 113:165–179. 1977. View Article : Google Scholar

24 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, et al: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 347:1002–1006. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Ma H, Wang X, Cai J, Dai Q, Natchiar SK, Lv R, Chen K, Lu Z, Chen H, Shi YG, et al: N6-methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 15:88–94. 2019. View Article : Google Scholar

28 

van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M and Lafontaine DLJ: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47:7719–7733. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K and Tsujikawa K: AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 7:422712017. View Article : Google Scholar : PubMed/NCBI

30 

Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, Fung TK, Zeisig BB, Cui Y, Zha J, et al: HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell. 36:645–659.e8. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, et al: Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res. 79:4612–4626. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E, Locatelli F and Gallo A: ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res. 46:2045–2059. 2018. View Article : Google Scholar :

33 

Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, et al: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 18:1102019. View Article : Google Scholar : PubMed/NCBI

34 

Li J, Huang C, Zou Y, Ye J, Yu J and Gui Y: CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol Cancer. 19:1032020. View Article : Google Scholar : PubMed/NCBI

35 

Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP and Conrad NK: The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 169:824–835.e14. 2017. View Article : Google Scholar

36 

Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T and Hamakubo T: Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 288:33292–33302. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Narayan P and Rottman FM: An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science. 242:1159–1162. 1988. View Article : Google Scholar : PubMed/NCBI

40 

Schumann U, Shafik A and Preiss T: METTL3 gains R/W access to the epitranscriptome. Mol Cell. 62:323–324. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Śledź P and Jinek M: Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. 5:e184342016. View Article : Google Scholar : PubMed/NCBI

42 

Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar :

44 

Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Corrigendum: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature. 542:2602017. View Article : Google Scholar

45 

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018. View Article : Google Scholar

47 

Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. View Article : Google Scholar

48 

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, et al: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32:415–429. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar

51 

Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T and Birchmeier W: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 4:222–231. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Bawankar P, Lence T, Paolantoni C, Haussmann IU, Kazlauskiene M, Jacob D, Heidelberger JB, Richter FM, Nallasivan MP, Morin V, et al: Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nat Commun. 12:37782021. View Article : Google Scholar

53 

Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, et al: Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 71:973–985.e5. 2018. View Article : Google Scholar

54 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar :

55 

Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ and McDonough MA: Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 42:4741–4754. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Wang T, Kong S, Tao M and Ju S: The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 19:882020. View Article : Google Scholar : PubMed/NCBI

57 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48:3816–3831. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, et al: METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell. 79:425–442.e7. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Liu SY, Feng Y, Wu JJ, Zou ML, Sun ZL, Li X and Yuan FL: m6A facilitates YTHDF-independent phase separation. J Cell Mol Med. 24:2070–2072. 2020. View Article : Google Scholar

61 

Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, Patil DP, Kwak H, Lee JH and Jaffrey SR: m6A enhances the phase separation potential of mRNA. Nature. 571:424–428. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Gao Y, Pei G, Li D, Li R, Shao Y, Zhang QC and Li P: Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Res. 29:767–769. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Wang J, Wang L, Diao J, Shi YG, Shi Y, Ma H and Shen H: Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein Cell. 11:304–307. 2020. View Article : Google Scholar

64 

Sheth U and Parker R: Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 300:805–808. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI

66 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM and Wang PJ: Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14. pp. e10074122018, View Article : Google Scholar

69 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar

70 

Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I and Wilson SA: The m6A-methylase complex recruits TREX and regulates mRNA export. Sci Rep. 8:138272018. View Article : Google Scholar

71 

Brockdorff N, Bowness JS and Wei G: Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 34:733–744. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Liang D, Lin WJ, Ren M, Qiu J, Yang C, Wang X, Li N, Zeng T, Sun K, You L, et al: m6A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin. Autophagy. 18:1318–1337. 2022. View Article : Google Scholar

73 

Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI

74 

König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM and Ule J: iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol. 17:909–915. 2010. View Article : Google Scholar : PubMed/NCBI

75 

McCloskey A, Taniguchi I, Shinmyozu K and Ohno M: hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science. 335:1643–1646. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 518:560–564. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Ż, Pan JN, He C, Parisien M and Pan T: Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol Cell. 76:70–81.e9. 2019. View Article : Google Scholar

78 

Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M and D'Agostino VG: RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles. 10:e120432020. View Article : Google Scholar

81 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Wu Z, Shi Y, Lu M, Song M, Yu Z, Wang J, Wang S, Ren J, Yang YG, Liu GH, et al: METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 48:11083–11096. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, Wang SY, Baltissen MPA, Jansen PWTC, Rossa M, et al: N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 24:870–878. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G, et al: Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 10:18582019. View Article : Google Scholar :

85 

Hua YQ, Zhang K, Sheng J, Ning ZY, Li Y, Shi WD and Liu LM: NUCB1 suppresses growth and shows additive effects with gemcitabine in pancreatic ductal adenocarcinoma via the unfolded protein response. Front Cell Dev Biol. 9:6418362021. View Article : Google Scholar : PubMed/NCBI

86 

Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, Li X, Xu S, Miao J, Guo J, et al: Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 19:1302020. View Article : Google Scholar

87 

Xie F, Liu S and Wang H: M6A methyltransferase METTL16 suppresses pancreatic cancer proliferation through p21 pathways. Pancreas. 49:14372020.

88 

Huang H, Li H, Pan R, Wang S, Khan AA, Zhao Y, Zhu H and Liu X: Ribosome 18S m6A methyltransferase METTL5 promotes pancreatic cancer progression by modulating c-Myc translation. Int J Oncol. 60:92022. View Article : Google Scholar

89 

Zeng J, Zhang H, Tan Y, Wang Z, Li Y and Yang X: m6A demethylase FTO suppresses pancreatic cancer tumorigenesis by demethylating PJA2 and inhibiting Wnt signaling. Mol Ther Nucleic Acids. 25:277–292. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Tang X, Liu S, Chen D, Zhao Z and Zhou J: The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells. Oncol Lett. 17:2473–2478. 2019.PubMed/NCBI

91 

Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19:912020. View Article : Google Scholar : PubMed/NCBI

92 

He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018. View Article : Google Scholar : PubMed/NCBI

93 

He Y, Yue H, Cheng Y, Ding Z, Xu Z, Lv C, Wang Z, Wang J, Yin C, Hao H and Chen C: ALKBH5-mediated m6A demethylation of KCNK15-AS1 inhibits pancreatic cancer progression via regulating KCNK15 and PTEN/AKT signaling. Cell Death Dis. 12:11212021. View Article : Google Scholar

94 

Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S and Shimamoto F: m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 19:32020. View Article : Google Scholar

95 

Huang R, Yang L, Zhang Z, Liu X, Fei Y, Tong WM, Niu Y and Liang Z: RNA m6A demethylase ALKBH5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front Cell Dev Biol. 9:7242822021. View Article : Google Scholar

96 

Hu X, Peng WX, Zhou H, Jiang J, Zhou X, Huang D, Mo YY and Yang L: IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ. 27:1782–1794. 2020. View Article : Google Scholar :

97 

Meng X, Deng Y, He S, Niu L and Zhu H: m6A-mediated upregulation of LINC00857 promotes pancreatic cancer tumorigenesis by regulating the miR-150-5p/E2F3 axis. Front Oncol. 11:6299472021. View Article : Google Scholar

98 

Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B and Deng X: Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene. 40:277–291. 2021. View Article : Google Scholar :

99 

Geng Y, Guan R, Hong W, Huang B, Liu P, Guo X, Hu S, Yu M and Hou B: Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann Transl Med. 8:3872020. View Article : Google Scholar : PubMed/NCBI

100 

Ying P, Li Y, Yang N, Wang X, Wang H, He H, Li B, Peng X, Zou D, Zhu Y, et al: Identification of genetic variants in m6A modification genes associated with pancreatic cancer risk in the Chinese population. Arch Toxicol. 95:1117–1128. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D, Peng X, Ying P, Zhang M, Niu S, et al: N6-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression. Gut. 69:2180–2192. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang J, Lu Z, Wu P, Cai B, Miao Y and Jiang K: The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract. 215:1526662019. View Article : Google Scholar : PubMed/NCBI

104 

Li BQ, Huang S, Shao QQ, Sun J, Zhou L, You L, Zhang TP, Liao Q, Guo JC and Zhao YP: WT1-associated protein is a novel prognostic factor in pancreatic ductal adenocarcinoma. Oncol Lett. 13:2531–2538. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Chen J, Sun Y, Xu X, Wang D, He J, Zhou H, Lu Y, Zeng J, Du F, Gong A and Xu M: YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle. 16:2259–2271. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Dai S, Zhang J, Huang S, Lou B, Fang B, Ye T, Huang X, Chen B and Zhou M: HNRNPA2B1 regulates the epithelial-mesenchymal transition in pancreatic cancer cells through the ERK/snail signalling pathway. Cancer Cell Int. 17:122017. View Article : Google Scholar : PubMed/NCBI

107 

Dahlem C, Barghash A, Puchas P, Haybaeck J and Kessler SM: The insulin-like growth factor 2 mRNA binding protein IMP2/IGF2BP2 is overexpressed and correlates with poor survival in pancreatic cancer. Int J Mol Sci. 20:32042019. View Article : Google Scholar : PubMed/NCBI

108 

Chen S, Yang C, Wang ZW, Hu JF, Pan JJ, Liao CY, Zhang JQ, Chen JZ, Huang Y, Huang L, et al: CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol. 14:602021. View Article : Google Scholar : PubMed/NCBI

109 

Huang XT, Li JH, Zhu XX, Huang CS, Gao ZX, Xu QC, Zhao W and Yin XY: HNRNPC impedes m6A-dependent anti-metastatic alternative splicing events in pancreatic ductal adenocarcinoma. Cancer Lett. 518:196–206. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Hu Y, Tang J, Xu F, Chen J, Zeng Z, Han S, Wang F, Wang D, Huang M, Zhao Y, et al: A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res. 41:692022. View Article : Google Scholar : PubMed/NCBI

111 

Huang S, Wu Z, Cheng Y, Wei W and Hao L: Insulin-like growth factor 2 mRNA binding protein 2 promotes aerobic glycolysis and cell proliferation in pancreatic ductal adenocarcinoma via stabilizing GLUT1 mRNA. Acta Biochim Biophys Sin (Shanghai). 51:743–752. 2019. View Article : Google Scholar : PubMed/NCBI

112 

Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, Doki Y, Mori M, Ishii H and Ogawa K: The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 52:621–629. 2018.PubMed/NCBI

113 

Zhang C, Ou S, Zhou Y, Liu P, Zhang P, Li Z, Xu R and Li Y: m6A methyltransferase METTL14-mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer. Front Oncol. 11:6963712021. View Article : Google Scholar

114 

Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, Miao X and Yang L: Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol. 122:1057312020. View Article : Google Scholar : PubMed/NCBI

115 

Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X, Peng S, Chen K, Wang M, Gong S, et al: Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 134:17963–17971. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI

117 

Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C and Yang CG: Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43:373–384. 2015. View Article : Google Scholar :

118 

Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, Ni T, Zhang ZS, Zhang T, Li C, et al: Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 35:677–691.e10. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, et al: R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell. 172:90–105.e23. 2018. View Article : Google Scholar

121 

Xu P and Ge R: Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem. 230:1141182022. View Article : Google Scholar : PubMed/NCBI

122 

Forino NM, Hentschel J and Stone MD: Cryo-EM structures tell a tale of two telomerases. Nat Struct Mol Biol. 28:457–459. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, et al: Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 593:597–601. 2021. View Article : Google Scholar : PubMed/NCBI

124 

Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, et al: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 22:191–205.e9. 2018. View Article : Google Scholar

125 

Zhang J, Tsoi H, Li X, Wang H, Gao J, Wang K, Go MY, Ng SC, Chan FK, Sung JJ and Yu J: Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP-WT1-TBL1 axis. Gut. 65:1482–1493. 2016. View Article : Google Scholar

126 

Huang C, Zhou S, Zhang C, Jin Y, Xu G, Zhou L, Ding G, Pang T, Jia S and Cao L: ZC3H13-mediated N6-methyladenosine modification of PHF10 is impaired by fisetin which inhibits the DNA damage response in pancreatic cancer. Cancer Lett. 530:16–28. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ye T, Wang J, Zhao H, Zhao G and Li P: Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). Int J Oncol 62: 4, 2023.
APA
Ye, T., Wang, J., Zhao, H., Zhao, G., & Li, P. (2023). Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). International Journal of Oncology, 62, 4. https://doi.org/10.3892/ijo.2022.5452
MLA
Ye, T., Wang, J., Zhao, H., Zhao, G., Li, P."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review)". International Journal of Oncology 62.1 (2023): 4.
Chicago
Ye, T., Wang, J., Zhao, H., Zhao, G., Li, P."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review)". International Journal of Oncology 62, no. 1 (2023): 4. https://doi.org/10.3892/ijo.2022.5452
Copy and paste a formatted citation
x
Spandidos Publications style
Ye T, Wang J, Zhao H, Zhao G and Li P: Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). Int J Oncol 62: 4, 2023.
APA
Ye, T., Wang, J., Zhao, H., Zhao, G., & Li, P. (2023). Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). International Journal of Oncology, 62, 4. https://doi.org/10.3892/ijo.2022.5452
MLA
Ye, T., Wang, J., Zhao, H., Zhao, G., Li, P."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review)". International Journal of Oncology 62.1 (2023): 4.
Chicago
Ye, T., Wang, J., Zhao, H., Zhao, G., Li, P."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review)". International Journal of Oncology 62, no. 1 (2023): 4. https://doi.org/10.3892/ijo.2022.5452
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team